验证快速电子的动量与动能的相对论关系实验报告

验证快速电子的动量与动能的相对论关系实验报告
验证快速电子的动量与动能的相对论关系实验报告

验证快速电子的动量与动能的相对论关系

实验报告

摘要:

实验是验证快速电子的动量与动能的相对论关系,本实验是通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系;同时了解β磁谱仪测量原理、闪烁记数器的使用方法及一些实验数据处理的思想方法。通过实验过程完成实验内容,得到实验结果,获得实验体会。

关键字:

动量动能相对论β磁谱仪闪烁探测器定标

引言:

动量和能量是描述物体或粒子运动状态的两个特征参量,在低速运动时,它们之间的关系服从经典力学,但运动速度很高时,却是服从相对论力学。相对论力学理论是由伟大的科学家爱因斯坦建立的。

19世纪末到20世纪初期,相继进行了一些新的实验,如著名迈克尔逊—莫雷实验、运动电荷辐射实验、光行差实验等,这些实验的结果不能完全被经典力学和伽利略变换所解释,为解决这一矛盾,爱因斯坦于1905年创立了狭义相对论。

基于相对论的原理,可以解释所有这些实验结果,同时对低速运动的物体,相对论力学能过渡到经典力学。原子核发生β衰变时,放出高速运动的电子,其运动规律应服从相对论力学。通过测量电子的动能与动量,并分析二者之间的关系,可以达到加深理相对论理论的目的。

正文:

1905年,阿尔伯特·爱因斯坦的《论运动物体的电动力学》首次提出了崭新的时间空间理论——狭义相对论。其在1915年左右发表的一系列论文中给出了广义相对论最初的形式。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了近代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。

本实验通过对快速电子的动量值及动能的同时测定,验证其动能与动量的关系,同时了解半圆聚焦β磁谱仪的工作原理。

一、相对论

相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。

相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论和量子力学是现代物理学的两大基本支柱。经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。狭义相对论提出于1905年,广义相对论提出于1915(年爱因斯坦在1915年末完成广义相对论的创建工作,在1916年初正式发表相关论文)。

由于牛顿定律给狭义相对论提出了困难,即任何空间位置的任何物体都要受到力的作用。因此,在整个宇宙中不存在惯性观测者。爱因斯坦为了解决这一问题又提出了广义相对论。

狭义相对论最著名的推论是质能公式,它说明了质量随能量的增加而增加。它也可以用来解释核反应所释放的巨大能量,但它不是导致原子弹的诞生的原因。而广义相对论所预言的引力透镜和黑洞,与有些天文观测到的现象符合。

二、相对论验证实验

相对论效应验证实验是一个用实验验证相对论效应的过程,一个是1887年由迈克尔逊和莫雷所做的光速实验和另一个是所谓的黑体辐射。狭义相对论改变关于时间和空间的观念:从牛顿的绝对对时空观念而成为四维时空观,这就是爱因斯坦于1905年提出他的相对性原理和光速不变原理。狭义相对论时空观念。爱因斯坦狭义相对论已为大量的实验所证实,并应用于近代物理的各个领域。狭义相对论是设计所有粒子加速器的基础。

20世纪初。物理学基本观念经历了三次影响深远的革命;作为这三次革命的标志和成果,就是狭义相对论,广义相对论和量子力学的建立.物理科学中有两个十分重要的实验发现一直困扰着人们。

实验通过同时测量速度接近光速C的高速电子( 粒子)的动量和动能来证明狭义相对论的正确性。能量为1MeV 粒子速度为0.94C. 实验所用粒子的能量在0.4~2.27MeV范围。其速度非常接近光速C。所以能验证动质能的相对论关系。学习磁谱仪的测量原理及其他核物理的实验方法和技术。γ射线是原子核衰变或裂变时放出的辐射,本质上它是一种能量比可见光和X射线高得多的电磁辐射。利用γ射线和物质相互作用的规律,人们设计和制造了多种类型的射线探测器。闪烁探测器即是其中之一。它是利用某些物质在射线作用下发光的特性来探测射线的仪器,既能测量射线的强度,也能测量射线的能量,在核物理研究和放射性同位素测量中得到广泛的应用。

(一)理论依据

经典力学总结了低速物理的运动规律,它反映了牛顿的绝对时空观:认为时间和空间是两个独立的观念,彼此之间没有联系;同一物体在不同惯性参照系中观察到的运动学量(如坐标、速度)可通过伽利略变换而互相联系。这就是力学相对性原理:一切力学规律在伽利略变换下是不变的。

19世纪末至20世纪初,人们试图将伽利略变换和力学相对性原理推广到电磁学和光学

时遇到了困难;实验证明对高速运动的物体伽利略变换是不正确的,实验还证明在所有惯性参照系中光在真空中的传播速度为同一常数。在此基础上,爱因斯坦于1905年提出了狭义相对论;并据此导出从一个惯性系到另一惯性系的变换方程即“洛伦兹变换”。

在经典力学中,动量表达式为p=mv 。在狭义相对论中,在洛伦兹变换下,静止质量为m 0,相对论性质量为m ,速度为v 的物体,狭义相对论定义的动量p 为:

p m v mv

=

-=012

β

式中

m m v c =-=012

/,/ββ。 狭义相对论中,质能关系式E mc =2

是质点运动时遇有的总能量,当物体静止时v=0,物体的能量为E 0=m 0c 2称为静止能量;两者之差为物体的动能E k ,即

E mc m c m c k =-=--222

2

00111(

)

β

当β? 1时,可展开为

E m c v c m c m v p m k =++-≈=

0002

2222

201121212()

即得经典力学中的动量—能量关系。

E c p E 22202-=

这就是狭义相对论的动量与能量关系。而动能与动量的关系为:

E E E c p m c m c k =-=+-02242

020

这就是我们要验证的狭义相对论的动量与动能的关系。

对高速电子其关系如图所示,图中pc 用MeV 作单位,电子的m 0c 2=0.511MeV 。可化为:

E p c m c p c k ==

?1220511222220.

(二)数据处理思想方法

1.β粒子动量的测量

放射性核素β衰变时,在释放高速运动电子的同时,还释放出中子,两者分配能量的结果,使β粒具有连续的能量分布,因此也就对着各种可能的动量分布。实验中采横向半圆磁聚焦β谱仪(以下简称谱仪)来测量β粒子的动量。该谱仪采用磁场聚焦,子运动轨道是半圆形,且轨道平面直于磁场方向。为减小空气分子对粒子运动的影响,磁谱仪内预抽真空运动的β粒子在磁场中受洛仑兹力用,其运动方程为

其中p为β粒子动量,e为电子电荷,u为β粒子的运动速度,B为均匀磁场的磁感应强度。由于洛仑兹力始终垂直于β粒子的运动方向,所以β粒子的运动速率不发生改变,那么质量也就保持恒定,解此运动方程可得

p = eBR

此处R 为β粒子运动轨道的曲率半径。

装置中,如果磁感应强度B已知,我们只须左右移动探测器的位置,通过测量探测器与β放射源的间距(2R),由公式就可得到β粒子的动量。

2.β粒子动能的测量

测量β粒子的动能用闪烁能谱仪完成。需要注意的是,由于闪烁体前有一厚度约200 μm 的铝质密封窗,周围包有约20μm 的铝质反射层,而且磁谱仪真空室由塑料薄膜密封,所以β粒子穿过铝质密封窗、铝质反射层和塑料薄膜后,其损失的部分动能必须进行修正。当材料的性质及其厚度固定后,这种能量损失的大小仅与入射粒子的动能有关,因此应根据实验室提供的仪器具体参数进行校正,而由测量到的粒子的动能,给出入射粒子进入窗口前的动能大小。

