2020版数学(理)热点练12 圆锥曲线(小题)word解析版

合集下载

2020高考数学圆锥曲线试题(含答案)

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油!圆锥曲线一. 选择题:1.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为BA.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A )A. (41,-1) B. (41,1)C. (1,2)D. (1,-2)3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22c a . 其中正确式子的序号是BA. ①③B. ②③C. ①④D. ②④4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1(0,]2C.(0,2 D.,1)26.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) AB .3 CD .927.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( B )A. B. C .(25), D.(28.(山东卷(10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为ABCD-26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为A(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x9.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B )ABC D10.(四川卷12)已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AK AF =,则AFK ∆的面积为( B )(A)4 (B)8 (C)16 (D)3211.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为B(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y += 12.(浙江卷7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是D(A )3 (B )5 (C )3 (D )5 13.(浙江卷10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是B(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线14.(重庆卷(8)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e 5k ,则双曲线方程为C(A )22x a -224y a =1(B)222215x y a a -= (C)222214x y b b-=(D)222215x y b b-=二. 填空题:1.(海南卷14)过双曲线221916x y -=的右顶点为A ,右焦点为F 。

2020年高中数学人教A版选修1-1 第二章圆锥曲线与方程 练习12 Word版含答案

2020年高中数学人教A版选修1-1 第二章圆锥曲线与方程 练习12 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在【解析】 由定义,知|AB |=5+2=7,因为|AB |min =4,所以这样的直线有且仅有两条.【答案】 B2.过点(1,0)作斜率为-2的直线,与抛物线y 2=8x 交于A ,B 两点,则弦AB 的长为( )A .213B .215C .217D .219【解析】 设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2),由直线AB 斜率为-2,且过点(1,0)得直线AB 的方程为y =-2(x -1),代入抛物线方程y 2=8x 得4(x -1)2=8x ,整理得x 2-4x +1=0,则x 1+x 2=4,x 1x 2=1,|AB |=5(x 1+x 2)2-4x 1x 2=516-4=215.故选B.【答案】 B3.(2014·全国卷Ⅰ)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .8 【解析】 由y 2=x 得2p =1,即p =12,因此焦点F ⎝ ⎛⎭⎪⎫14,0,准线方程为l :x =-14,设A 点到准线的距离为d ,由抛物线的定义可知d=|AF |,从而x 0+14=54x 0,解得x 0=1,故选A.【答案】 A4.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2【解析】 设A (x 1,y 1),B (x 2,y 2),由A ,B 两点在抛物线上,得y 21=2px 1,①y 22=2px 2,②由①-②,得(y 1-y 2)(y 1+y 2)=2p (x 1-x 2).又线段AB 的中点的纵坐标为2,即y 1+y 2=4,直线AB 的斜率为1,故2p =4,p =2,因此抛物线的准线方程为x =-p 2=-1.【答案】 B5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若O A →·A F →=-4,则点A 的坐标为( ) 【导学号:26160061】A .(2,±22)B .(1,±2)C .(1,2)D .(2,22)【解析】 设A (x ,y ),则y 2=4x ,①O A →=(x ,y ),A F →=(1-x ,-y ),O A →·A F →=x -x 2-y 2=-4,② 由①②可解得x =1,y =±2.【答案】 B二、填空题6.抛物线y 2=4x 上的点到直线x -y +4=0的最小距离为________.【解析】 可判断直线y =x +4与抛物线y 2=4x 相离,设y =x +m 与抛物线y 2=4x 相切,则由⎩⎪⎨⎪⎧y =x +m ,y 2=4x ,消去x 得y 2-4y +4m =0. ∴Δ=16-16m =0,m =1.又y =x +4与y =x +1的距离d =|4-1|2=322, 则所求的最小距离为322. 【答案】 3227.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 21的最小值是________.【解析】 设AB 的方程为x =my +4,代入y 2=4x 得y 2-4my -16=0,则y 1+y 2=4m ,y 1y 2=-16,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16m 2+32,当m =0时,y 21+y 22最小为32.【答案】 328.过抛物线y 2=2x 的焦点F 作直线交抛物线于A ,B 两点,若|AB |=2512,|AF |<|BF |,则|AF |=________.【解析】 设过抛物线焦点的直线为y =k ⎝⎛⎭⎪⎫x -12,联立得⎩⎨⎧ y 2=2x ,y =k ⎝ ⎛⎭⎪⎫x -12, 整理得k 2x 2-(k 2+2)x +14k 2=0,x 1+x 2=k 2+2k 2,x 1x 2=14.|AB |=x 1+x 2+1=k 2+2k 2+1=2512,得k 2=24,代入k 2x 2-(k 2+2)x +14k 2=0得12x 2-13x +3=0,解之得x 1=13,x 2=34,又|AF |<|BF |,故|AF |=x 1+12=56.【答案】 56三、解答题9.求过定点P (0,1),且与抛物线y 2=2x 只有一个公共点的直线方程.【解】 如图所示,若直线的斜率不存在,则过点P (0,1)的直线方程为x =0,由⎩⎪⎨⎪⎧ x =0,y 2=2x ,得⎩⎪⎨⎪⎧x =0,y =0, 即直线x =0与抛物线只有一个公共点.若直线的斜率存在,则设直线为y =kx +1,代入y 2=2x 得:k 2x 2+(2k -2)x +1=0,当k =0时,直线方程为y =1,与抛物线只有一个交点.当k ≠0时,Δ=(2k -2)2-4k 2=0⇒k =12.此时,直线方程为y =12x +1.可知,y =1或y =12x +1为所求的直线方程.故所求的直线方程为x =0或y =1或y =12x +1.10.已知抛物线的焦点F 在x 轴上,直线l 过F 且垂直于x 轴,l 与抛物线交于A ,B 两点,O 为坐标原点,若△OAB 的面积等于4,求此抛物线的标准方程.【解】 由题意,抛物线方程为y 2=2px (p ≠0),焦点F ⎝ ⎛⎭⎪⎫p 2,0,直线l :x =p 2, ∴A ,B 两点坐标为⎝ ⎛⎭⎪⎫p 2,p ,⎝ ⎛⎭⎪⎫p 2,-p , ∴|AB |=2|p |.∵△OAB 的面积为4,∴12·⎪⎪⎪⎪⎪⎪p 2·2|p |=4,∴p =±2 2. ∴抛物线方程为y 2=±42x .[能力提升]1.(2014·全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B .6C .12D .7 3【解析】 ∵F 为抛物线C :y 2=3x 的焦点,∴F ⎝ ⎛⎭⎪⎫34,0, ∴AB 的方程为y -0=tan 30°⎝⎛⎭⎪⎫x -34, 即y =33x -34.联立⎩⎨⎧ y 2=3x ,y =33x -34,得13x 2-72x +316=0.∴x 1+x 2=--7213=212,即x A +x B =212.由于|AB |=x A +x B +p ,所以|AB |=212+32=12.【答案】 C2.已知AB 是抛物线y 2=2px (p >0)上的两点,O 为原点,若|OA→|=|OB→|,且抛物线的焦点恰好为△AOB 的垂心,则直线AB 的方程是( )A .x =pB .x =32pC .x =52pD .x =3p【解析】 ∵|OA →|=|O B →|,∴A ,B 关于x 轴对称.设A (x 0,2px 0),B (x 0,-2px 0).∵AF ⊥OB ,F ⎝ ⎛⎭⎪⎫p 2,0, ∴2px 0x 0-p 2·⎝ ⎛⎭⎪⎫-2px 0x 0=-1, ∴x 0=52p .【答案】 C3.(2014·湖南高考)平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.【解析】 由题意知机器人行进轨迹为以F (1,0)为焦点,x =-1为准线的抛物线,其方程为y 2=4x .设过点(-1,0)且斜率为k 的直线方程为y =k (x +1).代入y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0.∵机器人接触不到该直线,∴Δ=(2k 2-4)2-4k 4<0,∴k 2>1.∴k >1或k <-1.【答案】 (-∞,-1)∪(1,+∞)4.已知直线l :y =12x +54,抛物线C :y 2=2px (p >0)的顶点关于直线l 的对称点在该抛物线的准线上.(1)求抛物线C 的方程;(2)设A ,B 是抛物线C 上两个动点,过A 作平行于x 轴的直线m ,直线OB 与直线m 交于点N ,若O A →·O B →=0(O 为原点,A ,B 异于原点),试求点N 的轨迹方程. 【导学号:26160062】 【解】 (1)直线l :y =12x +54.①过原点且垂直于l 的直线方程为y =-2x .②由①②,得x =-12.∵抛物线的顶点关于直线l 的对称点在该抛物线的准线上,∴-p 2=-12×2,∴p =2.∴抛物线C 的方程为y 2=4x .(2)设A (x 1,y 1),B (x 2,y 2),N (x ,y ).由O A →·O B →=0,得x 1x 2+y 1y 2=0.又y 21=4x 1,y 22=4x 2,解得y 1y 2=-16.③直线ON :y =y 2x 2x ,即y =4y 2x .④ 由③④及y =y 1,得点N 的轨迹方程为x =-4(y ≠0)......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。

