电力系统谐波影响及消除

合集下载

谐波对继电保护的影响与应对策略

谐波对继电保护的影响与应对策略

谐波对继电保护的影响与应对策略谐波是电力系统中的一种常见电压和电流波动,它们的频率是基波频率的整数倍。

谐波可由非线性负载(如电力电子设备和电弧炉)产生,对继电保护系统造成一些不良影响。

本文将探讨谐波对继电保护的影响以及应对策略。

谐波会导致继电保护系统的误动作。

继电保护通常通过检测系统电流和电压来判断发生故障的位置。

谐波会导致电流和电压失真,使得继电保护系统误以为发生了故障。

谐波可能导致不必要的保护动作,从而影响系统的正常运行。

谐波还会导致继电保护系统的灵敏度下降。

由于谐波的存在,继电保护系统需要更高的灵敏度才能正确地检测和定位故障。

提高灵敏度也可能导致继电保护系统对噪声的敏感性增加,从而引起误动作。

谐波会使继电保护系统在灵敏度和可靠性之间取得平衡变得更加困难。

针对上述问题,一些应对策略被提出:1. 谐波滤波器:通过在继电保护系统中增加谐波滤波器,可以有效降低谐波的影响。

谐波滤波器工作原理是通过选择性地过滤谐波信号,将其从继电保护系统中消除或减弱。

这样可以有效提高继电保护系统的灵敏度,减少误动作的发生。

2. 数字滤波算法:通过采用数字滤波算法,可以对输入信号进行滤波处理,减少谐波信号的干扰。

这些算法通常基于快速傅里叶变换(FFT)或小波变换(Wavelet Transform),能够提供更好的抑制谐波的效果。

3. 谐波抑制器:谐波抑制器是一种专门用于抑制谐波的设备。

它通常是根据谐波组成的特性设计的,可以通过频率选择性地抑制谐波信号。

谐波抑制器可以安装在继电保护系统的输入和输出端口,以减少谐波对继电保护系统的影响。

4. 教育和培训:针对谐波对继电保护的影响,进行相关的教育和培训也是必要的。

培训继电保护系统的操作人员,使其了解谐波现象及其对继电保护的影响,掌握正确的处理方法,能够及时应对谐波带来的问题。

谐波对继电保护系统产生了一些不良影响,包括误动作和灵敏度下降。

通过采取谐波滤波器、数字滤波算法、谐波抑制器等措施,可以减少谐波的影响。

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法谐波是指频率高于基波的电磁波,它们会频繁出现在我们的电力系统和其他电力设备中。

虽然谐波在一些应用中可产生有益效果,但在大多数情况下,它们都是一种电力质量问题,会给电力系统和其他设备带来一系列危害。

1.设备损坏:谐波会增加设备内的电流和电压,导致设备发热加剧,并可能引起设备元件过热、熔断或焚毁。

此外,频繁的谐波还会引起设备的机械振动,造成设备损坏。

2.电力系统不稳定:谐波引起系统的电流和电压的波形失真,导致电力系统不稳定。

此外,谐波会导致电力系统中的谐振现象,这些谐振可以引起电力系统中的电流和电压急剧增加,可能破坏设备。

3.通信干扰:谐波会产生大量的高频干扰信号,这些信号可能干扰无线通信和其他电磁波设备的正常运行。

在高度电子化的社会中,这种通信干扰可能会带来严重的问题。

为了抑制谐波带来的危害,可以采取以下方法:1.装置谐波滤波器:谐波滤波器用于减小电力系统中的谐波。

滤波器通常会将谐波通过处理电路转化成其他形式,或者将它们绕过电力系统,以防止它们对设备和系统产生影响。

2.使用变压器:变压器可以用来减小谐波的影响。

通过在电力系统中安装特定的谐波抑制变压器,可以将谐波电流限制在合理的范围内,从而降低谐波的危害。

3.电源滤波器:为敏感设备提供干净的电力供应也是一种有效的抑制谐波的方法。

电源滤波器可以滤除电力供应中的谐波元素,从而降低谐波对设备的危害。

4.合理的电源设计:在电力系统设计阶段,可以采取一些措施来减小谐波的生成。

例如,选择适当的线路,减小高谐波的产生,或者选择低谐波的电力设备。

5.故障检测和维护:及时发现和处理设备和系统中的谐波问题至关重要。

定期进行电力设备的检查和维护,可以发现并消除谐波带来的潜在危害。

总而言之,谐波在电力系统和其他电力设备中的存在可能带来很多危害。

为了抑制这些危害,我们可以采取各种措施,包括使用谐波滤波器、变压器、电源滤波器、合理的电源设计以及进行定期的检查和维护。

电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施谐波是电力系统中常见的一种电信号,它是由电力系统中非线性设备引起的。