三、装置介绍与原理简析

实验装置主要由以下部分组成:

①真空、非真空半圆聚焦磁谱仪;

②放射源90Sr—90Y(强度≈1毫居里),定

标用γ放射源137Cs和60Co(强度≈2微居

里);

③200m Al窗NaI(Tl)闪烁探头;

④数据处理计算软件;

⑤高压电源、放大器、多道脉冲幅度

分析器。

核辐射与某些物质相互作用会使

其电离、激发而发射荧光,闪烁探测

器就是利用这一特性来工作的。

归结起来,闪烁探测器的工作可分为五个相互联系的过程:

1)射线进入闪烁体,与之发生相互作用,闪烁体吸收带电粒子能量而使原子、分子电

离和激发;

2)受激原子、分子退激时发射荧光光子;

3)利用反射物和光导将闪烁光子尽可能多地收集到光电倍增管的光阴极上,由于光电效应,光子在光阴极上击出光电子;

4)光电子在光电倍增管中倍增,数量由一个增加到104~109个,电子流在阳极负载上产生电信号;

5)此信号由电子仪器记录和分析。

通常NaI(Tl)单晶γ闪烁谱仪的能量分辨率以137CS的0.661MeV单能γ射线为标准,它的值一般是10%左右,最好可达6~7%。

四、实验过程

实验的内容要求:

①测量快速电子的动量;

②测量快速电子的动能;

③验证快速电子的动量与动能之间的关系符合相对论效应。

1. 实验过程如下:

①检查仪器线路连接是否正确,然后开启高压电源,开始工作;

②打开60Coγ定标源的盖子,移动闪烁探测器使其狭缝对准60Co源的出射孔并开始记数测量;

③调整加到闪烁探测器上的高压和放大数值,使测得的60Co的1.33MeV峰位道数在一个比较合理的位置;

④选择好高压和放大数值后,稳定10~20分钟;

⑤正式开始对NaI(Tl)闪烁探测器进行能量定标,首先测量60Co的γ能谱,等1.33MeV 光电峰的峰顶记数达到1000以上后(尽量减少统计涨落带来的误差),对能谱进行数据分析,记录下1.17和1.33MeV两个光电峰在多道能谱分析器上对应的道数CH3、CH4;

⑥移开探测器,关上60Coγ定标源的盖子,然后打开137Csγ定标源的盖子并移动闪烁探测器使其狭缝对准137Cs源的出射孔并开始记数测量,等0.661MeV光电峰的峰顶记数达到1000后对能谱进行数据分析,记录下0.184MeV反散射峰和0.661 MeV光电峰在多道能谱分析器上对应的道数CH1、CH2;

⑦关上137Csγ定标源,打开机械泵抽真空;

⑧盖上有机玻璃罩,打开β源的盖子开始测量快速电子的动量和动能,探测器与β源的距离X最近要小于9cm、最远要大于24cm,保证获得动能范围0.4~1.8MeV的电子;

⑨选定探测器位置后开始逐个测量单能电子能峰,记下峰位道数CH和相应的位置坐标X;

⑩全部数据测量完毕后关闭β源及仪器电源,进行数据处理和计算。

2. 实验注意事项:

①闪烁探测器上的高压电源、前置电源、信号线绝对不可以接错;

②装置的有机玻璃防护罩打开之前应先关闭β源;

③应防止β源强烈震动,以免损坏它的密封薄膜;

④移动真空盒时应格外小心,以防损坏密封薄膜;

⑤用机械泵抽真空时,由于真空盒密封性较差,需要一直让机械泵运作。

五、实验数据处理与分析

根据实验内容,依照实验操作步骤获得如下实验数据:

1. 定标:

实验采用60Co和137CS辐射源进行定标,由于这两种辐射源的能量我们是已知的,实验中得到峰位与道数的数值并与能量相互对应起来便可以得到恰当的定标数据。

实验中设置为高压电源为869v;放大倍数为0.3倍。实验所得能量与峰位道数的关系数据如下所示:

钴、铯元素定标数据

钴元素铯元素定标结果

能量(Mev) 1.33 1.17 0.661 0.184 斜率:0.004

截距:-0.044 峰位道数319.68 283.22 164.69 52.74

2. β源测量:

实验所用β源位置10.0cm处,探测位置有八个,实验时选择位置2、4、6、8进行测量,并且通过两次测量求平均以减小误差。实验β源位置与道数关系数据如下:

β源位置与道数关系测量数据

β源位置

第一次测量第一次测量平均值

坐标(mm)道数坐标(mm)道数坐标(mm)道数

2 21.32 138.38 21.36 137.68 21.34 138.03

4 26.18 236.34 26.16 240.53 26.17 238.44

6 31.28 349.49 31.2 343.28 31.24 346.39

8 35.62 440.84 35.56 437.57 35.59 439.21 3. 相对论关系:

将上述所得数据输入计算机软件,在定标的基础上根据β源位置与道数关系得到相关相对论关系数据如下表所示:

相对论关系数据

坐标(mm)道数

实验测得PC

(Mev)

能量

(Mev)

理论PC

(Mev)

误差

2 21.34 138.0

3 0.99895 0.648 1.04025 -3.97%

4 26.17 238.44 1.43996 1.07

5 1.5011

6 -4.08% 6 31.24 346.39 1.90192 1.539 1.98491 -4.18% 8 35.59 439.21 2.29504 1.938 2.39498 -4.17%

实验所得图像见附录。

六、实验总结

实验分析:

从实验数据分析看到,误差范围基本控制在5%左右,说明这次实验基本上成功。

但是,实验误差还是存在的,从图像上看,实验所得的曲线并没有和理论曲线相重合,实验数据与理论值的比较也可以大大说明误差的存在。因此,需要对误差进行分析。

首先,在β源的测量过程中,需要保持在一定程度的真空状态下,在实验中虽然我们一直让真空泵处于工作状态,但是过程中真空度不是始终保持稳定而是存在变化的,也就是说β源的密封并不是很严密的。因此,仪器密封性可以看做实验误差之一。

其次,在定标数据获取的过程中,实验采用60Co和137CS来定标,在用60Co来定标的时候,发现以前做物质吸收实验时所用的电压(大概在667V)左右已不再适合了,电压的调节相当的重要。

再次,在选择峰位的时候,由于实验室一个累积的过程,得到的图像也不一定是最为标准的曲线,依次峰位的倒数就会存在一定的误差,进而定标计算就会延续这样的误差存在。

实验体会:

总的来说,在此实验之前,我们已经学会使用多道分析器以及闪烁探测器,并且应用测量137Cs、60Co的能量值,这学期无非是在此基础上加上一个β射线源,因此对于实验过程比较熟悉,在操作上不会遇到很大的瓶颈,对于仪器的使用就不是这个实验所要考察的重点。

这次的实验应用了一个很重要的物理思想,那就是定标的思想。在上个学期的光学多道实验中,这种定标的思想已经初步的形成,在此实验中又有了进一步提升与巩固。定标的思想是将已知的拿来作为标尺,从而探求未知的事物,对比于光学多道实验,只是将探求光学的转变到辐射的层面上来。因此将这两个实验联系在一起之后,这次实验的一个重点同样也是难点的部分就被有效的避免了。