2020全国高考数学考点题型分类与解析12 圆锥曲线方程

2020全国高考数学考点题型分类与解析12 圆锥曲线方程

8(. 2020•全国
2
卷)已知椭圆
:x2
C1 a2
+
y2 b2
的右焦点 = 1(a>b>0)
F
与抛物线
C2 的焦点重合,
5 / 19
C1的中心与 C2的顶点重合.过 F 且与 x 轴垂直的直线交 C1于 ,A B 两点,交 C2于 ,C D 两点,
且4 |CD|= |AB|. 3
(1)求 C1的离心率; (2)设 M 是 C1与 C2的公共点,若|MF|=5,求 C1与 C2的标准方程.
y2
=
4cx
,解得
x
y
= c ,∴
= ±2c
CD
=
4c ,
,即 , ,即 ,即 , Q CD = 4 AB 3
4c = 8b2 2b2 = 3ac 3a
2c2 + 3ac − 2a2 = 0 2e2 + 3e − 2 = 0
Q
0
<
e
< 1 ,解得 e
=
1 2
,因此,椭圆 C1 的离心率为
1 2

6.(2020•全国
1
卷)已知
、A B
分别为椭圆
E:
x2 a2
+
y2
=
1
(a>1)的左、右顶点,G

E
的上顶点,
uuur AG

uuur GB
=
8
,P
为直线
x=6
上的动点,PA

E
的另一交点为
,C PB

E
的另一
交点为 D. (1)求 E 的方程; (2)证明:直线 CD 过定点.

2020高考—圆锥曲线(解答+答案)

2020高考—圆锥曲线(解答+答案)

2020年高考——圆锥曲线1.(20全国Ⅰ文21)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.2.(20全国Ⅰ理20)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.3.(20全国Ⅱ文19)(12 分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.4.(20全国Ⅱ理19)(12分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.5.(20全国Ⅲ文21)(12分)已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.6.(20全国Ⅲ理20)(12分)已知椭圆222:1(05)25x y C m m+=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.7.(20新高考Ⅰ22)(12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.8.(20天津18)(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.9.(20浙江21)(本题满分15分)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.10.(20江苏18)(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.11.(20北京20)(本小题15分)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.参考答案:1.解:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(,1)AG a =,(,1)GB a =-.由8AG GB ⋅=得218a -=,即3a =.所以E 的方程为2219x y +=.(2)设1122(,),(,),(6,)C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以11(3)9ty x =+.直线PB 的方程为(3)3t y x =-,所以22(3)3ty x =-.可得12213(3)(3)y x y x -=+.由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0m y y m n y y n ++++++=.①将x my n =+代入2219xy +=得222(9)290m y mny n +++-=.所以212122229,99mn n y y y y m m -+=-=-++. 代入①式得2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3(,0)2. 若0t =,则直线CD 的方程为0y =,过点3(,0)2.综上,直线CD 过定点3(,0)2.2.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线PA 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).3.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.4.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.5.解:(1)由题设可得54=,得22516m =,所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为1522=. 22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q的距离为26,故22AP Q △的面积为152262⨯=. 综上,APQ △的面积为52.6.解:(1)由题设可得54=,得22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >,由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ 的距离为2,故11APQ △的面积为1522=.22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52.7.解:(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k -+=-=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++.整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =--≠. 所以直线MN 过点21(,)33P -. 若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=. 又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -. 令Q 为AP 的中点,即41(,)33Q . 若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.8.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=. (Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221k x k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-.9.(Ⅰ)由116p =得2C 的焦点坐标是1(,0)32. (Ⅱ)由题意可设直线:(0,0)l x my t m t =+≠≠,点00(,)A x y .将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=, 所以点M 的纵坐标22M mt y m =-+. 将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m+=, 因此22022(2)p m x m+=. 由220012x y +=得2421224()2()160m m p m m =+++≥,所以当m,t =时,p.10.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c , 则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.(2)椭圆E 的右准线为4x =.设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--,2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -. 所以直线:3430.AB x y -+= 设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=. 由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解; 由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-. 代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.11.。

