高数有理分式积分法
有理分式积分待定系数法

有理分式积分待定系数法理分式的积分可以使用待定系数法进行求解,具体步骤如下:1. 将有理分式进行部分分式分解。
例如,对于形如$$\frac{N(x)}{D(x)} = \frac{N_1(x)}{D_1(x)} + \frac{N_2(x)}{D_2(x)} + \cdots +\frac{N_k(x)}{D_k(x)}$$的有理分式,其中$N(x)$和$D(x)$分别为分子和分母多项式,$N_1(x)$和$D_1(x)$等为部分分式形式。
2. 根据部分分式的形式进行计算。
对于每一项$\frac{N_i(x)}{D_i(x)}$,可以使用待定系数法进行计算。
若$D_i(x)$的次数大于$N_i(x)$的次数,则可设$\frac{N_i(x)}{D_i(x)} =\frac{A_{i1}}{D_{i1}(x)} + \frac{A_{i2}}{D_{i2}(x)} + \cdots + \frac{A_{im_i}}{D_{im_i}(x)}$,其中$D_{ij}(x)$的次数小于$D_i(x)$的次数。
若$D_i(x)$的次数等于$N_i(x)$的次数,则可设$\frac{N_i(x)}{D_i(x)} = \frac{A_{i1}x +B_{i1}}{D_{i1}(x)} + \frac{A_{i2}x + B_{i2}}{D_{i2}(x)} + \cdots + \frac{A_{im_i}x +B_{im_i}}{D_{im_i}(x)}$。
3. 将部分分式进行通分,整理等式。
4. 将所得等式两边同时积分。
例如,对于每一个部分分式$\frac{A_{ij}x + B_{ij}}{D_{ij}(x)}$,可以通过先对其分子进行展开得到$\frac{A_{ij}x}{D_{ij}(x)} + \frac{B_{ij}}{D_{ij}(x)}$。
然后,可通过分别使用常数乘法法则和有理函数法则进行积分,最终得到对应的积分结果。
有理函数的积分拆分方法

有理函数的积分拆分方法一、前言积分是高等数学中非常重要的概念。
而有理函数则是些基础的函数,其定义域是有理数的多项式函数。
在进行有理函数的积分时,我们有时可以通过拆分的方式,将原式转化为简单的形式,从而使求解变得更加容易。
本文将讨论有理函数的积分拆分方法,特别是常见的分式分解法和部分分式分解法。
二、分式分解法分式分解法是将原有理式拆分成若干个分式相加的形式。
下面我们将介绍一下分式分解法的具体步骤:1.将分母拆分成多项式的积。
例如:$\frac{x^2+2x}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{ B}{x+2}$其中 $A$,$B$ 是待定系数。
2.将原式中的分式分别乘上其对应的除数。
例如:$x^2+2x=A(x+2)+B(x+1)$3.利用待定系数的方法求解 $A$,$B$。
例如:在上式中将 $x$ 替换为 $x=-1$,可以得到 $A=-1$。
在上式中将 $x$ 替换为 $x=-2$,可以得到 $B=2$。
最终得到:$\frac{x^2+2x}{(x+1)(x+2)}=\frac{-1}{x+1}+\frac{2}{x+2}$三、部分分式分解法部分分式分解法则是将有理式模拟成部分分式,之后进行求解。
下面我们将介绍部分分式分解法的具体步骤:1.将分母分解因式。
例如:$\frac{5x-1}{x^2-3x+2}=\frac{5x-1}{(x-1)(x-2)}$2.将各因式拆成单项式。
例如:$\frac{5x-1}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2}$3.用待定系数法求解。
例如:$5x-1=A(x-2)+B(x-1)$4.解得系数 $A$,$B$。
例如:在上式中将 $x=1$,可以得到 $A=-4$。
在上式中将 $x=2$,可以得到 $B=9$。
最终得到:$\frac{5x-1}{x^2-3x+2}=\frac{-4}{x-1}+\frac{9}{x-2}$四、总结:通过上述两种方法,我们可以将有理函数的积分拆分为若干个简单的分式相加。
44有理函数的积分知识讲解