谐波会导致电力系统不稳定、设备损坏和通信干扰等问题,因此谐波的抑制是电力系统设计和运行中的重要问题。

谐波的产生原理是电力系统中的非线性元件(如整流器、变频器、电弧炉等)在电压或电流作用下,产生不对称的电压或电流波形,导致谐波频率的波形在电力系统中传播和扩散。

常见的谐波频率包括3次、5次、7次等奇次谐波,以及2次、4次、6次等偶次谐波。

谐波对电力系统的影响包括以下几个方面:1.电力系统不稳定:谐波产生的电压波形失真会导致电力系统的电压稳定性下降,可能导致设备的过电压或欠电压现象,进而影响到电力系统的正常运行。

2.设备损坏:谐波电流会导致电力设备内部的电机、变压器等元件温度升高,进而影响到设备的寿命和可靠性。

3.通信干扰:谐波会在电力线上传播,通过电网对通信系统产生干扰,降低通信系统的传输质量。

为了抑制谐波,可以采取以下几种措施:1.使用谐波滤波器:谐波滤波器是一种专门用于抑制谐波的滤波器。

它可以根据谐波频率的不同,选择相应的滤波器进行安装,从而削弱或消除谐波成分。

2.控制负载谐波含量:减少非线性装置的使用,或者采用符合电力系统标准的电气设备,可以降低谐波的产生和传播。

3.设备绝缘和保护:合理选择电力设备的额定容量和绝缘等级,增加设备的绝缘保护,提高设备的抗谐波能力。

4.进行谐波分析和监测:对电力系统中的谐波进行分析和监测,及时了解谐波的产生和传播情况,以便采取相应的措施进行调整和优化。

5.增加电力系统的容量和稳定性:通过增加线路容量、改善电力系统的稳定性,可以降低谐波对电力系统的影响。

综上所述,谐波是电力系统中的一个重要问题,对电力系统的稳定性和设备的正常运行产生不利影响。

通过采取谐波滤波器、控制负载谐波含量、设备绝缘和保护、谐波分析和监测、以及增加电力系统的容量和稳定性等措施,可以有效地抑制谐波,维护电力系统的正常运行。

电力电子中的谐波问题如何解决?

电力电子中的谐波问题如何解决?