2020年高考数学精选专题(含答案详解)12 圆锥曲线的综合问题

2020年高考数学精选专题(含答案详解)12 圆锥曲线的综合问题

2020年高考数学精选专题(含答案详解)一、解答题(共15题;共145分)1.已知直线l1:3x−y−6=0与x轴,y轴分别交于A,B,线段AB的中垂线l2与抛物线E:y2=2px(p>0)有两个不同的交点C、D.(1)求p的取值范围;(2)是否存在p,使得A,B,C,D四点共圆,若存在,请求出p的值,若不存在,请说明理由.2.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1,F2,离心率为√32,过F1的直线l与椭圆C交于M,N两点,且ΔMNF2的周长为16(1)求椭圆C的方程;(2)若直线y=kx+m与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.3.已知点A,B的坐标为(−√2,0),(√2,0),直线AE,BE相交于点E,且它们的斜率之积是−12.(1)求点E的轨迹方程;(2)设O为坐标原点,过点F(−1,0)的直线l与点E的轨迹交于M,N两点,求△MON的面积的最大值.4.已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),且点P(1,32)在椭圆C上,O为坐标原点.(1)求椭圆C的标准方程;(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.5.已知抛物线C:x2=2py(p>0)的焦点为(0,1)(1)求抛物线C的方程;(2)设直线l2:y=kx+m与抛物线C有唯一公共点P,且与直线l1:y=﹣1相交于点Q,试问,在坐标平面内是否存在点N,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.6.如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点F到右准线的距离为3.(1)求椭圆C的标准方程;(2)设过F的直线l与椭圆C相交于P,Q两点.已知l被圆O:x2+y2=a2截得的弦长为√14,求△OPQ 的面积.7.如图,已知椭圆C:x2a2+y2b2=1(a>b>0)的上顶点为A(0,1),离心率为√22.(1)求椭圆C的方程;(2)若过点A作圆M:(x+1)2+y2=r2(圆M在椭圆C内)的两条切线分别与椭圆C相交于B,D 两点(B,D不同于点A),当r变化时,试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.8.已知椭圆x22+y2=1上两个不同的点A,B关于直线y=mx+12对称.(1)求实数m的取值范围;(2)求ΔAOB面积的最大值(O为坐标原点).9.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,点(2,√2)在C上(1)求C的方程(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.10.已知椭圆C:x2a2+y2b2=1(a>b>0)的短轴顶点分别为A,B,且短轴长为2,T为椭圆上异于A,B的任意-一点,直线TA,TB的斜率之积为−13(1)求椭圆C的方程;(2)设O为坐标原点,圆O:x2+y2=34的切线l与椭圆C相交于P,Q两点,求△POQ面积的最大值.11.椭圆C:x2a2+y2b2=1(a>b>0)的焦点是F1(−1,0),F2(1,0),且过点A(1,√22).(1)求椭圆C的标准方程;(2)过左焦点F1的直线l与椭圆C相交于B、D两点,O为坐标原点.问椭圆C上是否存在点P,使线段BD和线段OP相互平分?若存在,求出点P的坐标,若不存在,说明理由.12.已知椭圆C:x2a2+y2b2=1(a>b>0)的一个焦点与抛物线y2=4x的焦点相同,F1,F2为C的左、右焦点,M为C上任意一点, SΔMF1F2最大值为1.(1)求椭圆C的方程;(2)不过点F2的直线l:y=kx+m(m≠0)交椭圆C于A,B两点.①若k2=12,且S△AOB=√22,求m的值.②若x轴上任意一点到直线AF2与BF2距离相等,求证:直线l过定点,并求出该定点的坐标.13.已知点M(−1,0),N(1,0),若点P(x,y)满足|PM|+|PN|=4.(Ⅰ)求点P的轨迹方程;(Ⅱ)过点Q(−√3,0)的直线l与(Ⅰ)中曲线相交于A,B两点,O为坐标原点,求△AOB面积的最大值及此时直线l的方程.14.已知椭圆C:x2a2+y2b2=1 (a>b>0)的右顶点A(2,0),且离心率为√32.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,过点O的直线l与椭圆C交于两点P、Q,直线AP和AQ分别与直线x=4交于点M、N,求ΔAPQ与ΔAMN面积之和的最小值.15.已知抛物线Γ的准线方程为x+y+2=0.焦点为F(1,1).(1)求证:抛物线Γ上任意一点P的坐标(x,y)都满足方程:x2−2xy+y2−8x−8y=0;(2)请求出抛物线Γ的对称性和范围,并运用以上方程证明你的结论;(3)设垂直于x轴的直线与抛物线交于A、B两点,求线段AB的中点M的轨迹方程.一、解答题1.【答案】 (1)解:因为直线 l 1:3x −y −6=0 与 x 轴, y 轴分别交于 A , B . 所以 A(2,0) , B(0,−6) ,所以线段 AB 的中点为 (1,−3) , k AB =3 ,所以线段 AB 的中垂线 l 2 的方程为 y +3=−13(x −1) ,即 x +3y +8=0 . 