高等代数教案(张禾瑞版)
高等代数(张禾瑞版)教案-第4章线性方程组

第四章 线 性 方 程 组4.1 消元法教学目的:1、掌握线性方程组的和等变换,矩阵的初等变换等概念。
理解线性方程组的和等变换是同解变换,以及线性方程组的初等变换可用增广矩阵的相应的行初等变换代替。
2、熟练地掌握用消元发解线性方程组,以及判断线性方程组有没有解和解的个数。
设方程组:a 11x 1+a 12x 2+…+a 1n x n =b 1; a 21x 1+a 22x 2+…+a 2n x n =b 2; (1) ……………………………… a m1x 1+a m2x 2+…+a mn x n =b m . 1 线性方程组的初等变换: 例1解线性方程组:21 x 1 +31x 2 + x 3=1 (2) x 1+ 35x 2 +3 x 3=32x 1+34x 2+5 x 3=2从第一和第三方程分别减去第二个方程的21倍和2倍,来消去前两个方程中的未知量x 1(即把x 1的系数化为零).我们得到:-21 x 1 -21 x 3= -21 x 1+ 35x 2+3 x 3=3-2 x 2- x 3=-4为了计算的方便,我们把第一个方程乘以-2后,与第二个方程交换,得:x1+35x 2+3x 3= 3 x 2+ x 3= 1 -2x 2- x 3=-4把第二个方程的2倍加到第三个方程,来消去后一方程中的未知量x 2,我们得到:x 1+35x 2+3x 3= 3 x 2+ x 3= 1x 3=-2现在很容易求出方程组的解.从第一个方程减去第三个方程的3倍,再从第二个方程减去第三个方程(相当于把x 3的值-2代入第一和第二个方程),得x 1+35x 2=9 x 2=3 x 3=-2再从第一个方程减去第二个方程的35倍(相当于把x 2的值3代入第一个方程),得 x 1=4x 2=3 x 3=-2这样我们就求出了方程组(2)的解.分析一下以上的例子,我们看到,我们对方程组施行了三种变换: 1) 交换两个方程的位置;2) 用一个不等于零的数乘某一个方程; 3) 用一个数乘某一个方程后加到另一个方程. 我们把这三种变换叫做线性方程组的初等变换. 由初等代数知道,以下定理成立.定理4.1.1 初等变换把一个线性方程组边为一个与它同解的线性方程组. 2 矩阵: 利用线性方程组(1)的系数可以排成如下的一个表:(3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛a aa aa a a a a mn m m n n............ (2)12222111211, 而利用(1)的系数和常数项又可以排成下表:(4) ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛b aaa b a a b a a a b a a a m mnm m nn ............... (2)133231222221111211.定义1 由st 个数c ij 排成一个s 行t 列的表⎪⎪⎪⎪⎪⎭⎫⎝⎛c c c cc c c c c st s s t t212222111211叫作一个s 行t 列(或s ⨯t )矩阵。
高等代数电子教案

定理2.6.4 设f (x)与g (x)是R [x]的两个多项式,它们的次数都 不大于n.若是以R中n + 1个或更多的不同的数来代 替x时,每次所得f (x)与g (x)的值都相等,那么 f (x) = g (x) . 证 令 u (x) = f (x) – g (x) 若f (x)≠g (x), 换一句话说, u (x) ≠0 ,那么u (x)是一个 次数不超过n的多项式,并且R中有n + 1个或更多的 根. 这与定理2.6.3矛盾.
当x = c时f (x)的值 f (c) .
综合除法
设f ( x) a0 x n a1 x n 1 a 2 x n 2 a n 1 x a n , 并且设
(1) 其中
f ( x) ( x c) q ( x) r ,
q( x)b x
0 n 1
.... bn 1
f ( x) a0 a1 x ai x a m x , j n g ( x) b0 b1 x b j x bn x ,
i m
c0 , c1 ,cm n .
由于f (x)和g (x)都是本原多项式,所以p不能整除f (x)
的所有系数,也不能整除g (x)的所有系数.令 ai 和b j各
这样,欲求系数 bk ,只要把前一系数 bk 1 乘以c再加 上对应系数 a k ,而余式的 r 也可以按照类似的规律 求出. 因此按照下所指出的算法就可以很快地陆续 求出商式的系数和余式:
c | a0 b0
a1 cb0 b1
a 2 a n 1 cb1 cbn 2 b2 bn r
比较等式(1)中两端同次项的系数,我们得到
a 0 b0 , a1 b1 cb0 , a 2 b2 cb1 , a n 1 bn 1 cbn 2 , a n r cbn 1 .
高等代数教案设计(张禾瑞版)