电力电子中的谐波问题如何解决?在当今的电力系统中,电力电子技术的广泛应用带来了诸多便利和效率提升,但同时也引发了一个不容忽视的问题——谐波。

谐波的存在不仅会影响电力设备的正常运行,还可能导致电能质量下降,增加能耗,甚至危及整个电力系统的安全稳定。

那么,如何有效地解决电力电子中的谐波问题呢?要解决谐波问题,首先我们得明白谐波是怎么产生的。

电力电子设备在工作时,由于其非线性的特性,会使得电流和电压的波形发生畸变,从而产生谐波。

比如常见的整流器、逆变器、变频器等,它们在将交流电转换为直流电或者改变交流电的频率和电压时,就容易引入谐波。

既然知道了谐波的来源,那我们就可以有针对性地采取措施来减少谐波的产生。

一种常见的方法是优化电力电子设备的设计。

通过改进电路结构、采用更先进的控制策略以及选择合适的电力电子器件,可以在源头上降低谐波的含量。

例如,在整流电路中,采用多脉冲整流技术,如 12 脉冲、18 脉冲甚至更高脉冲数的整流,可以显著减少谐波的产生。

另外,增加滤波装置也是解决谐波问题的重要手段。

滤波装置可以分为无源滤波器和有源滤波器两大类。

无源滤波器通常由电感、电容和电阻等元件组成,通过谐振原理对特定频率的谐波进行吸收和抑制。

这种滤波器结构简单、成本较低,但存在滤波效果受系统参数影响较大、可能与系统发生谐振等缺点。

相比之下,有源滤波器则具有更好的滤波性能和适应性。

它能够实时检测电网中的谐波电流,并产生与之大小相等、方向相反的补偿电流,从而有效地消除谐波。

有源滤波器虽然性能优越,但成本相对较高,在一些对电能质量要求极高的场合应用较为广泛。

除了在设备端采取措施,合理的系统规划和运行管理也有助于减轻谐波的影响。

在电力系统的设计阶段,就应该充分考虑谐波的问题,合理分配负载,避免谐波源集中在某一区域。

同时,加强对电力设备的运行监测,及时发现和处理谐波超标问题,也是保障系统稳定运行的重要环节。

此外,提高电力用户的谐波意识也非常重要。

电力系统中谐波分析与治理

电力系统中谐波分析与治理

电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。

然而,谐波问题却成为了影响电力系统性能的一个重要因素。

谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。

因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。

一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。

在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。

2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。

3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。

二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。

2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。

3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。

4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。

三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。

常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。

通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。

2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。

高次谐波对供电系统的危害及消除措施

高次谐波对供电系统的危害及消除措施

高次谐波对供电系统的危害及消除措施摘要:现阶段提高供电质量和可靠性成为目前电力企业工作的重点。

在电力电子技术的推动之下,各种各样的供电设备出现在人们的视野中,这就导致高次谐波影响变得越来越广泛。

文章主要分析了高次谐波出现的原因,阐述高次谐波对供电系统产生的危害,最后提出了有效的消除措施。

关键词:高次谐波;供电系统;危害;消除措施高次谐波的出现不仅会影响供电系统,而且还会加速设备绝缘老化,也会对自动化装置以及通讯设施的正常运行产生影响。

主要是由于供电系统在运作过程中,变频器产生的高次谐波会增加电力系统的耗能,导致电机出现发热现象,从而严重影响整个供电系统找稳定性和安全性,不仅会降低供电系统的使用效果,而且还会给电力工作人员带来诸多不便,面对高次谐波对供电系统产生的干扰,人员要尽快的找到解决方案,保障电力系统平稳运作,从而提高电力供应质量。

1高次谐波出现的原因常见的谐波源主要有三类,稳态性谐波、动态性谐波以及暂态性谐波,不管是发电机、变压器还是发动机等电力设备。

如果选择的参数不当,或者是结构设计、制造工艺不良,会产生大量谐波。

一般情况下,电网供电的电压波是正弦波。

如果在线性负载上增加电压,那么电流呈现出的波形几乎和电压波形一样,也是正弦波。

此种情况下,机电电流不会产生。

反之,如果在电力系统运作时,负载中含有非线性的原件。

电路不会再使用平滑的方式吸收电流,而是使用阶跃脉冲的方式。

此时的电力系统不仅会产生高次谐波,而且还会形成一种畸变电流非线性负载电路都会存在此种谐波,高次谐波会引起电力系统出现故障。

目前随着供电压力逐步增大,高次谐波的污染范围也越来越大。

在供电系统运作时加大高次谐波治理,不仅能够有效地减少导体的集肤效应,降低导体温度,而且还能够降低变压器的铁损铜损,提高通讯设备的工作环境,避免数据网络出现阻塞通信线路比特错误率也大大降低,避免出现网络瘫痪。