将 x =−3y −8 代入 E:y 2=2px(p >0) , 得 y 2+6py +16p =0 ,因为 l 2 与 E 有两个不同的交点 C , D . 所以 Δ=36p 2−4×16p >0 , 又 p >0 ,所以 p >169,即 p 的取值范围为 (169,+∞) .(2)解:若 A , B , C , D 四点共圆,由对称性可知,圆心应为线段 CD 的中点, 设 C(x 1,y 1) , D(x 2,y 2) ,线段 CD 的中点为 M(x 0,y 0) , 则 {y 1+y 2=−6py 1y 2=16p , 所以 y 0=y 1+y 22=−3p , x 0=−3y 0−8=9p −8 ,|CD|=√(x 1−x 2)2+(y 1−y 2)2=√1+(−3)2⋅√(y 1+y 2)2−4y 1y 2 =√10⋅√36p 2−4×16p =2√10⋅√9p 2−16p若 A , B ,C , D 四点共圆,则 |MA|=12|CD| ,即 |MA|2=14|CD|2 ,所以 (x 0−2)2+y 02=14×40(9p 2−16p) . 所以 (9p −10)2+9p 2=90p 2−160p ,解得 p =5 , 又 p =5 满足 p >169,所以存在 p =5 ,使得 A , B ,C , D 四点共圆.【解析】【分析】(1)求出 A,B 两点坐标,得出其中垂线方程为 x +3y +8=0 ,与抛物线方程联立根据 Δ>0 即可得结果;(2)设 C(x 1,y 1) , D(x 2,y 2) ,线段 CD 的中点为 M(x 0,y 0) ,将(1)和韦达定理可得 M(9p −8,−3p) , |CD|=2√10⋅√9p 2−16p ,结合四点共圆的特征得 |MA|2=14|CD|2 ,代入两点间距离公式可解得 p 的值. 2.【答案】 (1)解:由椭圆定义知: ΔMNF 2 的周长为: 4a =16 ⇒a =4 由椭圆离心率: e =ca=√32 ⇒c =2√3 , b 2=c 2−a 2=4 ∴ 椭圆 C 的方程:x 216+y 24=1(2)解:由题意,直线 AB 斜率存在,直线 AB 的方程为: y =kx +m设 A(x 1,y 1) , B(x 2,y 2)联立方程 {y =kx +mx 216+y 24=1 ,消去 y 得: (1+4k 2)x 2+8kmx +4m 2−16=0 由已知 Δ>0 ,且 x 1+x 2=−8km4k 2+1 , x 1x 2=4m 2−164k 2+1由 OA ⊥OB ,即 OA⇀⋅OB ⇀=0 得: x 1x 2+y 1y 2=0 即: x 1x 2+(kx 1+m)(kx 2+m)=x 1x 2+k 2x 1x 2+km(x 1+x 2)+m 2=0 ∴(k 2+1)4m 2−164k 2+1+km ⋅−8km 4k 2+1+m 2=0 ,整理得: 5m 2=16(1+k 2) ,满足 Δ>0∴ 点 O 到直线 AB 的距离: d =√1+k2=4√55为定值【解析】【分析】(1)由 ΔMNF 2 周长可求得 a =4 ,利用离心率求得 c =2√3 ,从而 b 2=c 2−a 2=4 ,从而得到椭圆方程;(2)直线 AB 方程与椭圆方程联立,可得韦达定理的形式;利用垂直关系可构造方程 x 1x 2+y 1y 2=0 ,代入韦达定理整理可得 5m 2=16(1+k 2) ;利用点到直线距离公式表示出所求距离 d ,化简可得结果.3.【答案】 (1)解:设 E(x,y) ,因为 A(−√2,0) ,所以直线 AE 的斜率 k AE =x+√2≠−√2) , 同理直线 BE 的斜率 k BE =x−√2≠√2) , 由已知有 x+√2×x−√2−12(x ≠±√2) , 化简得 E 的轨迹方程为 x 22+y 2=1 (x ≠±√2) .(2)解:设过 F(−1,0) 的直线方程为 x =my −1 ,设 M(x 1,y 1) , N(x 2,y 2) 联立直线与椭圆的方程,化简得 (m 2+2)y 2−2my −1=0 ,显然 Δ>0 . y 1+y 2=2mm 2+2 , y 1y 2=−1m 2+2 ,从而, |y 1−y 2|=√(2mm 2+2)2+4m 2+2=2√2(m 2+1)(m 2+2)2.所以 S △MON =12|OF|·|y 1−y 2|=√2√(m 2+2)−1(m 2+2)2,令 t =m 2+2≥2 ,则 S =√2·√−1t 2+1t =√2·√−(1t −12)2+14≤√22,当 t =2 ,即 m =0 时取等号.所以 △MON 面积的最大值为 √22.【解析】【分析】(1)设 E(x,y) ,根据斜率关系列方程化简即可;(2)设直线方程,并与曲线方程联立,求出两根之和两根之积,把面积用其表示出来,再借助于二次函数在区间上的最值求解方法即可得到结论.4.【答案】 (1)解:由题意得c =1,所以a 2=b 2+1,① 又点P (1,32) 在椭圆C 上,所以 1a 2 + 94b 2 =1,② 由①②可解得a 2=4,b 2=3, 所以椭圆C 的标准方程为 x 24+y 23=1.(2)解:设直线l 的方程为y =kx +2,A (x 1 , y 1),B (x 2 , y 2),由 {y =kx +2x 24+y 23=1 得(4k 2+3)x 2+16kx +4=0,因为Δ=16(12k 2-3)>0,所以k 2> 14 ,则x 1+x 2= −16k4k +3 ,x 1x 2= 44k 2+3 .因为∠AOB 为锐角,所以 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ >0,即x 1x 2+y 1y 2>0,所以x 1x 2+(kx 1+2)(kx 2+2)>0, 所以(1+k 2)x 1x 2+2k (x 1+x 2)+4>0,即(1+k 2)· 44k 2+3 +2k · −16k4k 2+3 +4>0, 解得k 2< 43 .