讲过实验之后,总结来看这个实验应该注意的地方有以下几点。第一,要注意该实验的电压值应该是一开始就设定好,接下来的过程都不能再改变了;第二,要注意安全使用放射源;第三;移动真空盒时应小心,以防损坏密封薄膜;第四,应防止β源强烈震动,以免损坏它的密封薄膜;第五,在测量β射线源时,要保持真空泵一直处于工作状态,否者实验误差将会很大。

通过这次实验,我们不仅对整个实验有了很好的理解,更加重要的是在实验的过程中,我们能自己利用学过的知识独立思考问题,把前后的知识有效地联系在一起融会贯通,达到了更有效学习的目的。

对于相对论这样一个极其抽象又遥不可及的东西,本来我认为只可以理论研究并且是科学家才会去触及的领域,没想到作为一个普通人一个普通的学生,就可以对这个人类历史上重要的发现作出验证,并且仅仅是利用了我们原有的知识来解决的这样一个问题,真的是很让人感到不可思议。原来科学并不是什么遥不可及的东西,只要我们勤于思考,敢于大胆猜想,勇于尝试,并且有科学的研究创新精神,那么科学就无处不在了。

相对论的验证

用-β粒子验证相对论动量—能量关系 学号:0810130956 姓名:刘荣沛 实验日期:2010.9.14 指导老师:王引书 摘 要 本实验中我们通过测算9038Sr -9039Y 源衰变产生的β-粒子的动能和动量来比较经典理论和相对论的异同,从而验证相对论的正确性。β-粒子的能量我们利用能谱仪及多道分析器进行测定,在测定之前还需要利用137Cs 和60Co 对多道分析器进行定标,确定粒子能量和微机多道数之间的关系(E a bn =+),从而可以算出不同道数的对应β-粒子的能量。β-粒子的动量我们通过磁谱仪测出。 关键词 β-粒子 相对论 能量 动量 一、引言 爱因斯坦狭义相对论揭示了高速运动物体的运动规律,创立了全新的时空观,给出了质量对速度的依赖关系、能量与质量的普遍联系等一系列重要结果。狭义相对论已应用于近代物理各个领域,原子核物理和粒子物理更是离不开狭义相对论。本实验的目的是通过同时测量速度接近光速的β-粒子的动量和动能,证明牛顿力学只适用于低速运动的物体,当物体的运动速度接近光速时,必须使用相对论力学,同时学习带电粒子特别是β-粒子与物质的相互作用,学习β磁谱仪和β闪烁谱仪的测量原理和使用以及其他核物理的试验方法和技术。 二、原理 1、牛顿力学动量与动能之间的关系 牛顿的经典力学总结了低速物体的运动规律,也反映了牛顿的绝对时空观。在不同的惯性参考系中观察同一物体的一切运动学量(坐标、速度)都可以用伽利略变换而相互联系,而在任何惯性参照系中其动力学量(加速度、质量)都相同,一切力学规律(牛顿定律、守恒定律)的表达式在所有的惯性系中都相同。这就是伽利略力学相对性原理:一切力学规律在伽利略变换下是不变的。 在牛顿力学中,任何物体的质量0m 都是一个常量。当其以速度v 运动时,其动量和动能的值p 和k E 分别用下列两式表示 0p m v = (1) 201 2 k E m v = (2) 所以动量和动能的关系为

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

验证快速电子的动量与动能的相对论关系实验报告

验证快速电子的动量与动能的相对论关系 实验报告 摘要: 实验是验证快速电子的动量与动能的相对论关系,本实验是通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系;同时了解β磁谱仪测量原理、闪烁记数器的使用方法及一些实验数据处理的思想方法。通过实验过程完成实验内容,得到实验结果,获得实验体会。 关键字: 动量动能相对论β磁谱仪闪烁探测器定标 引言: 动量和能量是描述物体或粒子运动状态的两个特征参量,在低速运动时,它们之间的关系服从经典力学,但运动速度很高时,却是服从相对论力学。相对论力学理论是由伟大的科学家爱因斯坦建立的。 19世纪末到20世纪初期,相继进行了一些新的实验,如著名迈克尔逊—莫雷实验、运动电荷辐射实验、光行差实验等,这些实验的结果不能完全被经典力学和伽利略变换所解释,为解决这一矛盾,爱因斯坦于1905年创立了狭义相对论。 基于相对论的原理,可以解释所有这些实验结果,同时对低速运动的物体,相对论力学能过渡到经典力学。原子核发生β衰变时,放出高速运动的电子,其运动规律应服从相对论力学。通过测量电子的动能与动量,并分析二者之间的关系,可以达到加深理相对论理论的目的。 正文: 1905年,阿尔伯特·爱因斯坦的《论运动物体的电动力学》首次提出了崭新的时间空间理论——狭义相对论。其在1915年左右发表的一系列论文中给出了广义相对论最初的形式。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了近代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。 本实验通过对快速电子的动量值及动能的同时测定,验证其动能与动量的关系,同时了解半圆聚焦β磁谱仪的工作原理。

相对论验证实验中的结果解释和能谱图分析

相对论验证实验中的结果解释和能谱图分析 摘要:文章首先通过简单介绍作者在相对论验证实验中得到的结果,针对实验计算机一步给出的数据结果和图形结果进行解释,然后针对β- 粒子能谱图的两个峰值的数据进行峰值来源的分析,最后针对峰值随探测器位置变化的现象进行浅析,得出分析结论。 关键词:相对论验证实验,结果解释,能谱图变化分析 正文: 实验原理介绍: 电荷为e,速度为v的电子在磁感应强度为B的磁场中运动时,运动方程为: B V e dt V m d r r r ×?=)( ……(1) 电子在垂直于均匀磁场的平面中运动时,上式化为: mV 2/R=eVB → P=mV=eBR ……(2) P 为电子动量,R 为电子运动轨道的曲率半径。基于(2)式P 和BR 的关系,在磁谱仪中常以BR 值表示电子的动量,对应不同的B 值和R 值可以对应不同的电子动量,可见β磁谱仪是一个可进行动量分析的仪器。 实验的基本思想是以高速电子即β-粒子作为实验对象,验证其动能与动量符合相对论关系式, 从而验证爱因斯坦相对论的基本理论及其推论的正确性。 经典力学中的动能与动量的关系式为E k =p 2c 2/2m 0c 2 ……(3),而在相对论下推得的动能与动量的关系式为E k =E - E 0=(P 2c 2 + m 02c 4)1/2 - m 0c 2 ……(4)。只需通过实验测出高速电子的动量与动能,并依此作出E k -Pc 图,将其与经典力学下的E k -Pc 图进行比较,从而得出实验的结论 。 实验装置: (1)真空、非真空半圆聚焦B磁谱仪; (2) β放射源90Sr—90Y (强度≈ 1毫居里) , 定 标用γ放射源137Cs和60Co (强度≈ 2微居 里) ; (3) 200um Al窗NaI(Tl)闪烁探头; (4) 数据处理计算软件,计算机; (5) 高压电源、放大器、多道脉冲幅度分析器。 实验结果: (1) 能量定标: 表一 能量定标数据 E/MeV 0.184 0.662 1.17 1.33 CH 87 314 557 630

大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验实验报告 碰撞和动量守恒 班级:信息1401 姓名:龚顺学号:201401010127 【实验目的】: 1 了解气垫导轨的原理,会使用气垫导轨和数字毫秒计进行试验。 2 进一步加深对动量守恒定律的理解,理解动能守恒和动量守恒的守恒条件。 【实验原理】 当一个系统所受和外力为零时,系统的总动量守恒,即有 若参加对心碰撞的两个物体的质量分别为m1和m2 ,碰撞前后的速度分别为V10、V20和V1 、V2。 1,完全弹性碰撞在完全弹性碰撞中,动量和能量均守恒,故有: 取V20=0,联立以上两式有: 动量损失率: 动能损失率: 2,完全非弹性碰撞 碰撞后两物体粘在一起,具有相同的速度,即有: 仍然取V20=0,则有: 动能损失率:

动量损失率: 3,一般非弹性碰撞中 一般非弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数: 两物体碰撞后的分离速度比两物体碰撞前的接近速度即恢复系数。当V20=0时有: e的大小取决于碰撞物体的材料,其值在0~1之间。它的大小决定了动能损失的大小。 当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞;0

几个狭义相对论验证试验的重新分析

几个狭义相对论验证实验的重新分析 尽管相对论解释了许多实验,但是否揭示了导致实验的本质原因,需要继续研究.1971年美国科学家在地面将精度为0.000000001秒的铯原子钟对准,把其中4台原子钟放到喷气式飞机上绕地球一圈,然后返回地球与地面上静止的原子钟比较,结果是绕了地球一圈的这4个原子钟比地面上的慢了59毫微秒(0.000000059秒),与广义相对论的计算结果误差为10%.后来将这个实验的喷气式飞机换成宇宙飞船,实验数据更接近广义相对论的计算结果.物理学家曾经利用原子钟高速运动时钟减缓寿命的延长,说明狭义相对论的正确,笔者认为这是不妥的.因为原子钟在高速运动过程中,地面上的时钟相对于它也在高速运动,为什么地面上的时钟不减缓呢?因为原子钟在实验中有一定的飞行高度,在飞行过程中实际是变速运动,加速运动的物体可以产生引力场,根据广义相对论引力场中时间延缓,所以对此应当重新分析.引力场强度不变,时钟的快慢不变,强度变大,时钟延缓,反之时钟加速.1971年,为了验证相对论的时间变化,美国进行了原子钟环球飞行实验,其结果是:时钟向东飞行时慢了59×10-9,往西飞行时快了273×10-9 .广义相对论的计算值与实验结果有一定的偏差(尤其钟快现象).总之,在实验中的三组原子钟相互看来,实验中既有“动钟变慢”现象,也有“动钟变快”现象. 一般认为,来自外层空间的宇宙线轰击地球大气,产生了大量的μ介子,这些μ子具有很宽的能量范围,飞行速度有大有小,高能量的μ子速度非常接近光速c ,可大于0.9954c.μ子寿命很短暂,产生后会很快衰变掉,各个μ子的实际寿命有长有短,但是当我们统计群体μ子的平均寿命时发现,其平均寿命是恒定的.一群μ子衰变掉一半所需的时间,称为半衰期,常被用作寿命的标志,大量的实验统计出静止μ子的半衰期T = 1.53×10-6秒,恒定不变.在μ子和介子实验中,μ子和介子作有加速的圆周运动,实验证实作这样运动的μ子和介子的平均寿命大于静止μ子和介子的平均寿命.因为1963年的一次实验中,人们在高1910米的山顶上,测量铅直向下的速度在0.9950C ~0.9954C 之间的 μ- 子数目,每小时平均有563 ± 10个;然后在离海平面3米高的地方测量相同速度的 μ- 子数目,平均每小时408 ± 9个. μ- 子从山顶运动到海平面所需时间应为:()()s s m m 68 106.41030.995231910t -?=??-=. 这是静止 μ- 子半衰期()21T 的4倍多,如果高速运动的 μ- 子半衰期和静止时相等的话,人们预期在飞行经过1907米距离后,在海平面附近的 μ- 子数应不到 352 5634≈个.而当时实际测量却有408个,这清楚地表明,运动着

验证相对论关系实验报告

验证相对论关系实验报告 Prepared on 22 November 2020

验证快速电子的动量与动能的相对论关系实验报告 摘要:实验利用β磁谱仪和NaI(Tl)单晶γ闪烁谱仪,通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系。同时介绍了β磁谱仪测量原理、NaI(Tl)单晶γ闪烁谱仪的使用方法及一些实验数据处理的思想方法。 关键词:电子的动量电子的动能相对论效应β磁谱仪闪烁记数器。 引言: 经典力学总结了低速的宏观的物理运动规律,它反映了牛顿的绝对时空观,却在高速微观的物理现象分析上遇见了极大的困难。随着20世纪初经典物理理论在电磁学和光学等领域的运用受阻,基于实验事实,爱因斯坦提出了狭义相对论,给出了科学而系统的时空观和物质观。为了验证相对论下的动量和动能的关系,必须选取一个适度接近光束的研究对象。β-的速度几近光速,可以为我们研究高速世界所利用。本实验我们利用源90Sr—90Y射出的具有连续能量分布的粒子和真空、非真空半圆聚焦磁谱仪测量快速电子的动量和能量,并验证快速电子的动量和能量之间的相对论关系。 实验方案: 一、实验内容 1测量快速电子的动量。 2测量快速电子的动能。 3验证快速电子的动量与动能之间的关系符合相对论效应。 二、实验原理 经典力学总结了低速物理的运动规律,它反映了牛顿的绝对时空观:认为时间和空间是两个独立的观念,彼此之间没有联系;同一物体在不同惯性参照系中观察到的运动学量(如坐标、速度)可通过伽利略变换而互相联系。这就是力学相对性原理:一切力学规律在伽利略变换下是不变的。 19世纪末至20世纪初,人们试图将伽利略变换和力学相对性原理推广到电磁学和光学时遇到了困难;实验证明对高速运动的物体伽利略变换是不正确的,实验还证明在所有惯性参照系中光在真空中的传播速度为同一常数。在此

就目前的实验验证来说量子力学与广义相对论谁是最精确的物理学分支

就目前的实验验证来说,量子力学与广义相对论谁是最精确 的物理学分支? 【芦苇声的回答(35票)】: 要破题,首先要准确定义什么叫「精确」。 对「精确」的理解,一般来说有三种: 能测量到的效应最小、最微弱;实验结果与理论预言值偏差最小;实验本身的误差(统计误差+系统误差)最小。如果从实验科学的角度出发,我们采取的是第三种理解。这实际上涉及到两个概念:Accuracy(准度)和Precision(精度)。准度描述的是实验的结果和「真值」——真理的值、绝对意义上的真正的值——之间的差距;「精度」描述的是实验结果和统计意义上的「平均值」之间的差距,也就是「不确定度」。这两者的意义是差了十万八千里的,不可混淆。「真值」是客观存在的,比如光速的值,是客观存在的,但人类未必可以准确地得知。以前的科学工作者,一般采用一个广受承认的理论预言值或预测值,作为「真值」,以方便描述实验的准度。但现代科学认为,所有的物理理论都是「有效理论」,都有其适应范围,否定「普适理论」的存在,即使现今的理论未有找到不适用的反例,未必代表以后没有(参见牛顿绝对时空观和狭义相对论的历史)。从这个意义上来说,「精度」比「准度」更适合用来衡量物理学实验的精确性——因为你

