六年级数学总复习主要知识点
小学六年级数学总复习知识点归纳大全

小学六年级数学总复习知识点归纳大全小学六年级数学总复习知识点归纳一、常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数二、小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a 2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高) 面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高) 面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高) 面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积C:周长л d=直径r=半径) (1)周长=直径×л=2×л×半径C=лd=2лr (2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长) (1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径) 体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)三、常用单位换算1、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=__平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米2、体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分3、时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒4、基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
六年级数学总复习必背知识

六年级数学总复习必背知识一、数与代数1、自然数包括正整数和0,所以最小的自然数是0,没有最大的自然数。
2、计数单位是指:个、十、百、千、万、十万、百万、千万、亿…等等。
3、每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、能被2整除的数叫做偶数。
0也是偶数。
不能被2整除的数叫做奇数。
5、一个数,如果只有1和它本身两个约数,这样的数叫做质数,如2、3、6、7、11、13等等;一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、10都是合数。
6、最小的自然数是0,最小的质数是2,最小的合数是4。
公因数只有1的两个数叫做互质数。
7、为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
如1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。
8、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:1302490015省略亿后面的尾数是13 亿。
9、四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
10、商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
11、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
12、分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
13、比、比例、比例尺、百分数的后面不能带单位。
二、运算法则(小数、分数和整数的运算法则一样)1、同级运算,从左往右。
加和减是第一级运算,乘和除是第二级运算2、两级运算,乘除优先,加减在后。
3、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。
三、运算定律(总共5个,加法2个,乘法3个)1、加法交换律:两个数相加,交换加数,它们的和不变a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘,交换因数的位置它们的积不变,a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)5、乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c四、运算性质1、减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)2、除法的性质:从一个数里连续除去几个数,可以从这个数里除去所有除数的积,商不变,即a÷b÷c=a÷(b×c)3、被减数-减数=差,被除数÷除数=商。
六年级数学基础知识点总结

六年级数学基础知识点总结小学六年级数学总复习学问点1.1整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,??,叫做负整数3.零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,假如除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2因数和倍数1.假如整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.在正整数中(除1外),与奇数相邻的两个数是偶数3.在正整数中,与偶数相邻的两个数是奇数4.个位数字是0,5的数都能被5整除5.0是偶数1.4素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3.1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数:树枝分解法,短除法1.5公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数4.假如两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.假如两个数是互素数,那么这两个数的最大公因数是数学学习方法技巧一、明确教学目标,制订复习打算小学毕业班数学总复习学问容量多、时间跨度大,所学学问的遗忘率高,复习之前老师必需再次钻研教材,进一步了解教材的学问内容和编排特点,还要重新学习《数学课程标准》,把握好教学要点和数学学问重点,并对学生驾驭学问的状况全面摸底,然后确定复习目标,制定复习打算,主要包括:复习的内容要点,分几节课完成,设计好每节课的内容和目标。
六年级数学重点知识归纳总结

六年级数学重点知识归纳总结
一、分数乘法
1. 分数乘法的意义:乘法的意义是求相同加数的和的简便运算,分数乘法的意义可以理解为求几个相同分数的和。
2. 分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
3. 分数混合运算的顺序:先算乘法和除法,再算加法和减法。
二、分数除法
1. 分数除法的意义:分数除法的意义可以理解为已知两个因数的积与其中一个因数,求另一个因数的运算。
2. 分数除法的计算法则:除以一个数等于乘上这个数的倒数。
3. 分数混合运算的顺序:先算乘法和除法,再算加法和减法。
三、百分数
1. 百分数的意义:百分数表示一个数是另一个数的百分之几。
2. 百分数与小数的互化:小数点后移两位加百分号,小数化百分数;百分数小数点前移两位去百分号,小数化分数。
3. 百分数与分数的互化:100%等于1;百分之几就是百分之几的分数。
4. 求百分率的方法:用求出的数量除以总数。
5. 百分数应用题:先求出增加或减少的数量,再求出增加或减少后实际的结果,最后求出增加或减少后的百分率。
四、负数
1. 负数的定义:负数是小于0的数。
负数是正数的相反数。
2. 负数的读法:带有负号的数是负数。
如:-3,-等都是负数。
注意:-0不是负数。
3. 负数在生活中的运用:天气预报、存贷款、股市行情等。
4. 正负数在数学中的表示方法:以0为分界点,大于0为正数,小于0为负数。
用+和-来表示正负数。
六年级数学总复习知识点梳理