又k 2> 14 ,所以 14 <k 2< 43 ,解得- 2√33<k <- 12 或 12 <k <2√33.所以直线l 的斜率k 的取值范围为 (−2√33,−12) ∪ (12,2√33)【解析】【分析】(1)由c =1得a 2=b 2+1,再代入P 点坐标可求得a ,b ;(2)设直线l 的方程为y =kx +2,A (x 1 , y 1),B (x 2 , y 2),直线方程与椭圆方程联立消元得 x 的一元二次方程,其判别式需大于0,由韦达定理得 x 1+x 2,x 1x 2 ,条件∠AOB 为锐角对应 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ >0 ,代入 x 1+x 2,x 1x 2 后可求得 k 的范围.5.【答案】 (1)解:由题意, p2=1 , 所以p =2,∴抛物线C 的方程为:x 2=4y(2)解:由 {x 2=4yy =kx +m得x 2﹣4kx ﹣4m =0(*),由直线y =kx +m 与抛物线C 只有一个公共点,可得 Δ=0 ,解得m =﹣k 2 , 代入到(*)式得x =2k , ∴P (2k ,k 2),当y =﹣1时,代入到y =kx ﹣k 2 得Q ( k −1k ,−1 ), ∴以PQ 为直径的圆的方程为:(x −2k)[x −(k −1k )]+(y −k 2)(y +1)=0 ,整理得: (1−y)k 2−3x ⋅k +x ⋅1k +(x 2+y 2+y −2)=0 , 若圆恒过定点,则 {1−y =0−3x =0x =0x 2+y 2+y −2=0 , 解得 {x =0y =1, ∴存在点N (0,1),使得以PQ 为直径的圆恒过点N .【解析】【分析】(1)根据抛物线的交点坐标,即可得到 p ,从而求得抛物线方程;(2)根据抛物线与直线相切,求得切点的坐标,以及 k,m 之间的等量关系,再求出点 Q 的坐标,从而写出圆的方程,再求圆恒过的定点即可.6.【答案】 (1)解:由题意知 c a =12 , a 2c−c =3 ,因为 b 2=a 2−c 2 ,解得a 2=4,b 2=3, 所以椭圆的方程为: x 24+y 23= 1(2)解:由题意知直线l 的斜率不为0,由(1)知F (1,0), 设直线l 的方程为x =my+1,P (x,y ),Q (x',y'),联立直线l 与椭圆的方程整理得(4+3m 2)y 2+6my ﹣9=0, 所以y+y' =−6m 4+3m 2 ,yy' =−94+3m 2 ,所以|PQ| =√1+m 2√(y +y ′)2−4yy ′=√1+m 2√36m 2(3+4m 2)2+363+4m2=12(1+m 2)3+4m 2,因为圆O:x 2+y 2=4到l 的距离d =√1+m 2 ,被圆O:x 2+y 2=4截得的弦长为 √14 , 所以得14=4(4 −11+m 2 ),解得m 2=1,所以d =√22,|PQ| =247 ,所以S △OPQ =12⋅|PQ|⋅d =12⋅√22⋅247=6√27.【解析】【分析】(1)由题可得 ca =12 ,a 2c−c =3 ,再由 b 2=a 2−c 2 可求得 a 2,b 2 ,即可得到椭圆方程;(2)显然直线 l 的斜率不为0,设直线l 的方程为x =my+1,与椭圆方程联立,则利用韦达定理可得 P,Q 的纵坐标的关系,再根据弦长公式求得 |PQ| ,由直线截圆的弦长求得 m ,进而求解即可.7.【答案】 (1)解:依题意可得: {b =1ca =√22a 2=b 2+c2,a =√2,b =1,c =1椭圆C :x 22+y 2=1 )(2)解:圆M 过A 的切线方程可设为l : y =kx +1 ,代入椭圆C 的方程得: x 2+2(kx +1)2=2,x =−4k1+2k 2 ,可得 B(−4k 11+2k 12,1−2k 121+2k 12) ;同理可得 D(−4k 21+2k 22,1−2k 221+2k 22)由圆M 与l 相切得:√1+k 2=r,(1−r 2)k 2−2k +1−r 2=0由韦达定理得: k 1+k 2=21−r 2,k 1k 2=1 所以直线BD 的斜率 k =y 2−y 1x 2−x1=1−2k 221+2k 22−1−2k 121+2k 12−4k 21+2k 22+4k 11+2k 12=4k 12−4k 224(k2−k 1)(2k 1k 2−1)=−(k 1+k 2)=2r 2−1…… 直线BD 的方程为: y −1−2k 121+2k 22=2r 2−1(x +4k11+2k 12)化简为: y =2r 2−1x −1+k 12k 1×4k11+2k 12+1−2k 121+2k 12=2r 2−1x −3 ,即 y =2r 2−1x −3所以,当 r(0<r <√2−1) 变化时,直线BD 总过定点 R(0,−3)【解析】【分析】(1)根据椭圆的顶点和离心率建立方程组求解椭圆方程;(2)圆M 过A 的切线方程可设为l : y =kx +1 ,代入椭圆,解出B , D 坐标,根据直线与圆相切结合韦达定理得斜率 k 1,k 2 的关系,表示出直线BD 的方程即可求得过定点.8.【答案】 (1)解:由题意知 m ≠0 ,可设直线AB 的方程为 y =−1m x +b ,由 {x 22+y 2=1y =−1m x +b , 消去 y ,得 (12+1m 2)x 2−2bm x +b 2−1=0 ,∵直线 y =−1m x +b 与椭圆 x 22+y 2=1 有两个不同的交点,∴ Δ=−2b 2+2+4m 2>0 ,①,将AB 中点 M(2mb m +2,m 2bm +2) 代入直线方程 y =mx +12 解得b =−m 2+22m 2,②。