能够保护装置的误动作,保障精密加工设备的加工精度。

试析电力系统谐振消除方法的分析

试析电力系统谐振消除方法的分析

试析电力系统谐振消除方法的分析电力系统谐振是指电力系统中存在着频率等于或接近于系统固有频率的电路谐振现象。

谐振会引起系统的不稳定和损坏,因此谐振消除是电力系统中非常重要的问题。

本文将从谐振的危害、谐振消除的分类和方法、谐振消除方法的分析等方面进行探讨。

一、谐振的危害谐振会导致电力系统出现以下危害:1. 电力设备的热损坏,如变压器、电抗器等设备。

这是因为谐振会使系统产生很大的谐波电流,而谐波电流容易引起电力设备的热损坏。

2. 系统的不稳定。

当系统谐振时,会导致系统的电压、频率等参数的波动,从而影响系统的稳定性。

3. 系统电能质量下降。

当系统谐振时,会产生很多谐波,影响系统的电能质量。

二、谐振消除的分类和方法谐振消除的方法可以分为主动消除和被动消除两种。

1. 主动消除方法主动消除方法是通过改变电力系统的结构和参数,使得谐振频率发生变化或者消除谐振。

主动消除方法主要包括以下几种:(1)改变系统结构:例如增加或减少电缆、引入新的谐振回路等。

(2)改变系统参数:例如改变电抗器、电容器等的参数。

(3)控制技术:例如利用调节系统的控制参数来消除谐振。

2. 被动消除方法被动消除方法是将谐振引入到某个特定的电路或设备中,从而消除其他电路或设备上的谐振。

被动消除方法主要包括以下几种:(1)谐振回路:将控制的谐振电路接入电力系统中,从而消除其它谐振。

(2)继电器控制:利用继电器进行控制,以消除谐振。

(3)自动抑制器:将抑制器接入系统电路中,会自动检测并消除谐振。

三、谐振消除方法的分析谐振消除方法的选择需要根据实际情况进行分析,以下几个方面需考虑:1. 系统的特点:不同的系统具有不同的特点,需要根据不同的特点选择不同的谐振消除方法。

2. 技术难度:不同的谐振消除方法在技术上难度不同,需要选择技术难度适当的方法。

3. 经济成本:不同的谐振消除方法在经济成本上也有差异,需要根据实际情况选择经济成本适当的方法。

4. 可行性:不同的谐振消除方法在实际应用中的可行性也有差异,需选择可行性较高的方法。

电力系统谐波影响及消除简单探讨

电力系统谐波影响及消除简单探讨

电力系统谐波影响及消除简单探讨在电力系统中,谐波是一种频率高于基波频率的周期性电压或电流波形。

谐波的产生主要是由于非线性负载的存在,如电弧炉、变频器、电子设备等,这些设备会引入谐波电压和电流。

谐波对电力系统的影响主要集中在以下几个方面:电压、电流波形失真、设备功率损耗和过热、设备寿命缩短、传输和分配线路过载、通讯干扰等。

因此,消除谐波对电力系统的稳定运行和设备安全是非常重要的。

要想消除谐波,需要针对谐波的特点采取相应的措施。

以下是一些常用的谐波消除方法:1.被动滤波器被动滤波器是最常见的谐波消除方法之一、它通过谐波滤波器将谐波电流引入滤波器中,将其吸收或透过,实现对谐波的衰减。

被动滤波器包括谐振回路、调谐电路和滤波电路等。

被动滤波器通常用于少量谐波的消除,但对于大量谐波的消除效果较差。

2.主动滤波器主动滤波器是一种通过逆变器或逆变桥等电子器件生成与谐波相反的电流或电压来消除谐波。

主动滤波器具有较好的谐波消除效果,可以对谐波进行精确的控制和补偿。

但主动滤波器的成本相对较高,对系统的稳定性和可靠性要求也较高。

3.直流侧补偿直流侧补偿是通过在电力系统的直流侧引入逆变器,并对逆变器输出波形进行调整来消除谐波。

这种方法可以提供较好的谐波消除效果,特别适用于大型工业系统。

4.电容器补偿电容器补偿是一种常见的被动补偿方法,通过串联或并联电容器来提供与谐波相位相反的电压或电流,来消除谐波。

电容器补偿具有成本低、结构简单等优点,但对系统的谐波特性、电容器参数等要求较高。

除了上述方法外,还可以采取一些综合措施来减少谐波的影响,如增加电网容量、改善电网结构、优化电网运行方式、提高设备质量等。

此外,对于一些大型非线性负载设备,可以采用有效的滤波器和电源管理系统来减少谐波的产生和传播。

总之,谐波是电力系统中常见的问题,对电力系统的稳定运行和设备安全带来了不利影响。

因此,采取适当的谐波消除方法对于保障电力系统的正常运行至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统谐波影响及消除(网络摘录)2011.12.20返回日志列表从补偿电容无法投入,谈谐波危害,分析谐波来源,提出治理谐波的初步建议随着个私经济特别是特钢和化学工业在我市的发展,我公司的供电量也不断的增长,为了使功率因素达到标准,必须投入补偿电容,但是这几个乡镇的变电所的补偿电容器却无法投上,强行投入后,电容器熔丝也会很快熔断。

但根据其他变电所运行经验,在此功率因数下,无功电流不应大于熔丝熔断电流。

这是为什么呢?经过对该地区的供电现状分析,这是由于谐波引起的。

所谓谐波,即理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,但是由于各种原因,使这种理想状态在实际中无法存在。

