速算与巧算整数与小数乘除法部分
计算巧算三年级

小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确.一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。
2。
计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算。
(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3。
计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45—18+19=45+19—18=45+(19—18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19—18=1。
小学数学常用的巧算和速算方法集锦

根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。例:998+1413+9989,给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和,按照拆数凑整法,原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400。
第二部分例题解析
一、“凑整”先算1.计算:
(1)24+44+56
(2)53+36+47
解:(1)24+44+56=24+(44+56)=24+100=124
这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.
(2)53+36+47=53+47+36=(53+47)+36=100+36=136
=9×5中间数是9
=45共有5个数 (5)计算:4+8+12+16+20
=12×5中间数是12
=60共有5个数2.等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成: (1)计算:1+2+3+4+5+6+7+8+9+10
=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.
②式=1000-(90+80+20+10) =1000-200=800
2.先减去那些与被减数有相同尾数的减数。 例4①4723-(723+189)②2356-159-256
(完整版)常用的巧算和速算方法

小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
上海小数的乘除法巧算

小数的乘除法巧算速算本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、同步知识梳理知识点拨一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:4⨯25=100,8⨯125=1000,5⨯20=10012345679⨯9=111111111(去8数,重点记忆)7⨯11⨯13=1001(三个常用质数的乘积,重点记忆)理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:a÷b=(a⨯n)÷(b⨯n)=(a÷m)÷(b÷m) m≠0,n≠0⑵在连除时,可以交换除数的位置,商不变.即:a÷b÷c=a÷c÷b⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a⨯b÷c=a÷c⨯b=b÷c⨯a⑷在乘、除混合运算中,去掉或添加括号的规则,即a⨯(b⨯c)=a⨯b⨯c a⨯(b÷c)=a⨯b÷c②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即a÷(b⨯c)=a÷b÷c a÷(b÷c)=a÷b⨯c添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即a⨯b⨯c=a⨯(b⨯c) a⨯b÷c=a⨯(b÷c)a÷b÷c=a÷(b⨯c) a÷b⨯c=a÷(b÷c)⑸两个数之积除以两个数之积,可以分别相除后再相乘.即(a⨯b)÷(c⨯d)=(a÷c)⨯(b÷d)=(a÷d)⨯(b÷c)上面的三个性质都可以推广到多个数的情形.例题精讲一,乘5、15、25、1251-1-2.乘除混合运算与提取公因数二,乘9、99、999三,乘11、111、101四,其它乘法五,除法六,乘除混合【例 1】计算:2.125⨯7.5⨯32【巩固】计算:0.125⨯0.25⨯0.5⨯64【例 2】已知1.08÷ 1.2÷ 2.3=10.8÷□,其中□表示的数是。
(完整版)整数乘除法速算巧算教师版

本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家). 例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.二、乘除法巧算与速算(1)凑整:2×5;4×25;8×125……;知识点拨教案目标整数乘除法速算与巧算(2)构造整数:99999......9101k =-k 个;(3)乘法分配律:()a b c a b a c ⨯+=⨯+⨯; (4)提取公因数:()a b a c a b c ⨯+⨯=⨯+; 注意:除法算式中公因数只能用为除数。
速算与巧算综合

第一讲速算与巧算(综合)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
一、凑整:在整数加法减运算中,通常利用运算律把几个能够凑成整十、整百、整千…的数先相加减,再与题中剩下的数相加减。
例1:简便计算:(1)9998+3+99+998+3+9 (2)1234+5678+8766+4322(3)1759-998-103 (4)857-289+189解:(2)9998+3+99+998+3+9 =9998+2+1+99+998+2+1+9=(9998+2)+(1+99)+(998+2)+(1+9)=10000+100+1000+10=11110(2)1234+5678+8766+4322=(1234+8766)+(55678+4322)=10000+10000=20000(3)1759-998-103 =1759-1000+2-100-3=1759-1000-100+2-3 =659+2-3=658(4)857-289+189 =857-(289-189)=857-100=757二、乘除法中的巧算.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=10,25×4=100,125×8=1000例2计算(1)123×4×25 (2)56×125解:(1)123×4×25=123×(4×25)=123×100=12300(2)56×125=7×8×125=7×(8×125)=7×1000=7000例3(1)67×12+67×35+67×52+67 (2)123×99解:(1)67×12+67×35+67×52+6=67×(12+35+52+1)=67×100=6700(2)123×99=123×(100-1)=12300-123=12177例4计算(1)44000÷125 ((2)864×27÷54 (3)5600÷(28÷6)解:(1)44000÷125=(44000×8)÷(125×8)=352000÷1000=352(2)864×27÷54=864÷54×27 =864÷(54÷27 )=864÷2=432(3)5600÷(28÷6)=5600÷28×6 =200×6=1200三、特殊的两位数相乘1.一个数乘以11,“两头一拉,中间相加”。
乘除法的速算与巧算