不知道你所用的理论是否是「正确的」,失去了标尺,比较也就失去了意义。 那么从这两个概念出发,我们可以判断: 理解1不是个好定义,因为它的精度和准度都有可能很差,比如家用体重秤,以千克为单位可以给你小数点后4位的数字,但误差可能达到500克;理解2定义的是准度,但没有涉及到精度,从上面的讨论中可知,它不是一个好的标准;这是当今实验科学采用的理解。而我们说一个理论「精确」,需要做到两件事: 实验的误差要尽可能地小(理解3意义下)。理论的预言值与实验测量值的差别要尽可能地小。这里有一篇文章: The Most Precisely Tested Theory in the History of Science 作者是Union College in Schenectady, NY的物理系副教授。他介绍了理解1和理解3意义下的两个「最精确」的实验。理解1意义下,相对论胜出,因为它能测量到的效应是 。理解3意义下,QED(量子电动力学)胜出,那就是著名的 实验,测量的是电子的反常磁矩。g是粒子磁矩,狄拉克方程里用g表示,也称为「g因子」。狄拉克方程预言

专地的题目:弹性碰撞、非弹性碰撞动量守恒定律实验

专题:弹性碰撞、非弹性碰撞实验:探究动量守恒定律 学习目标: 1、了解弹性碰撞、非弹性碰撞和完全非弹性碰撞。 2、会用动量、能量的观点综合分析、解决一维碰撞问题。 3、了解探究动量守恒定律的三种方法。 学习过程: 系统不受外力,或者所受的外力为零,某些情况下系统受外力,但外力远小于内力时均可以认为系统的动量守恒,应用动量守恒定律时请大家注意速度的方向问题,最好能画出实 际的情境图协助解题。请规范解下列问题。 一、弹性碰撞、非弹性碰撞: 实例分析1:在气垫导轨上,一个质量为2kg的滑块A以1m/s的速度与另一个质量为1kg、速度为4m/s并沿相反方向运动的滑块B迎面相撞,碰撞后两个滑块粘在一起,求: (1)碰撞后两滑块的速度的大小和方向?系统的动能减少了多少?转化为什么能量? ⑵若碰撞后系统的总动能没有变化,则碰撞后两滑块的速度的大小和方向? 问题一:什么叫做弹性碰撞?什么叫做非弹性碰撞?什么叫做完全非弹性碰撞?碰撞过程中

会不会出现动能变多的情形?

实例分析2 :如图,光滑的水平面上,两球质量均为m,甲球与一轻弹簧相连,静止不动, 乙球以速度v撞击弹簧,经过一段时间和弹簧分开,弹簧恢复原长,求: (1 )撞击后甲、乙两球相距最近时两球球的速度的大小和方向? (2 )弹簧的弹性势能最大为多少? (3)乙球和弹簧分开后甲、乙两球的速度的大小和方向? 思考与讨论:假设物体m i以速度v i与原来静止的物体m2发生弹性碰撞,求碰撞后两物体 的速度V3、V4,并讨论m i=m 2; m 1》m2; m 1《m2时的实际情形。

二、探究动量守恒的实验: 问题二(P4参考案例一)如何探究系统动量是否守恒(弹性碰撞、分开模型、完全非弹性碰撞)? 问题三(P5参考案例二):某同学采用如图所示的装置进行实验. 把两个小球用等长的细线悬挂于同一点,让B球静止,拉起A球,由静止释放后使它们相碰,碰后粘在一起.实验 过程中除了要测量A球被拉起的角度i,及它们碰后摆起的最大角度还需测量哪些 2之外, 物理量(写出物理量的名称和符号)才能验证碰撞中的动量守恒.用测量的物理量表 示动量守恒应满足的关系式. 问题四(P5参考案例三):水平光滑桌面上有A、B两个小车,质量分别是0.6 kg和0.2 kg.A 车的车尾拉着纸带,A车以某一速度与静止的B车碰撞,碰后两车连在一起共同向前运动 碰撞前后打点计时器打下的纸带如图所示?根据这些数据,请通过计算猜想:对于两小车组 成的系统,什么物理量在碰撞前后是相等的?

广义相对论的实验验证

广义相对论的实验验证 (1)厄缶实验 19世纪末,匈牙利物理学家厄缶用扭秤证实了惯性质量与引力质量在极高的精确度下,彼此相等。厄缶实验的设计思想极为简单。扭秤的悬丝下吊起一横杆,横杆两端悬吊着材料不同、重量相同的重物。达到平衡后,使整个装置沿水平旋转180°,若惯性质量与引力质量相等,由于无额外转矩出现,整个装置 将始终保持平衡。最后厄缶以10-9的精度,证实了两种质量的等同。由于利用简单而巧妙的实验得到精度 极高的测量结果,厄缶获得德国格廷根大学1909年度的本纳克(Benecke )奖。 1933年6月20日,爱因斯坦在英国格拉斯哥大学作题为《广义相对论的来源》的讲话,表示他提出等效性原理的当时。并不知道厄缶实验。尽管如此,这并不能贬低厄缶实验的意义,它应该作为全部广义相对论的重要奠基石。鉴于这一实验的精确度直接影响广义相对论理论的可靠性,以后几十年来,人们对这一实验的兴趣有增无减。1960~1966年,狄克(Robert Henry ,Dicke ,1916~)等人为提高厄缶实验的精度,把厄缶的扭秤横杆改成三角形水平框架,又把石英悬丝表面蒸镀铝膜以避免静电干扰,并将整个装 置置于真空容器中,使实验的精度推进了两个数量级,达到(1.3±1.0)×10-11。1972年,前苏联的布拉 金斯基(Braginsky )和班诺夫(Panov )对厄缶实验又做了重大的改进。他们采用电场中的振荡法,旋转 由激光反光光斑记录在胶片上,使实验结果又在狄克的基础上提高了两个数量级,即9×10-13。 (2)水星近日点进动的观测 在经典力学这座坚固的大厦中,牛顿力学犹如擎天大柱,已经经受住了两个世纪的考验。把引力作为力的思想似乎根深蒂固。随着时间的推移,牛顿力学的成功事例在不断地增多。1705年哈雷(Edmund Halley ,1656~1742)用牛顿力学计算出24颗彗星的结果,并指出在1531年、1607年和1688年看到的大彗星,实际上是同一颗,这就是后人所称的哈雷彗星。克雷洛(Alxis Claude Clairaut ,1713~1765)在仔细地研究了哈雷的报告后,又根据牛顿力学计入了木星与土星对彗星轨道的影响,预言人们将在1758年圣诞节观测到这颗彗星,果然它如期而至。后来人们又先后在1801年、1802年、1804年以及1807年发现木星与土星轨道间有四颗小行星,它们的轨道也都与牛顿引力理论的计算结果相符。19世纪40年代,法国的勒威耶(Urbain Jean Jeseph Leverrier ,1811~1877)、英国的亚当斯(John Couch Adems ,1819~1892)分别对天王星的轨道偏差做了计算,由此导致了海王星的发现,这又是牛顿力学的一次辉煌的胜利。 尽管牛顿力学获得一次又一次的巨大成功,人们还是发现有一个现象不能由它得到解释。从1859年起,勒威烈接受了阿拉戈的建议。开始把观测的重点放在众星的微小摄动上。他的观测与计算表明,水星的近日点每百年的进动量大约比牛顿引力理论计算值多出40弧秒。1845年,他提出,水星的反常运动是受到一颗尚未发现的行星的影响,他称这颗行星为“火神星”,但是始终未能从观测中发现这颗火神星。1882年.美国天文学家纽科姆(Simon Newcomb ,1835~1909)对水星的进动又做了更加详细的计算。计算结果表明,水即B 点的进动量应为43″/百年。开始,他认为这是发出黄道光的弥散物质使水星的运动受到了阻尼,后来又有人企图用电磁理论作出解释,但是都没有获得成功。 1915年,爱因斯坦的广义相对论建立后,史瓦西(Karl Sahwarzschild ,1873~1916)很快地找到了球对称引力场情况下的引力场方程解,后来被称为史瓦西解,或史瓦西度规。爱因斯坦认为太阳的引力场适用于史瓦西解,由此应该对水星的近日点进动作出解释。他认为,水星应按史瓦西场中的自由粒子方式运动;其轨迹就是按史瓦西度规弯曲的空间中的测地线。按这种假设计算,水星每公转一周,它的近日点的进动角应为)1(242222 2 e c T a -=πε,其中a 为水星公转轨道的半长轴,e 为椭圆轨道的偏心率,T 为水星年周期。当把水星年折合为地球年以后,计算出水星近日点的近动角为43″/百年。这一结果恰好与纽科姆的结果相符,它不但解决了牛顿引力理论多年的悬案,而且为广义相对论提供了有力的证据,它成为验证广义相对论的三大有名的实验判据之一。 在获得这个实验判据的当时。正是爱因斯坦废除他原来的引力场方程,并建立新的场方程后的不久。