六年级数学总复习知识点梳理第一部分数与代数一、数的认识1.数的意义和分类数可以分为自然数、整数、正数和负数、分数、百分数和小数。
它们各自有不同的意义和用途。
2.计数单位和数位计数单位包括个、十、百等,以及十分之一、百分之一、千分之一等。
这些单位按一定顺序排列形成数位,是计数的基础。
3.数的大小比较我们可以通过比较数的大小来进行排序和比较大小。
这需要掌握一些比较大小的方法和规则。
4.数的性质分数和小数都有一些基本性质。
例如,分数的分子和分母同时乘或除以相同的数时,分数的大小不变。
而小数的末尾添上或去掉一些数时,小数的大小也不会改变。
5.因数、倍数、质数和合数因数和倍数是相互依存的。
一个数的因数个数是有限的,而倍数的个数是无限的。
最小的质数是2,而最小的合数是4.我们还需要掌握最大公因数和最小公倍数的求法。
二、数的运算1.四则运算的意义四则运算包括加法、减法、乘法和除法。
加法的意义是将两个数合并成一个数,减法的意义是已知两个数的和与其中一个加数,求另一个加数。
整数乘法的意义是求几个相同加数的和,小数乘法和分数乘法的意义也类似。
除法的意义是已知两个因数的积和其中一个因数,求另一个因数。
2.四则运算的法则我们需要掌握四则运算的法则和规则,例如加法和乘法满足交换律和结合律,而减法和除法则不满足交换律和结合律。
在进行运算时,还需要注意数的正负性和小数点的位置等问题。
整数加减法、小数加减法、分数加减法、整数乘法、分数乘法、整数除法、小数除法和分数除法是数学中的基本运算。
四则混合运算中,加法和减法为第一级运算,乘法和除法为第二级运算。
在没有括号的算式中,同一级运算从左往右依次计算;有两级运算时,先做第二级运算再做第一级运算。
在有括号的算式中,要先算小括号里面,再算中括号里面的,最后算大括号里面的。
运用定律可以使计算更简便,如加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律等。
通过运算可以解决实际问题。
六年级数学总复习知识点整理(完整版)

六年级数学总复习知识点整理(完整版)很快就小升初了,数学应该怎样复习呢?小学数学下面整理了六年级数学总复习知识点整理,供你参考。
六年级数学总复习知识点整理第一章数和数的运算一概念1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3 叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a 的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12 其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
小学六年级数学总复习知识点归纳汇总

小学六年级数学总复习知识点归纳汇总小学六年级数学总复习知识点归纳1一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。
百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。
分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。
“%”的两个0要小写,不要与百分数前面的数混淆。
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题:1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙。
求乙比甲少百分之几:(甲-乙)÷甲。
小学六年级数学全册知识点归纳