练习1
计算下面各题:
1、450÷25 2、525÷25 3、3500÷125 4、10000÷625 5、49500÷900 6、9000÷225
计算25×125×4×8
分析与解答: 经过仔细观察可以发现:在这道连乘算 式中,如果先把25与4相乘,可以得到100; 同时把125与8相乘,可以得到1000;再把 100与1000相乘就简便了。这就启发我们运用 乘法交换律和结合律使计算简便。 25×125×4×8 =(25×4)×(125×8) =100×1000 =100000
小数除法的简便运算9056905690303一个数连续除以两个数等于除以这两个数的积5635567556758516abcabc把除数分成两个因数的积然后用被除数分别除以这两个因数除法的性质abcabc182518425472100072被除数和除数同时扩大或缩小相同的倍数商不变商不变的规律5635905061825仔细观察你发现了什么
例11 计算①110÷5
②3300÷25
③ 44000÷125
解:①110÷5=(110×2)÷(5×2)=220÷10=22
②3300÷25=(3300×4)÷(25×4)
=13200÷100=132
③ 44000÷125=(44000×8)÷(125×8)
=352000÷1000=352
习题11 计算①120÷5 ②150÷25 ③ 40000÷125
1.在除法中,利用商不变的性质巧算
商不变的性质是:被除数和除数同时乘以或除以相同的数 (零除外),商不变.利用这个性质巧算,使除数变为整十、 整百、整千的数,再除。
计算:325÷25
分析与解答: 在除法里,被除数和除数同时扩大或缩 小相同的倍数,商不变。利用这一性质,可 以使这道计算题简便。 325÷25 =(325×4)÷(25×4) =1300÷100 =13
【小学奥数题库系统】---整数乘除法速算巧算学生版

整数乘除法速算与巧算教学目标本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.知识点拨一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如: 4 25 100 , 8 125 1000 , 5 20 10012345679 9 111111111 (去 8 数,重点记忆)711 13 1001 (三个常用质数的乘积,重点记忆)理论依据:乘法交换率: a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴ 商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:a b (a n) (b n) (a m) (b m) m 0 , n 0⑵在连除时,可以交换除数的位置,商不变.即: a b c a c b⑶ 在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如: a b c a c b b c a⑷ 在乘、除混合运算中,去掉或添加括号的规则去括号情形:① 括号前是“×”时,去括号后,括号内的乘、除符号不变.即1 / 5a (b c) a b ca (b c) a b c②括号前是 “÷”时,去括号后,括号内的 “×”变为 “÷”,“÷”变为 “×”.即a (b c) a bc a (b c) a b c添加括号情形: 加括号时,括号前是 “×”时,原符号不变;括号前是 “÷”时,原符号 “×”变为 “÷”,“÷” a b c a (b c)a b c a (b c) 变为 “×”.即a b c a (b c )a b c a (b c)⑸ 两个数之积除以两个数之积,可以分别相除后再相乘.即 (a b) (c d ) (a c) ( b d ) (a d ) (b c) 上面的三个性质都可以推广到多个数的情形.例题精讲一,乘 5、15、 25、 125【例 1】 下面这些题你会算吗?⑴ 125 (408) ⑵ (100 4) 25【巩固】用简便方法计算下面各题.( 1) 125 (80 4) ( 2) (100 8)25【巩固】下面这道题怎样算比较简便呢?看谁算的快!26 25【例 2】 你知道下题怎样快速的计算吗?⑴ 786 5 ⑵ 124 25 ⑶ 96 125 ⑷ 75258 【巩固】运用乘法的运算律大显身手吧,可以记录自己速算的时间啊 .⑴ 17 4 25 ⑵125 19 8 ⑶ 125 72 ⑷ 25 125 16 【巩固】计算: 564 25 125 2009 .【巩固】为了考察大头儿子的速算能力,小头爸爸给他出了一道题,并且限时一分钟,小朋友,你能做到吗?19 25 64 125【巩固】计算: 173 32 125 25 . 【巩固】计算: 13×25×125×4×8=. 【巩固】请快速计算下面各题. ⑴ 2004 25⑵ 125 792【巩固】 456 2 125 25 5 4 8【例 3】 聪明的你也来试试吧!⑴ 2415 ⑵ 8475 ⑶ 39 75 ⑷ 56 625【巩固】请你简便计算.2 / 5⑴ 536 5 ⑵ 638 15 ⑶ 3225 ⑷ 68 75【巩固】计算: 8 13 125 =【巩固】计算: 125 16 111 9 ____________.【例4】计算: 45000 25 90 =二,乘 9、 99、 999【例5】下面各题怎样算简便呢?⑴ 12 9 ⑵ 12 99 ⑶ 12 999【巩固】相信你能快速的计算下面各题,我们一起来做做吧.⑴ 23 9 ⑵ 33 99 ⑶ 25 9999【巩固】计算: 12345678987654321 9【巩固】算式 12345678987654321 63 值的各位数字之和为。