2020年高考数学圆锥曲线解答题必刷热点题型(附答案解析)

2020年高考数学圆锥曲线解答题必刷热点题型(附答案解析)

2020年高考数学圆锥曲线解答题必刷热点题型1.(2020•蚌埠三模)如图,设抛物线21:4C x y =与抛物线22:2(0)C y px p =>在第一象限的交点为2(,)4t M t ,点A ,B 分别在抛物线2C ,1C 上,AM ,BM 分别与1C ,2C 相切.(1)当点M 的纵坐标为4时,求抛物线2C 的方程;(2)若[1t ∈,2],求MBA ∆面积的取值范围.2.(2020•威海一模)已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,点3(1,)2P -是椭圆上一点,12||F F 是1||PF 和2||PF 的等差中项.(Ⅰ)求椭圆的标准方程;(Ⅱ)若A 为椭圆的右顶点,直线AP 与y 轴交于点H ,过点H 的另一直线与椭圆交于M 、N 两点,且6HMA PHN S S ∆∆=,求直线MN 的方程.3.(2020•濮阳一模)已知O 为坐标原点,抛物线2:2(0)C x py p =>的焦点坐标为1(0,)2,点A ,B 在该抛物线上且位于y 轴的两侧,3OA OB =u u u r u u u r g .(Ⅰ)证明:直线AB 过定点(0,3);(Ⅱ)以A ,B 为切点作C 的切线,设两切线的交点为P ,点Q 为圆22(1)1x y -+=上任意一点,求||PQ 的最小值.4.(2020•辽阳一模)已知抛物线2:2(0)C x py p =>的焦点为F ,直线l 与抛物线C 交于P ,Q 两点.(1)若l 过点F ,抛物线C 在点P 处的切线与在点Q 处的切线交于点G .证明:点G 在定直线上.(2)若2p =,点M 在曲线y =MP ,MQ 的中点均在抛物线C 上,求MPQ ∆面积的取值范围.5.(2020•东莞市模拟)已知抛物线2:4E y x =,过抛物线焦点F 的直线1分别交抛物线E 和圆22:(1)1F x y -+=于点A 、C 、D 、B (自上而下).(1)求证:||||AC BD g 为定值;(2)若||AC 、||CD 、||DB 成等差数列,求直线l 的方程.6.(2020•天津一模)已知抛物线2:C y =的焦点为椭圆2222:1(0)x y E a b a b +=>>的右焦点,C 的准线与E 交于P ,Q 两点,且||2PQ =.(1)求E 的方程;(2)过E 的左顶点A 作直线l 交E 于另一点B ,且(BO O 为坐标原点)的延长线交E 于点M ,若直线AM 的斜率为1,求l 的方程.。

2020高考数学分类汇编--解析几何圆锥曲线

2020高考数学分类汇编--解析几何圆锥曲线

2020年普通高等学校招生全国统一考试一卷理科数学4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p = A .2B .3C .6D .911.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为 A .210x y --= B .210x y +-=C .210x y -+=D .210x y ++=15.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 . 20.(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.4.C11.D15.220.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线P A 的方程为y =9t (x +3),所以y 1=9t(x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得221227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).2020年普通高等学校招生全国统一考试二卷理科数学5.若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A .55B .552C .553D .554 8.设O 为坐标原点,直线a x =与双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线分别交于E D 、ODE 的面积为8,则C 的焦距的最小值为A .4B .8C .16D .3219.(12分)已知椭圆1C :()012222>>=+b a b y a x 的右焦点F 与抛物线2C 的焦点重合,1C 的中心与的2C 的顶点重合. 过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且AB CD 34=. (1)求1C 的离心率;设M 是1C 与2C 的公共点,若5=MF ,求1C 与2C 的标准方程.2020年普通高等学校招生全国统一考试理科数学5.设O 为坐标原点,直线x =2与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)11.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a = A .1 B .2 C .4 D .820.(12分)已知椭圆222:1(05)25x y C m m+=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积. 5.B11.A20.解:(1)由题设可得54=,得22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ的距离为2,故11APQ △的面积为1522=.22||PQ =直线22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52. 2020年普通高等学校招生全国统一考试一卷文科数学6.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 A .1B .2C .3D .411.设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为 A .72B .3C .52D .221.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点. 6.B11.B21.解:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(,1)AG a =,(,1)GB a =-.由8AG GB ⋅=得218a -=,即3a =.所以E 的方程为2219x y +=.(2)设1122(,),(,),(6,)C x y D x y G t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以11(3)9ty x =+.直线PB 的方程为(3)3t y x =-,所以22(3)3ty x =-.可得12213(3)(3)y x y x -=+.由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0m y y m n y y n ++++++=.①将x my n =+代入2219xy +=得222(9)290m y mny n +++-=.所以212122229,99mn n y y y y m m -+=-=-++. 代入①式得2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3(,0)2. 若0t =,则直线CD 的方程为0y =,过点3(,0)2.综上,直线CD 过定点3(,0)2.2020年普通高等学校招生全国统一考试二卷文科数学8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为A B C D 9.设O 为坐标原点,直线x =a 与双曲线C :2222-x y a b=l(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为 A .4B .8C .16D .3219.(12 分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 8.B9.B19.解:(1)由已知可设2C 的方程为24y cx =,其中c不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a-;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.2020年普通高等学校招生全国统一考试三卷文科数学6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为 A .圆B .椭圆C .抛物线D .直线7.设O 为坐标原点,直线x =2与抛物线C :()220y px p =>交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为 A .(14,0) B .(12,0) C .(1,0) D .(2,0)14.设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y x ,则C 的离心率为_________.21.(12分)已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积. 6.A7.B1421.解:(1=22516m =,所以C 的方程为1252516+=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为1522=.22||PQ =直线22P Q 的方程为71093y x =+,点A 到直线22P Q的距离为26,故22AP Q △的面积为152262⨯=. 综上,APQ △的面积为52. 2020年普通高等学校招生全国统一考试(北京卷)(5)已知半径为1的圆经过点)4,3(,则其圆心到原点的距离的最小值为(A )4 (B )5 (C )6 (D )7(7)设抛物线的顶点为O ,焦点为F ,准线为l ;P 是抛物线异己O 的一点,过P 做PQ ⊥l 于Q ,则线段FQ 的垂直平分线 (A )经过点O (B )经过点P(C )平行于直线OP (D )垂直于直线OP(12)已知双曲线:163C -=,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是________. (20)(本小题15分)已知椭圆22221x y C a b+=:过点()21A --,,且2a b =(I )求椭圆C 的方程:(II )过点4,0B -()的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q 求PBBQ的值 2020年普通高等学校招生全国统一考试(江苏卷)6.在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是 ▲ . 18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标. 6.3218.满分16分.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.2020年普通高等学校招生全国统一考试(天津卷)7.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -= D .221x y -= 12.已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r的值为_________. 18.(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 7.D12.518.满分15分.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=.(Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221k x k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-. 2020年普通高等学校招生全国统一考试新高考9.已知曲线22:1C mx ny +=.A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y = D .若m =0,n >0,则C 是两条直线 13.C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 22.(12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.9.ACD13.16322.解:(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+, 代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k -+=-=++.① 由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=. 将①代入上式可得22222264(1)(2)(1)401212m km k km k m k k -+---+-+=++. 整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =--≠. 所以直线MN 过点21(,)33P -. 若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=. 又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -. 令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.2020年普通高等学校招生全国统一考试(浙江卷)8.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =图象上的点,则|OP |=A .2BCD 15.已知直线(0)y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______,b =_______.21.(本题满分15分)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.8.D1521.满分15分。