1.讲授法。2.讨论法。3.讲练结合
教学内容及
时间安排
§1 一元多项式的定义和运算2学时
§2 多项式的整除性4学时
习题课 2学时
§3 多项式的最大公因式2学时
§4 多项式的分解2学时
习题课 2学时
§5 重因式2学时
§6 多项多函数,多项式的根2学时
习题课 2学时
§7 复数和实数域上多项式2学时
§4 整数的一些整除性质2学时
§5 数环和数域2学时
习题课 2学时
学习指导
1.复习教材和笔记中本章内容。
2.让学生阅读北京师范大学,高等代数 第一章
3.让学生阅读《高等代数辅助教材》 第一章。
作业及思考题
教材第一章习题:第6页:6、7; 第14页:5、10;第18页:1、4、5;
第29页:2、4、5;第25页:3、5。
§8 有理数域上多项式4学时
习题课 2学时
学习指导
1.复习教材和笔记中本章内容。
2.让学生阅读北京师范大学,高等代数 第二章
3.让学生阅读《高等代数辅助教材》 第二章。
作业及思考题
教材第二章复习思考题:第31页:3 ;第38页:5、6、7;第48页:6、7、9、10、11 ;第56页:3、5、6;第59页:3、4、5 ;第65页:4、7、8;第71页:2、3、4、5; 第80页:2、3、4。
教学难点
矩阵运算及运算规则、矩阵可逆条件及求逆矩阵的方法,求矩阵的秩。初等变换与初等矩阵的关系,矩阵乘积的秩和矩阵乘积的行列式。
教学方法
1.讲授法。2.讨论法。3.讲练结合
教学内容及
时间安排
§1 矩阵的运算2学时
习题课 2学时
§2 可逆矩阵,矩阵乘积的行列式4学时
高等代数电子教案(Ⅲ)

进一步,设 f ( x) a0 a1 x an x . 是F上一个多项式,而 L(V ), 以σ代替x,以 a 0 代替 a 0 ,得到V的一个线性变换
n
a0 a1 an n .
这个线性变换叫做当 记作 f ( ).
x 时f (x)的值,并且
7.4 不变子空间 7.5 本征值和本征向量 7.6 可以对角化矩阵
7.1 线性映射
学习内容 线性映射的定义、线性变换的象与核.
§7.1.1 线性映射的定义
设F是一个数域,V和W是F上向量空间. 定义1 设σ是V 到W 的一个映射. 如果下列条 件被满足,就称σ是V 到W 的一个线性映射: ①对于任意 , V , ( ) ( ) ( ). ②对于任意 a F , V , (a ) a ( ) 容易证明上面的两个条件等价于下面一个条件: ③对于任意 a, b F 和任意 , V ,
设 L(v), σ的负变换-σ指的是V到V的映射 : ( ). 容易验证,-σ也是V的线性变换,并且 (4) ( )
线性变换的数乘满足下列算律:
(5) (6) (7) (8)
k ( ) k k , (k l ) k l , (kl) k (l ), 1 ,
f x 与它对应,根据导数的基本性质,这样定义 的映射是F[x]到自身的一个线性映射.
例8 令C[a, b]是定义在[a, b]上一切连续实函数所
成的R上向量空间,对于每一 f x Ca,b, 规定
f x 仍是[a, b]上一个连续实函数,根据积分的
基本性质,σ是C[a, b]到自身的一个线性映射.
高等代数电子教案(Ⅲ)