44有理函数的积分知识讲解有理函数意为有理数的函数,即可以表示为$p(x)/q(x)$的函数,其中$p(x)$和$q(x)$均为多项式函数。
有理函数积分是指对有理函数进行积分运算,是高等数学中一个非常重要的内容。
下面将介绍有理函数积分的知识。
一、分式分解要求有理函数的积分,首先要进行分式分解。
分式分解是将一个有理函数分解成多个个简单的有理函数的和的过程,即对于一个形如$p(x)/q(x)$的有理函数进行分解,使得分解式的分母均为一次多项式或既约二次多项式。
分式分解的基本方法是:用二次多项式的因式作分子的一次式,二次多项式必须既约,即无重根。
若$q(x)$的某个根是$k$,则$(x-k)$是$q(x)$的因式;若二次多项式$(x^2+px+q)$有两个不同实根$x_1,x_2$,则分式分解式可写成两个部分的和形式,即分子为$k_1/(x-x_1)$,分母为$(x-x_1)$,分子为$k_2/(x-x_2)$,分母为$(x-x_2)$。
二、基本积分公式有理函数的积分可以根据基本积分公式进行求解。
常用的基本积分公式有以下几种:1. $\int \frac{1}{x} dx = \ln |x| + C$2. $\int \frac{1}{x^2+a^2} dx=\frac{1}{a}\arctan(\frac{x}{a})+C$三、换元积分法针对部分比较复杂的有理函数,可以采用换元积分法进行求解。
具体方法是:先将分式分解为几个部分,其中一个部分是含有根式的二次函数,用$t=\sqrt{x^2+a^2}$进行代换,然后进行简化,并根据基本积分公式计算积分。
四、分步积分法对于含有较多项的有理函数,可以采用分步积分法进行求解。
具体方法是:将原式中的有理函数分解为两个有理函数的和,其中一个有理函数是原式的导数的因式,另一个有理函数则是原式的乘积。
然后,用分部积分法求解原式的积分。
总之,有理函数积分是高等数学中的一个非常重要的内容,可以通过分式分解、基本积分公式、换元积分法和分步积分法进行求解。
高数讲义第四节有理函数的积分全

例9
求积分
1
x
1 xdx x
解 令 1 x t 1 x t2,
x
x
x
t
1 2
, 1
dx
2tdt t2 1
2,
例9
求积分
1
x
1 xdx x
解
令 1 x t x
x
xt2211a12,dxdx
1
2a
ln
x2tdat tx2 a1
2
C,
1 x
1
x
xdx
t
2
1t
t
2
2t
12
dt
2
x
2)
1
A 2x
Bx 1
C x2
解:令:
x
1 (1
x)
2
A x
B 1 x
C (1 x)
2
1 A(1 x)2 B x(1 x) C x
取 x1, 得 C 1; 取 x0, 得 A1;
再取 x 2 , 得 1 (1 2)2 B2(1 2) 2 , B 1 ;
1 x (1 x) 2
t
3
1 t 1
1dt
6
(t
2
t
1
t
1
)dt 1
2t 3 3t 2 6t 6 ln | t 1 | C
2 x 1 33 x 1 36 x 1 6 ln(6 x 1 1) C.
说明 无理函数去根号时, 取根指数的最小公倍数.
例11 求积分
x 3x 1
dx. 2x 1
解 先对分母进行有理化
f (x) 为真分式 , 当 m n 时
f (x) 为假分式
大一高数第四章简单有理函数的积分

b0 , b1 , , bm 都是实数,并且a 0 0 ,b0 0 .
假定分子与分母之间没有公因式
(1) n m , 这有理函数是真分式;
( 2) n m , 这有理函数是假分式; 利用多项式除法, 假分式可以化成 一个多项式和一个真分式之和.
例 难点
1 x x1 x 2 . 2 x 1 x 1
1 dx 例 2 1x
1 1 dx dx 解: 2 1x (1 x)(1 x) 1 1 1 [ ]dx 2 1x 1x
1 [ln | 1 x | ln | 1 x |] C 2 1 1x ln | | C 2 1x
注意:分母拆项是常用的技巧!
x 3 A( x 3) B( x 2), x 3 ( A B ) x ( 3 A 2 B ),
A 5 A B 1, , B 6 ( 3 A 2 B ) 3, x3 5 6 . 2 x 5x 6 x 2 x 3
例. 求
1 d x d ( 解: 原式 2 2 x 1) ( x 1) ( 22 ) 1 x 1 arctan C (P203 公式 (20) ) 2 2
1 练习:求积分 x(x 1) dx.
机动
目录
上页
下页
返回
பைடு நூலகம்
结束
例. 求
解: 原式
1 ( 2 x 2) 3 2 2
如
dx, 使用凑微分法比较简单 . x 1
3
x
2
基本思路
尽量使分母简单——降幂、拆项、同乘等 化部分分式,写成分项积分
可考虑引入变量代换
二、简单无理函数的积分
高数4.4