(完整版)2020年高考理科数学《圆锥曲线》题型归纳与训练,推荐文档

(完整版)2020年高考理科数学《圆锥曲线》题型归纳与训练,推荐文档

2y0
2y0
令 x=0,得 yM=-x0-2,从而|BM|=1-yM=1+x0-2.
y0-1 直线 PB 的方程为 y= x0 x+1.
x0
x0
令 y=0,得 xN=-y0-1,从而|AN|=2-xN=2+y0-1.
1 所以四边形 ABNM 的面积 S=2|AN|·|BM|
1 =2
( )2y0 x20+4y20+4x0y0-4x0-8y0+4 2x0y0-2x0-4y0+4
2020 年高考理科数学《圆锥曲线》题型归纳与训练 【题型归纳】
题型一 求曲线的方程
例 1 已知 F1(2, 0) , F2 (2, 0) ,点 P 满足| PF1 | | PF2 | 2 ,记点 P 的轨迹为 E .求轨迹 E 的方程. 【答案】 x2 y2 1
3
【解析】由| PF1 | | PF2 | 2 4 | F1F2 | 可知:点 P 的轨迹 E 是以 F1, F2 为焦点的双曲 线的右支,
x2 y2 例 2 已知椭圆 C:a2+b2=1 过 A(2,0),B(0,1)两点. (1)求椭圆 C 的方程及离心率;
1
(2)设 P 为第三象限内一点且在椭圆 C 上,直线 PA 与 y 轴交于点 M,直线 PB 与 x 轴交于点 N,求证:四边形 ABNM 的面积为定值.
x2
3
【答案】(1) 4 +y2=1,e= 2 (2)2.
1+
=2.
x0-2 = 2x0y0-x0-2y0+2 = x0y0-x0-2y0+2
2
从而四边形 ABNM 的面积为定值.
【易错点】(1).想不到设出 P(x0,y0)后,利用点斜式写出直线 PA,PB 的方 程.不会由直线 PA,PB 的方程求解|BM|,|AN|;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