一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总复习主要知识点(数与代数部分)第一章数与数的运算一概念(一)整数1 、整数的意义自然数与0都就是整数。
像-1,-2,-3……这样的数也叫整数。
2 、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也就是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都就是计数单位。
每相邻两个计数单位之间的进率都就是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b ≠0),除得的商就是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数与约数就是相互依存的。
因为35能被7整除,所以35就是7的倍数,7就是35的约数。
一个数的约数的个数就是有限的,其中最小的约数就是1,最大的约数就是它本身。
例如:10的约数有1、2、5、10,其中最小的约数就是1,最大的约数就是10。
一个数的倍数的个数就是无限的,其中最小的倍数就是它本身。
3的倍数有:3、6、9、12……其中最小的倍数就是3 ,没有最大的倍数。
个位上就是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上就是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的与能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的与能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但就是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也就是偶数。
自然数按能否被2 整除的特征可分为奇数与偶数。
一个数,如果只有1与它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1与它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都就是合数。
1不就是质数也不就是合数,自然数除了1外,不就是质数就就是合数。
如果把自然数按其约数的个数的不同分类,可分为质数、合数与1。
每个合数都可以写成几个质数相乘的形式。
其中每个质数都就是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3与5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数28=2×2×7几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6就是12与1 8的公约数,6就是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1与任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不就是质数的倍数时,这个合数与这个质数互质。
例如:15与7互质,14与7不互质。
两个合数的公约数只有1时,这两个合数互质。
如果较小数就是较大数的约数,那么较小数就就是这两个数的最大公约数。
如果两个数就是互质数,它们的最大公约数就就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、……就是2、3的公倍数,6就是它们的最小公倍数。
如果较大数就是较小数的倍数,那么较大数就就是这两个数的最小公倍数。
如果两个数就是互质数,那么这两个数的积就就是它们的最小公倍数。
几个数的公约数的个数就是有限的,而几个数的公倍数的个数就是无限的。
(二)小数1 小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……在小数里,每相邻两个计数单位之间的进率都就是10。
小数部分的最高分数单位“十分之一”与整数部分的最低单位“一”之间的进率也就是10。
2小数的分类纯小数:整数部分就是零的小数,叫做纯小数。
例如: 0、25 、0、368 都就是纯小数。
带小数:整数部分不就是零的小数,叫做带小数。
例如: 3、25 、5、26 都就是带小数。
有限小数:小数部分的数位就是有限的小数,叫做有限小数。
例如: 41、7 、25、3 、0、23 都就是有限小数。
无限小数:小数部分的数位就是无限的小数,叫做无限小数。
例如: 4、33 ……3、1415926 ……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:∏循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如: 3、555 ……0、0333 ……12、109109 ……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如: 3、99 ……的循环节就是“9 ”, 0、5454 ……的循环节就是“54 ”。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如: 3、111 ……0、5656 ……混循环小数:循环节不就是从小数部分第一位开始的,叫做混循环小数。
3、1222 ……0、03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
例如: 3、777 ……简写作0、5302302 ……简写作。
(三)分数1 分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子与分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分与通分把一个分数化成同它相等但就是分子、分母都比较小的分数,叫做约分。
分子分母就是互质数的分数,叫做最简分数。
把异分母分数分别化成与原来分数相等的同分母分数,叫做通分。
(四)百分数表示一个数就是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数表示的两个数量间的关系,而不就是表示一种数量,所以不带单位名称。
二方法(一)数的读法与写法1、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
3000600(读成“三百万六百”或“三百万零六百”都对2、整数的写法:(略)(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数就是原数的准确数。
例如把1254300000 改写成以万做单位的数就是125430 万;改写成以亿做单位的数12、543 亿。
2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如: 1302490015 省略亿后面的尾数就是13 亿。
3、四舍五入法:要省略的尾数的最高位上的数就是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数就是5或者比5大,就把尾数舍去,并向它的前一位进1。
例如:省略345900 万后面的尾数约就是35 万。
省略4725097420 亿后面的尾数约就是47 亿。
4、大小比较1、比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就瞧最高位,最高位上的数大,那个数就大;最高位上的数相同,就瞧下一位,哪一位上的数大那个数就大。
2、比较小数的大小:先瞧它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……3、比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母与分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化1、小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2、分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留两位小数。
3、一个最简分数,如果分母中除了2与5以外,不含有其她的质因数,这个分数就能化成有限小数;如果分母中含有2与5 以外的质因数,这个分数就不能化成有限小数。
4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5、百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6、分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7、百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除1、把一个合数分解质因数,通常用短除法。
先用能整除这个合数的质数去除,一直除到商就是质数为止,再把除数与商写成连乘的形式。
2、求几个数的最大公约数的方法就是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就就是这几个数的的最大公约数。
3、求几个数的最小公倍数的方法就是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数与商连乘求积,这个积就就是这几个数的最小公倍数。
(五) 约分与通分约分的方法:用分子与分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。