因此通过对周期性电压或电流的傅立叶分解,所得到的频率为基波整数倍分量的含有量,称为谐波。

谐波对于电网的危害非常大,主要表现在以下方面:1.由于电网主要是按基波设计的。

由于LC元件的存在,虽然在基波时不会发生谐振,但在某个特定谐波时却可能引起谐振,可能将谐波电流放大几倍甚至数十倍,电网谐振引起设备过电压,产生谐波过流,对设备造成危害。

特别是对电容器和与之串联的电抗器。

其中,特别要注意的是,由于电容器是容性负载,能与电网上感性设备(其它设备主要是感性设备)配合,构成共振条件,又由于其大小与谐波频率成反比,因此,电容更容易吸收谐波共振电流,引起电容过载,造成电容损坏,或者熔丝熔断。

2.使电网中的电气设备产生额外的损耗(谐波功率),降低了设备的效率,同时谐波会影响设备的正常工作,例如变压器局部严重过热,电容器、电缆等设备过热,电机产生机械振动等故障,绝缘部分老化、变质,严重时候甚至设备损坏。

3.导致继电保护和自动装置误动或拒动,造成不必要的损失,谐波会使电气测量仪表测量不准确,造成计量误差。

另外,谐波还会产生对设备附近的通信系统产生干扰等其他危害。

既然谐波危害如此之大,那么谐波是如何产生的?又如何能减小它的影响和危害呢?谐波来源1、中频炉、电弧炉等设备是该地区谐波的主要来源对该地区负荷进行分析,发现主要的原因是该地区特钢工业发达,中频炉、电弧炉等作为一类高效的加热源已经非常普及。

电弧炉是利用电极物料间产生的电弧熔炼金属,因此,它的电流波形很不规则,含有多种谐波(2次到7次)以及间谐波,这是谐波的一个重要来源。

而中频炉是工频电流整流后再变为中频,再利用电磁感应来熔炼金属,因此产生大量的高次谐波,其中以5次、7次、11次等奇次谐波为主。

这正是该地区谐波的主要来源。

2、用户变压器群是该地区谐波的重要来源一般情况下,三相变压器由于铁芯为“日”形状,中相比边相要短一半,因此,三个磁路的不对称引起变压器励磁电流中含有谐波分量。

所以当对空载三相变压器加电压激励时,即使受电侧没有零序电流通路(中性点不接地或三角形接线),励磁电流中也会有谐波分量。

虽然在实际运行时,这个谐波分量很小,但由于变压器绕组接法以及各绕组和电网各相的连接统一规定时,则各台变压器励磁电流里的同次谐波彼此叠加,形成了电网中谐波的又一重要来源。

例如,在绝大多数配变中,都是Y,yn接线,变压器的中间的铁柱对应的线圈即中相接的都是B相,这样的统一接法,就为3、5、7等次谐波提供了一个分别互相叠加的条件。

在该地区,现有35kV用户变压器5台,总容量400kVA,10kV用户变压器约800台,总容量330kVA.如此庞大的用户变群又成为了谐波的又一个重要来源。

3、谐波的其他来源事实上,谐波还有其他的来源,各类生产用电如电镀、电泵等,生活用电中如电视机、电脑、荧光灯等采用开关电源或其他电力电子技术的装置,单独来看,所产生的谐波非常微小,但是由于其数量的极其庞大,也是不可忽视的一部分。

谐波治理:根据GB/T14549-93《电能质量公用电网谐波》规定,在0.4kV/10kV/35kV时,电网谐波电压谐波占有率分别不得大于4%/3.2%/1.2%.很显然,在该地区,电网已经严重“污染”了。

针对以上情况,为减少谐波产生的机会、减小谐波对对电网的危害,我们提出下列建议:1.针对谐波源进行治理。

按"谁干扰,谁污染,谁治理"的原则,进行谐波源当地治理。

即对于产生大量谐波的用户,在用户变的低压侧加装滤波装置。

根据装置的原理不同,可分为无源电力滤波器(PPF)和有源电力滤波器(APF)。

无源电力滤波器利用电容、电感谐振的原理"吸收"阻止相应次谐波,从而保证电压畸变率处在较低水平。

一般根据需要吸收的谐波次数,设置合适的LC参数,分别设置滤波装置。

该地区已有用户装设了此类无源滤波补偿装置。

装设5、7次滤波装置,采用可控硅自动投切,在滤除谐波的同时,对无功也进行了补偿。

但此类无源装置不能满足对无功功率和谐波进行快速动态补偿的要求。

同时还要注意不能在滤除某次谐波时,LC参数恰好是另一个谐波的谐振参数,而使此谐波放大电力系统中谐波的来源及抑制(摘录)2011.12.20阅读(1)下一篇:唐僧、孙悟空与白...|返回日志列表•赞•转载•分享•评论•复制地址•更多(1)电网谐波来自于3个方面:一是发电源质量不高产生谐波:发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