爱丁顿到底有没有验证广义相对论

爱丁顿到底有没有验证广义相对论? 一个教科书中的神话 有一些进入了教科书的说法,即使被后来的学术研究证明是错了,仍然会继续广泛流传数十年之久。“爱丁顿1919年观测日食验证了广义相对论”就是这样的说法之一。即认为爱丁顿通过1919年5月的日全食观测,验证了爱因斯坦广义相对论对引力场导致远处恒星光线偏折的预言。这一说法在国内各种科学书籍中到处可见,稍举数例如下: 理查德·奥尔森等人编的《科学家传记百科全书》“爱丁顿”条这样写道:“爱丁顿……拍摄1919年5月的日蚀。他在这次考察中获得的结果……支持了爱因斯坦惊人的预言。”著名的伽莫夫《物理学发展史》、卡约里《物理学史》中都采用同样的说法。在非物理学或天体物理学专业的著作中,这种说法也极为常见,比如在卡尔·齐默所著《演化:跨越40亿年的生命纪录》一书中,为反驳“智能设计论”,举了爱因斯坦广义相对论对引力场导致远处恒星光线偏折的预言为例,说“智能设计论”无法提出这样的预言,所以不是科学理论。作者也重复了关于爱丁顿在1919年日食观测中验证了此事的老生常谈。这个说法还进入了科学哲学的经典著作中,波普尔在著名的《猜想与反驳》一书中,将爱丁顿观测日食验证爱因斯坦预言作为科学理论预言新的事实并得到证实的典型范例。他说此事“给人以深刻印象”,使他“在1919~1 920年冬天”形成了著名的关于“证伪”的理论。爱丁顿验证了广义相对论的说法,在国内作者的专业书籍和普及作品中更为常见。 长高的秘诀 有效增高 这个被广泛采纳的说法从何而来的呢?它的出身当然是非常“高贵”的。例如我们可以找到爱丁顿等三人联名发表在1920年《皇家学会哲学会报》(Philosophical Transactions of the Royal Society)上的论文,题为《根据1919年5月29日的日全食观测测定太阳引力场中光线的弯曲》,作者在论文最后的结论部分,明确地、满怀信心地宣称:“索布拉尔和普林西比的探测结果几乎毋庸置疑地表明,光线在太阳

广义相对论的实验验证

4、引力红移问题 由于采用穆斯堡尔效应,科学家在实验室中验证了引力红移。庞德(R.V..Pound )与瑞布卡(G .A .Rebka )哈佛塔的著名实验证明了引力场可以使光子产生蓝移。从而间接地证明了Einstein 广义相对论的引力红移的存在。这个实验运用光子在地面重力场中的能量守恒关系得出方程 )1(2 0c gh +=νν. 其中0ν是光子在塔顶的频率,ν是光子经过重力场后到达塔底的 频率,h 为塔高,g 为重力加速度。从上式可以看出光子频率的变化与它在引力场中运动的距离有关。在这个实验中,假设我们在塔顶与地面之间设定几个不同的测量点,根据上式,光子在这些不同的点上应当有不同的频率。1960年,哈佛大学的物理学家以千分之一的精度测出了沿垂向下落23米的伽玛射线的频率移动(伽玛射线是一种高能电磁辐射)。从1976年起.超稳定即精确度为一千万亿分之—的钟被放到了高空飞机上,那里的引力比地面上减弱的程度应当可以测量出来。这种飞行的电磁钟与在地面实验室里同样的钟作了比较。二者的速率确有差别,而且与广义相对论预言的结果完全一致。如果一个巨大的物体正好位于地球与恒星之间,那么来自恒星的光线就会受到时空弯曲的影响,它的传播路径就会被扭曲而偏离一定的角度。这种效应还会形成一种有趣的引力透镜现象,它使远处的恒星变得更亮,有时还会形成双像。 广义相对论频移的物理机制,爱因斯坦做出的解释是:“一个原子吸收或发出的光的频率与该原子所处在的引

力场的势有关”;而霍金的解释是“当光从地球引力场往上走,它失去能量,因而其频率下降”。笔者认为——广义相对论频移的本质是时空平权的反映,因为时空弯曲相当于距离的增加,等价于时间的延缓。

2011验证快速电子的动量与动能的相对论关系

验证快速电子的动量与动能的相对论关系 摘要:本实验通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系。同时实验者将从中学习到β磁谱仪测量原理、闪烁记数器的使用方法及一些实验数据处理的思想方法。 关键词:电子的动量电子的动能相对论效应β磁谱仪闪烁记数器 引言:相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论和量子力学是现代物理学的两大基本支柱。经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。狭义相对论提出于1905年,广义相对论提出于1915年[爱因斯坦在1915年末完成广义相对论的创建工作,在1916年初正式发表相关论文]。 本实验通过对快速电子的动量值及动能的同事测定,验证其动能与动量的关系,同时了解半圆聚焦β磁谱仪的工作原理。 实验方案: 一、实验内容 1测量快速电子的动量。 2测量快速电子的动能。 3验证快速电子的动量与动能之间的关系符合相对论效应。 二、实验原理 经典力学总结了低速物理的运动规律,它反映了牛顿的绝对时空观:认为时间和空间是两个独立的观念,彼此之间没有联系;同一物体在不同惯性参照系中观察到的运动学量(如坐标、速度)可通过伽利略变换而互相联系。这就是力学相对性原理:一切力学规律在伽利略变换下是不变的。 19世纪末至20世纪初,人们试图将伽利略变换和力学相对性原理推广到电磁学和光学时遇到了困难;实验证明对高速运动的物体伽利略变换是不正确的,实验还证明在所有惯性参照系中光在真空中的传播速度为同一常数。在此基础上,爱因斯坦于1905年提出了狭义相对论;并据此导出从一个惯性系到另一惯性系的变换方程即“洛伦兹变换”。 洛伦兹变换下,静止质量为m0,速度为v的物体,狭义相对论定义的动量p为:

实验1 动量守恒定律的研究

实验1 动量守恒定律的研究 ――气垫导轨实验(一) 气垫技术是20世纪60年代发展起来的一种新技术,这一新技术克服了物体与运动表面之间的摩擦阻力,减少了磨损,延长了仪器寿命,提高了机械效率。因此,在机械、电子、纺织、运输等领域中得到了广泛的应用,如激光全息实验台、气垫船、空气轴承、气垫输送带等。 气垫导轨(Air track )是采用气垫技术的一种阻力极小的力学实验装置。利用气源将压缩空气打入导轨腔内,再由导轨表面上的小孔喷出气流,在导轨与滑行器(滑块)之间形成很薄的空气薄膜,浮起滑块,使滑块可以在导轨上作近似无阻力的直线运动,为力学实验创造了较为理想的测量条件。在力学实验中,利用气垫导轨可以观察和研究在近似无阻力情况下物体的各种运动规律,极大地减少了由于摩擦力的存在而出现的较大误差,大大提高了实验的精确度。利用气垫导轨和光电计时系统,许多力学实验可以进行准确的定量分析和研究,使实验结果接近理论值,实验现象更加真实、直观。如速度和加速度的测量,重力加速度的测定,牛顿运动定律的验证,动量守恒定律的研究,谐振运动的研究,等等。 动量守恒定律是自然界的一个普遍规律,不仅适用于宏观物体,也适用于微观粒子,在科学研究和生产技术方面都被广泛应用。本实验通过两个滑块在水平气垫导轨上的完全弹性碰撞和完全非弹性碰撞过程来研究动量守恒定律。 【实验目的】 1.了解气垫导轨的基本构造和功能,熟悉气垫导轨的调节和使用方法。 2.了解光电计时系统的基本组成和原理,掌握电脑通用计数器的使用方法。 3.用观察法研究完全弹性碰撞和完全非弹性碰撞的特点。 4.验证动量守恒定律,学会判断实验是否能够验证理论的基本方法。 【实验原理】 1.碰撞与动量守恒定律 如果某一力学系统不受外力,或外力的矢量和为零,则系统的总动量保持不变,这就是动量守恒定律。 在一直线上运动的两个物体,质量分别为1m 和2m ,在水平方向不受外力的情况下发生碰撞,碰撞前的运动速度为10v 和20v ,碰撞后的运动速度为1v 和2v ,则由动量守恒定律可得 2211202101v m v m v m v m +=+ (1) 实验中利用气垫导轨上两个滑块的碰撞来研究动量守恒定律。 2.完全弹性碰撞 完全弹性碰撞的特点是碰撞前后系统的动量守恒,机械能也守恒。如图1所示,如果在两个滑

引力波大发现,验证了爱因斯坦的广义相对论

进入黑洞就意味着连光都没法逃逸出来,但在《星际穿越》中,身在黑洞之中的男主角通过引力波穿越时间和空间的维度给女儿传递了摩斯电码。如今,这种现象终于被证实存在。 “我们检测了引力波。我们做到了!” 美国东部时间2016年2月11日10点30分(北京时间23点30分),美国激光干涉引力波天文台(LIGO)执行主任大卫?瑞兹宣布,科学家们寻找引力波的努力终于收获成果,这距离1916年爱因斯坦预言引力波存在刚好一百年。 爱因斯坦再次“封神”,引力波是加速中的质量在时空中所产生的波动,也被比喻为时空“涟漪”。爱因斯坦在1916年提出广义相对论,认为引力是由于质量所引发的时空扭曲所造成,任何有质量的物体加速运动都会对周围的时空产生影响,其作用形式就是引力波。 科学界公认,探测引力波是难度最大的前沿科技之一,也是一项意义极其重大的物理学基础研究。作为爱因斯坦广义相对论中最重要但也一直未被证实的预言,引力波是物理学王冠上最耀眼的一颗明珠,一旦探测成功,将是人类认知史上具有里程碑意义的科学发现。 大卫·瑞兹表示,正如望远镜开辟了现代观测天文学,引力波的发现,开辟了观测宇宙一扇新的窗户。 或许,还能开创一个新的学科,叫引力波天文学。 早在1974年,美国科学家罗素·赫尔斯和约瑟夫·泰勒观测到一个脉冲星与另一个中子星相互绕转组成的双星系统,由于辐射引力波,脉冲星的轨道缓慢地缩小,轨道变化率与相对论的预言高度一致。仅仅是这一间接的证明,就让两位科学家获得了1993年的诺贝尔物理学奖。 引力波在宇宙中无处不在,但非常微弱,只有在超新星爆发、中子星与黑洞等天体相撞的情况下,才会产生足够强烈的引力波。探测到引力波,是对广义相对论的验证。 根据广义相对论,一对黑洞在相互绕转过程中通过引力波辐射而损失能量,逐渐靠近。这一过程持续数十亿年,在最后几分钟里快速演化:两个黑洞以几乎是一半光速的速度碰撞在一起,形成一个质量更大的黑洞。爱因斯坦的质能方程显示,这个过程中一部分质量转化成能量,而这些能量在最后时刻以引力波爆发的形式辐射出去。 五个月前,LIGO真实地捕捉到了这样的信号。这是由距离地球13亿光年之外的两个黑洞合并产生的。两个黑洞的质量大约分别是太阳质量的29和36倍。其中,大约三倍于太阳质量的物质在短短一秒之内被转化成引力波,其功率峰值是整个可见宇宙总功率的50倍。 引力波的探测过程其实相当戏剧而又幸运。在美国华盛顿州和路易斯安那州建造的隶属于美国国家自然基金的两个相似的激光干涉引力波天文台,每个天文台都有两个长达4公里的相互垂直的长臂,激光在真空管道中沿两条长臂来回反射,并发生干涉。一旦有引力波经过,将会使空间发生拉伸和压缩,两个长臂中的激光的干涉现象就将发生变化。但从2002年至2010年的这九年时间里,探测器均无任何收获,这也与周围环境干扰有关,因为仪器过分敏感,大风、火车经过、甚至树木倒下都能造成干扰。 前沿的基础研究,像创业一样,也离不开烧钱,在花费了2亿英镑之后,激光干涉引力波天文台终于完成了升级,于2015年9月18日重新开始工作,它的精度高出三倍,功率增高了十倍,抗干扰的能力也大幅增强。短短数周之内,就探测到了引力波。这其实是一种幸运,因为此次产生引力波的两个黑洞合并的过程,在LIGO的创始人之一,理论物理学家基普.索恩看来,“是人类观测到的除了宇宙大爆炸之外最为剧烈的爆炸。” 朋友圈也炸开了锅,网友们纷纷开启了吐槽模式,有人说,虽然不明觉厉,但还是莫名激动。也有人说,当吾国人民在醉心于抢红包之时,美国的科学家们已经悄悄完成了一项对宇宙研究的超级突破。 中国其实对引力波的探测也有一些小动作,但遗憾的是,主攻引力波的中国本土的中山大学“天琴项目” 至今还没能获得政府部门的立项,而中科院的引力波探测项目日程则被安排在了2050年。

2-2 验证快速电子的相对论效应 实验报告

近代物理实验报告 指导教师:得分: 实验时间:2010 年 3 月31 日,第五周,周三,第5-8 节 实验者:班级材料0705 学号200767025 姓名童凌炜 同组者:班级材料0705 学号200767007 姓名车宏龙 实验地点:综合楼507 实验条件:室内温度℃,相对湿度%,室内气压 实验题目:验证快速电子的相对论效应 实验仪器:(注明规格和型号) 本实验的装置主要由以下部分组成:β放射源;半圆聚焦β磁谱仪;真空室;NaI闪烁探头;高压电源;放大器;多道脉冲幅度分析器;微机与数据处理软件;γ放射源(各部如下图所示) 1. β放射源 β-28.6aβ-64.1h 本实验中选用90Sr-90Yβ放射源,其衰变链为:90Sr 90Y 90Zr