7.1 线性映射
学习内容 线性映射的定义、线性变换的象与核.
§7.1.1 线性映射的定义
设F是一个数域,V和W是F上向量空间. 定义1 设σ是V 到W 的一个映射. 如果下列条 件被满足,就称σ是V 到W 的一个线性映射: ①对于任意 , V , ( ) ( ) ( ). ②对于任意 a F , V , (a ) a ( ) 容易证明上面的两个条件等价于下面一个条件: ③对于任意 a, b F 和任意 , V ,
进一步,设 f ( x) a0 a1 x an x . 是F上一个多项式,而 L(V ), 以σ代替x,以 a 0 代替 a 0 ,得到V的一个线性变换
n
a0 a1 an n .
这个线性变换叫做当 记作 f ( ).
x 时f (x)的值,并且
例3 令A是数域F上一个m × n矩阵,对于n元列空 间的 F m 每一向量
x1 x2 x n
规定: 是一个m×1矩阵,即是空间 F m的一个向量, σ是 到 F n 的一个线性映射. Fm
例4 令V 和W是数域F 上向量空间.对于V 的每一向 量ξ令W 的零向量0与它对应,容易看出这是V 到 W的一个线性映射,叫做零映射.
令 k ,那么对于任意 a, b F 和任意 , V ,
(a b ) k ( (a b )) k (a ( ) b ( ))
ak ( ) bk ( ) a 的一个线性变换.
如果线性映射 : V W 有逆映射 1 ,那么是W 到V 的一个线性映射. 建议同学给出证明.
张禾瑞高等代数课件第二章

则可以取
qx 0, r x f x
,且 0 f x 0 g x. 把f x 和g (x) (ii)若 f x 0 按降幂书写: f x a0 x n a1 x n1 a n 1 x a n g x b0 x m b1 x m1 bm1 x bm 这里 a0 0, b0 0 ,并且 n
a n 0 时,an x n叫做多项式的首项. 当
惠州学院数学系
2.1.6
多项式的运算性质
定理 设f x 和g (x) 是数环R上两个多项式,并且
f x 0, g x 0 .那么
(i)当 f x g x 0 时,
0 f x g x max 0 f x , 0 g x
(2)
f 由(1), x g x 的次数显然不超过n,另一方面,
由an 0, bm 0得anbm 0 ,所以由(2)得 f x g x
的次数是n + m .
惠州学院数学系
推论1
f x g x 0 f x 0
或 g x 0
证 若是 f x和g (x)中有一个是零多项式,那么由多项
课外学习4:推广的余数定理及算法
课外学习5:代数元的多项式的共轭因子
惠州学院数学系
代数是搞清楚世界上数量关系的工具。 ――怀特黑德(1961-1947) 当数学家导出方程式和公式,如同看到雕像、美丽的 风景,听到优美的曲调等等一样而得到充分的快乐。 - -柯普宁(前苏联哲学家)
快乐地学习数学,优雅地欣赏数学。
式乘法定义得 f xg x 0 . 若是 f x 0且g ( x) 0 那么由上面定理的证明得
高等代数CAI课件张禾瑞郝炳新编第版共51页

11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网),只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
高等代数教案

高等代数教案 The pony was revised in January 2021
高等代数
教案
秦文钊
一、章(节、目)授课计划第页
二、课时教学内容第页
二、课时教学内容第页
一、章(节、目)授课计划第页
二、课时教学内容第页
一、章(节、目)授课计划第页
二、课时教学内容第页
二、课时教学内容第页
二、课时教学内容第页
一、章(节、目)授课计划第页
二、课时教学内容第页
二、课时教学内容第页
一、章(节、目)授课计划第页
二、课时教学内容第页
二、课时教学内容第页
二、课时教学内容第页
一、章(节、目)授课计划第页
二、课时教学内容第页
二、课时教学内容第页
a的代数余子式.称为元素
ij
二、课时教学内容第页
二、课时教学内容第页
一、章(节、目)授课计划第页
二、课时教学内容第页
二、课时教学内容第页
一、章(节、目)授课计划第页
二、课时教学内容第页
二、课时教学内容第页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数教案第一章首页
高等代数教案第二章首页
高等代数教案第三章首页
高等代数教案第四章首页
高等代数教案第五章首页
高等代数教案第六章首页
§ 3 向量的的线性相关性
4学时
§ 4 基和维数
2学时
习题课
2
学时
§ 5 坐标
4学时
§ 6 向量空间的同构
2学时
习题课
2
学时
§ 7 矩阵的秩,齐次线性方程组的解空间。
4学时
习题课与总结
2
学时
1. 复习教材和笔记中本章内容。
学习指导
2. 让学生阅读北京师范大学,高等代数 第六章
3. 让学生阅读《高等代数辅助教材》
第六章。
教材第六章 复习思考题:第
318页:1、3、4、7、 8 ;第 332 页:3、4、
5、 6、9、 10;第 341 页:1、3、5、6、7 ;第
350 页:4、5、6 ;
作业及思考题
第 353页:2、3;第 355页:1、3
教研室审阅意见
高等代数教案第七章首页
高等代数教案第八章首页
高等代数教案第九章首页。