二是输配电系统产生谐波:输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。

它的大小与磁路的结构形式、铁心的饱和程度有关。

铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。

三是用电设备产生的谐波:晶闸管整流设备。

由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。

我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。

如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。

如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。

经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

变频装置。

变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。

电弧炉、电石炉。

由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。

其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。

气体放电类电光源。

荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。

分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。

家用电器。

电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。

在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。

这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。

(2)主要是变频、整流设备在工作中会产生谐波。

谐波的影响如下:1、变压器对变压器而言,谐波电流可导致铜损和杂散损增加,谐波电压则会增加铁损。

与纯正基本波运行的正弦电流和电压相较,谐波对变压器的整体影响是温升较高。

须注意的是; 这些由谐波所引起的额外损失将与电流和频率的平方成比例上升,进而导致变压器的基波负载容量下降。

而当你为非线性负载选择正确的变压器额定容量时,应考虑足够的降载因数,以确保变压器温升在允许的范围内。

还应注意的是用户由于谐波所造成的额外损失将按所消耗的能量(仟瓦小时)反应在电费上,而且谐波也会导致变压器噪声增加。

2、电力电缆在导体中非正弦波电流产生的热量与俱有相同均方根值的纯正弦波电流相较,则非正弦波有较高的热量。

该额外温升是由众所周知的集肤效应和邻近效应所引起的,而这两种现象取决于频率及导体的尺寸和间隔。

这两种效应如同增加导体交流电阻,进而导致I2RAC损耗增加。

3、电动机与发电机谐波电流和电压对感应及同步电动机所造成的主要效应为在谐波频率下铁损和铜损的增加所引起之额外温升。

这些额外损失将导致电动机效率降低,并影响转矩。

当设备负荷对电动机转矩的变动较敏感时,其扭动转矩的输出将影响所生产产品的质量。

例如: 造纸业、人造纤维纺织业、塑料薄膜行业和一些金属加工业。

对于旋转电机设备,与正弦磁化相比,谐波会增加噪音量。

像五次和七次这种谐波源,在发电机或电动机负载系统上,可产生六次谐波频率的机械振荡。

机械振荡是由振动的扭矩引起的,而扭矩的振荡则是由谐波电流和基波频率磁场所造成,如果机械谐振频率与电气励磁频率重合,会发生共振进而产生很高的机械应力,导致机械损坏的危险。

4、电子设备电力电子设备对供电电压的谐波畸变很敏感,这种设备常常须靠电压波形的过零点或其它电压波形取得同步运行。

电压谐波畸变可导致电压过零点漂移或改变一个相间电压高于另一个相间电压的位置点。

这两点对于不同类型的电力电子电路控制是至关重要的。

控制系统对这两点(电压过零点与电压位置点)的判断错误可导致控制系统失控。

而电力与通讯线路之间的感性或容性耦合亦可能造成对通讯设备的干扰。

计算器和一些其它电子设备,如可编过程控制器(PLC),通常要求总谐波电压畸变率(THD)小于5%,且个别谐波电压畸变率低于3%,较高的畸变量可导致控制设备误动作,进而造成生产或运行中断,导致较大的经济损失。

5﹑开关和继电保护谐波电流也会引起开关之额外损失,并提高温升使承载基波电流能力降低。

温升的提高对某些绝缘组件而言会降低其使用寿命。

低压断路器之固态跳脱装置,系根据电流峰值来动作,而此种型式之跳脱装置会因馈线供电给非线性负载而导致不正常跳闸。

6、功率因数补偿电容器电容器与其它设备相较有很大区别,因其容性特点在系统共振情况下可显着的改变系统阻抗。

电容器组之容抗随频率升高而降低,因此,电容器组起到放大谐波电流的作用,从而提高温升并增加绝缘材料的介质应力。

频繁地切换非线性电磁组件会产生谐波电流如变压器,这些谐波电流将增加电容器的负担。

应当注意的是熔丝通常不是用来当作电容器之过载保护。

相关文档
最新文档