2. 半圆聚焦β磁谱仪 β源射出的高速β例子经过准直后垂直射入一均匀磁场中, 粒子因受到与运动方向垂直的洛仑兹力作用而做圆周运动。 粒子做圆周运动的方程为: B e dt dp ?-=ν 而将这个微分式逆推, 可以得到粒子运动的动量表达式: eB x eBR p ??= =21 R 为粒子运动的轨道半径。 这样, 有放射源射出的不同动量的β粒子, 经过磁场后, 其出射位置各不相同。 因此在不同的地方探测到β粒子的动量, 再由探测器测得该处电子的动能, 便可以将同一状态下电子的动量和动能进行比较。 3. 真空室 真空室的作用是为了出去空气对β粒子运动的影响。 但实验中由于密封真空室的塑料薄膜存在, 会致使电子穿过是动能严重损失, 因而需要进行动能修正。 实验中仅对粒子进行一次动能修正。 4. NaI 探测器 NaI 探测器主要由NaI 闪烁晶体和光电倍增管以及相应的电子线路构成。 当射线进入闪烁体时, 在某一点产生次级电子, 随后这个电子在光电倍增管的级联放大作用下产生大量的电子, 这些电子会在阳极负载上建立起电信号, 并由电路将电信号传输到电子学仪器中去。 5. 高压电源、 线性放大器、 多道脉冲幅度分析器 高压电源和线性放大器为探头提供其工作时所需的高压和低压电源; 并将接受探头传输过来的包含入射粒子能量信息的电脉冲信号放大; 将放大信号传输给脉冲分析器。 单道脉冲幅度分析器时分析射线能谱的一种仪器。 其功能是将线性脉冲放大器输出的脉冲按幅度分类。 在实验中实际测量能谱时, 我们保持道宽ΔV 不变, 逐点增加V 值, 这样就可以绘出整个谱形。 而道位数值就与射线的动能成线性关系, 如果找到这种线性关系, 那么就可以用道位数来替代计算射线粒子的动能。 多道脉冲幅度分析器的特点是能够同时对不同幅度的脉冲进行计数, 一次测量同时得到整个能谱曲线。 6. γ放射源及定标 单能电子的能量与峰道位数成线性关系: E=a*CH+b 实验中可以利用γ光子与NaI 晶体相互作用所产生的一个反散射峰与三个光电峰来分别测出其峰道位数, 并应用最小二乘法确定系数a 和b , 成为能量定标。 下页图所示为定标源137Cs 和60 Co 的能谱图

相对论的验证

相对论的验证

用-β粒子验证相对论动量—能量关系 学 号:0810130956 姓名:刘荣沛 实验日期:2010.9.14 指导老师:王引书 摘要本实验中我们通过测算90 Sr-9039Y源衰变 38 产生的β-粒子的动能和动量来比较经典理论和相对论的异同,从而验证相对论的正确性。β-粒子的能量我们利用能谱仪及多道分析器进行测定,在测定之前还需要利用137Cs和60Co对多道分析器 进行定标,确定粒子能量和微机多道数之间的关 系(E a bn =+),从而可以算出不同道数的对应β-粒子的能量。β-粒子的动量我们通过磁谱仪测出。 关键词β-粒子相对论能量动量 一、引言 爱因斯坦狭义相对论揭示了高速运动物体的运动规律,创立了全新的时空观,给出了质量对速度的依赖关系、能量与质量的普遍联系等一系列重要结果。狭义相对论已应用于近代物理各个领域,原子核物理和粒子物理更是离不开狭义

相对论。本实验的目的是通过同时测量速度接近光速的β-粒子的动量和动能,证明牛顿力学只适用于低速运动的物体,当物体的运动速度接近光速时,必须使用相对论力学,同时学习带电粒子特别是β-粒子与物质的相互作用,学习β磁谱仪和β闪烁谱仪的测量原理和使用以及其他核物理的试验方法和技术。 二、原理 1、牛顿力学动量与动能之间的关系 牛顿的经典力学总结了低速物体的运动规律,也反映了牛顿的绝对时空观。在不同的惯性参考系中观察同一物体的一切运动学量(坐标、速度)都可以用伽利略变换而相互联系,而在任何惯性参照系中其动力学量(加速度、质量)都相同,一切力学规律(牛顿定律、守恒定律)的表达式在所有的惯性系中都相同。这就是伽利略力学相对性原理:一切力学规律在伽利略变换下是不变的。 在牛顿力学中,任何物体的质量 m都是一个常 量。当其以速度v运动时,其动量和动能的值p和E分别用下列两式表示 k

动量守恒定律实验复习题

m1 m2 P M N 0` 姓名 动量守恒实验期末复习 一、实验目的:1、研究碰撞(对心正碰)中的动量守恒;2、培养学生的动手实验能力和探索精神 二、实验器材 斜槽轨道(或J2135-1型碰撞实验器)、入射小球m 1和被碰小球m 2、天平(附砝码一套)、游标卡尺、毫米刻度尺、白纸、复写纸、圆规、小铅锤 注意: ①选球时应保证入射球质量m 1大于被碰小球质量m 2,即m 1>m 2,避免两球落点太近而难找落地点; ②避免入射球反弹的可能,通常入射球选钢球,被碰小球选有机玻璃球或硬胶木球。 ③球的半径要保证r 1=r 2(r 1、r 2为入射球、被碰小球半径),因两球重心等高,使碰撞前后入射钢球能恰好由螺钉支柱顶部掠过而不相碰,以免影响球的运动。 三、实验原理 测质量的工具: 测速度的方案: 由于入射球和被碰小球碰撞前后均由同一高度飞出做平抛运动,飞行时 间相等,若取飞行时间为单位时间,则可用相等时间内的水平位移之比代替 水平速度之比。 注意:如图所示,根据平抛运动性质,入射球碰撞前后的速度分别为 v 1=t OP ,v 1`=t OM ,被碰小球碰后速度为v2`=t N O t OO ON ``=- 被碰小球碰撞前后的时间仅由下落高度决定,两球下落高度相同,时间 相同,所以水平速度可以用水平位移数值表示,如图所示;v 1用OP 表示;v′1 用OM 表示,v′2用O`N 表示,其中O 为入射球抛射点在水平纸面上的投影, (由槽口吊铅锤线确定)O′为被碰小球抛射点在水平纸面上的投影,显然明确上述表示方法是实验成功的关键。 于是,上述动量关系可表示为:m 1·OP= m 1·OM+m 2·(ON-2r),通过实验验证该结论是否成立。 三、实验步骤 (1)将斜槽固定在桌边使末端点的切线水平。 (2)让入射球落地后在地板上合适的位置铺上白纸并在相应的位置铺上复写纸。 (3)用小铅锤把斜槽末端即入射球的重心投影到白纸上O 点。 (4)不放被碰小球时,让入射小球10次都从斜槽同一高度由阻止开始滚下落在复写纸上,用圆规找出 落点的平均位置P 点。 (5)把入射球放在槽口末端露出一半,调节支柱螺柱,使被碰小球与入射球重心等高且接触好,然后 让入射球在同一高度滚下与被碰小球碰10次,用圆规找出入射球和碰小球的平均位置M 、N 。 (6)用天平测出两个球的质量记入下表,游标卡尺测出入射球和被碰小球的半径r 1和r 2,在ON 上取 OO`=2 r ,即为被碰小球抛出点投影,用刻度尺测出其长度,记录入表内。 (7)改变入射球的高度,重复上述实验步骤,再做一次。 注意:①重做实验时,斜槽、地板上白纸的位置要始终保持不变; ②入射球的高度要适宜,过高会使水平速度偏大,致使落地点超越原地白纸;过低会使碰撞前后速度偏小,使落地点彼此靠近分不清,测量两球的水平位移分度不大。

相关文档
最新文档