猜押练一致胜高考必须掌握的20个热点新高考热点练12 圆锥曲线(小题)考向1 直线与圆、抛物线1.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a= ( )A.-B.-C.D.22.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.从抛物线y2=4x在第一象限内的一点P引抛物线准线的垂线,垂足为M,若|PM|=4,设抛物线的焦点为F,则直线PF的斜率为( )A. B. C. D.24.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C 交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为()A.16B.14C.12D.105.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=6,则此抛物线方程为( )A.y2=9xB.y2=6xC.y2=3xD.y2=x6.若直线3x+4y+12=0与两坐标轴分别交于A,B两点,O为坐标原点,则△AOB的内切圆的标准方程为______________.7.已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=________,r=________.8.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若AB=2,则圆C的面积为________.9.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过F的直线与抛物线及其准线l 依次相交于G、M、N三点(其中M在G、N之间且G在第一象限),若|GF|=4,|MN|= 2|MF|,则p=________.考向2 椭圆1.已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A,B两点.若AB的中点坐标为(1,-1),则椭圆的方程为 ( )A.+=1B.+=1C.+=1D.+=12.已知椭圆+=1的离心率为,则( )A.a2=2b2B.3a2=4b2C.a=2bD.3a=4b3.我国自主研制的月球探测器——“嫦娥四号”卫星在西昌卫星发射中心成功发射后,奔向月球,进入月球轨道,“嫦娥四号”轨道是以地心为一个焦点的椭圆,设地球的半径为R,卫星近地点、远地点离地面的距离分别是,(如图所示),则“嫦娥四号”卫星轨道的离心率为 ( )A. B. C. D.4.已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )A. B. C. D.5.已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )A. B. C. D.6.设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.考向3 双曲线1.已知抛物线y2=4x的焦点为F,准线为l,若l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为( )A. B. C.2 D.2.设F1,F2是双曲线C:-=1(a>0,b>0)的左、右焦点,O是坐标原点.过F2作C 的一条渐近线的垂线,垂足为P.若|PF1|=|OP|,则C的离心率为( )A. B.2 C. D.3.若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为( )A.2B.C.D.4.已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|= ( )A. B.3 C.2 D.45.已知双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为( )A.-=1B.-=1C.-=1D.-=16.已知双曲线-=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为________.7.在平面直角坐标系xOy中,若双曲线x2-=1(b>0)经过点(3,4),则该双曲线的渐近线方程是________.8.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C 的两条渐近线分别交于A,B两点.若=,·=0,则C的离心率为________.猜押练一致胜高考必须掌握的20个热点热点练12 圆锥曲线(小题)考向1 直线与圆、抛物线1.A 由圆的方程x2+y2-2x-8y+13=0得圆心坐标为(1,4),由点到直线的距离公式得d==1,解得a=-.2.A 依题意,因|AB|=,则圆心O到直线l的距离等于=,即有=,k=±1.因此,“k=1”是“|AB|=”的充分不必要条件.3.C 设P(x0,y0),依题意可知抛物线准线x=-1,所以x0=4-1=3,所以y0=2,所以P(3,2),F(1,0).所以直线PF的斜率为k==.4.A 由已知l1垂直于x轴不符合题意,所以l1的斜率存在设为k1,l2的斜率为k2,由题意有k1·k2=-1,设A(x1,y1),B(x2,y2),D(x3,y3),E(x4,y4),此时直线l1方程为y=k1(x-1),联立方程,得x2-2x-4x+=0,所以x1+x2=-=,同理得x3+x4=,由抛物线定义可知|AB|+|DE|=x1+x2+x3+x4+2p=++4=++8≥2+8=16,当且仅当k1=-k2=1(或-1)时,取得等号.5.B 如图分别过点A,B 作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得: |BC|=2a,由抛物线定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE 中, 因为|AE|=|AF|=6,|AC|=6+3a,所以2|AE|=|AC|,所以6+3a=12,从而得a=2,|FC|=3a=6,所以p=|FG|=|FC|=3,因此抛物线方程为y2=6x.6.【解析】设内切圆的半径为r,结合面积公式·OA·r+·OB·r+·AB·r=×3×4,则r=1,所以圆心坐标为(-1,-1),圆的方程为(x+1)2+(y+1)2=1.答案:(x+1)2+(y+1)2=17.【解析】方法一:由圆心与切点的连线与切线垂直,得=-,解得m=-2.所以圆心为(0,-2),则半径r==.方法二:由r==,得m=-2,所以r==.答案:-28.【解析】圆C:x2+y2-2ay-2=0化为标准方程是C:x2+(y-a)2=a2+2,所以圆心C(0,a),半径r=.AB=2,点C到直线y=x+2a即x-y+2a=0的距离d=,由勾股定理得+=a2+2,解得a2=2,所以r=2,所以圆C的面积为π×22=4π.答案:4π9.【解析】如图,过M作MH⊥l于H,由|MN|=2|MF|,得|MN|=2|MH|,所以MN所在直线斜率为,MN所在直线方程为y=,联立,得12x2-20px+3p2=0.解得:x G=p,则|GF|=p+=4,即p=2.答案:2考向2 椭圆1.D 设A(x1,y1),B(x2,y2),则x1+x2=2,y1+y2=-2,+=1 ①+=1 ②①-②得+=0,所以k AB==-=,又k AB==,所以=,又9=c2=a2-b2,解得b2=9,a2=18,所以椭圆方程为+=1.2.B 由题意,得e==,得=,则=,所以4a2-4b2=a2,即3a2=4b2.3.A 根据题意知,卫星近地点、远地点离地面的距离分别是,.设椭圆的长半轴长、半焦距分别为a,c,则a==,c==--R=R,则e===.4.A 以线段A1A2为直径的圆是x2+y2=a2,直线bx-ay+2ab=0与圆相切,所以圆心到直线的距离d==a,整理为a2=3b2,即a2=3⇒2a2=3c2,即= ,e==.5.A 设E(0,m),则直线AE的方程为y=x+m,由题意可知M,和B(a,0)三点共线,则=,化简得a=3c,则C的离心率e==.6.【解析】设M(m,n),m,n>0,椭圆C:+=1的a=6,b=2,c=4,e==,由于M 为C上一点且在第一象限,可得|MF1|>|MF2|,△MF1F2为等腰三角形,可能|MF1|=2c 或|MF2|=2c,即有6+m=8,即m=3,n=;6-m=8,即m=-3<0,舍去.可得M(3,).答案:M(3,)考向3 双曲线1.D 因为抛物线y2=4x的焦点为F,准线为l,所以F(1,0),准线l的方程为x=-1. 因为l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),所以|AB|=,|OF|=1,所以=4,即b=2a,所以c==a,所以双曲线的离心率为e==.2.C 不妨设一条渐近线的方程为y=x,则F2到y=x的距离d==b,在Rt△F2PO中,|F2O|=c,所以|PO|=a,所以|PF1|=a,又|F1O|=c,所以在△F1PO与Rt△F2PO中,根据余弦定理得cos∠POF1==-cos∠POF2=-,即3a2+c2-=0,得3a2=c2.所以e==.3.A 双曲线C的渐近线方程为bx±ay=0,圆心(2,0)到渐近线的距离为d==,圆心(2,0)到弦的距离为d==,所以=,又c2=a2+b2,所以得c=2a,所以离心率e==2.4.B 因为双曲线-y2=1的渐近线方程为y=±x,所以∠MON=60°.不妨设过点F的直线与直线y=x交于点M,由△OMN为直角三角形,不妨设∠OMN=90°,则∠MFO=60°,又直线MN过点F(2,0),所以直线MN的方程为y=-(x-2), 由,得,所以M,所以|OM|==,所以|MN|=|OM|=3.5.B 由题意可得:=,c=3,又a2+b2=c2,解得a2=4,b2=5,则C的方程为-=1.6.【解析】由d1+d2=6,得双曲线的右焦点到渐近线的距离为3,所以b=3.因为双曲线-=1(a>0,b>0)的离心率为2,所以=2,所以=4,所以=4,解得a2=3,所以双曲线的方程为-=1.答案:-=17.【解析】因为双曲线x2-=1(b>0)经过点(3,4),所以32-=1,解得b2=2,即b=.又a=1,所以该双曲线的渐近线方程是y=±x.答案:y=±x8.【解析】如图所示,因为=,所以A为F1B的中点.又O为F1F2的中点,所以AO∥BF2,AO=BF2.因为·=0,所以∠F1BF2=90°,且O为F1F2的中点,所以OB=F1F2=OF2=c. 由题意得∠BOF2=∠AOF1=∠BF2F1,所以OB=BF2,因此△BOF2为等边三角形,∠BOF2=60°,即直线OB的斜率为,也即=,所以e==2.答案:2。

相关文档
最新文档