2.分母是二次质因式的真分式的不定积分
x−2 dx . 例2 求 ∫ 2 x + 2x + 3
解
x−2 1 2x + 2 1 ∫ x 2 + 2 x + 3 dx = ∫ ( 2 x 2 + 2 x + 3 − 3 x 2 + 2 x + 3)dx
三、简单无理函数的积分
例4 求
x −1 ∫ x dx . 解 设 x −1 = u ,于是x=u2+1,dx=2u du ,从而
∫
u x −1 u2 dx = ∫ 2 · 2u du = 2∫ 2 du x u +1 u +1 1 = 2 ∫ (1 − )du 2 1+ u
=2(u殊类型函数的积分 .
一、有理函数的积分
有理函数 真分式的不定积分 分母是二次质因式的真分式的不定积分
二、三角函数有理式的积分 三、简单无理函数的积分 练习
一、有理函数的积分
有理函数的形式:
P( x) a0 x n + a1 x n −1 + L + an −1 x + an = Q( x) b0 x m + b1 x m−1 + L + bm−1 x + bm
33 3 = ( x + 2) 2 − 33 x + 2 + ln | 1 + x + 2 | +C. 2
练习
3x + 1 dx sin 5 x dx. , ( 2) ∫ dx, (3) ∫ 2 求积分: (1) ∫ 4 2 + cos x x − 3x + 2 cos x
有理函数积分法(3)

2
2
( x2 px q)n
dx
类型4
A
2
(x2
2x px
p
q)n dx
(B
p 2
A)
1 ( x2 px q)n dx
A
2
(x2
1 px
q)n d ( x 2
px
q)
(B
p 2
A)
1 ( x2 px q)n dx
A 1 2 1n
(x2
1 px q)n1
(B p A) 2
arctan
x
2 x (1 x2 )2 dx
arctanx
1 2x 2
2 (1 x2 )2
dx
arctanx 1 2
2x (1 x2 )2 dx
2 (1 x 2 )2 dx
arctanx
1 2
1
1 x2
2
1 (1 x 2 )2 dx
15
1 x x2 ( x2 1)2
13
例4
求
1
3
x x
3
dx.
解
1
3
x x
3
dx
(
1
1
x
1
x1 x x2
)dx
1
3
ln1
x
1
x1 x x
2
dx
ln1
x
(2x 1) 2 1 x x2 2dx
ln1
x
1 2
1
2x x
1 x2 dx
3 2
1
1 x
x2 dx
ln 1 x 1 ln1 x x2 3
( x 1)( x 2)2
高数资料(特殊积分法)

t =∫ ⋅ 2 sin t cos t ⋅ d t = −2 ∫ t ⋅ d cos t cos t
= −2t cos t + 2 ∫ cos t ⋅ d t = −2t cos t + 2 sin t + C = −2 1 − x arcsin x + 2 x + C
5 3 2 = ln( x + 2 x + 4) − ∫ 3 2
dx
2
x + 1 1+ 3 5 x +1 3 arctan +C = ln( x 2 + 2 x + 4) − 3 3 2
例2
8 x + 31 2x + 4 dx ⋅ dx = 4 ∫ 2 ⋅ d x+ 15 ∫ 2 ∫ ( x 2 + 4 x + 13)2 ( x + 4 x + 13) 2 ( x + 4 x + 13) 2
1 1 1 = ∫ + ⋅dt 3 3 − t 3 + t 1 3+ t = ln +C 3 3−t
x 1 3 + tan 2 = ln +C x 3 3 − tan 2
例 6 解一
1 ∫ sin 4 x dx .
x u = tan , 2
2u sin x = , 2 1+ u
2 2
1 3 = − cot x − cot x + C . 3 结论 比较以上三种解法, 比较以上三种解法 便知万能置换不一定是最佳 方法, 故三角有理式的计算中先考虑其它手段, 方法 故三角有理式的计算中先考虑其它手段 不得已才用万能置换. 不得已才用万能置换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机动 目录 上页 下页 返回 结束
例6. 求
( x 2 x 2) (2 x 2) dx 解: 原式 2 2 ( x 2 x 2)
2
dx d( x 2 2 x 2) 2 2 ( x 1) 1 ( x 2 x 2) 2
1 arctan(x 1) 2 C x 2x 2
故
5 6 原式 x2 x 3
10
机动 目录 上页 下页 返回 结束
(3) 混合法
1 Bx C A 2 (1 2 x)(1 x ) 1 2 x 1 x 2
4 A (1 2 x) 原式 1 x 2 5 4 1 C 5 1 4 BC 6 15 2
例. 求
A(cos x sin x) B(cos x sin x) ( A B) cos x ( A B) sin x 令 a cos x b sin x A B 3 比较同类项系数 x d sin x) , B(c A 1,B 2 x) 故 cos x d sin A(c cos A B 1 d(cos x sin x) ∴ 原式 dx 2 cos x sin x
16
机动 目录 上页 下页 返回 结束
dx 例7. 求 4 x 1 1 ( x 2 1) ( x 2 1) 解: 原式 dx 4 2 x 1
1 2
1 x2 2 x 12 x
1
1 dx 2
1 x2 2 x 12 x
1
注意本题技巧
dx
按常规方法较繁
1
2t
2t 1t 2
1t 2 ) 2 (1 1t 1t 2
22 1 t
1 1 dt t 2 2 t
dt
1 1 2 t 2t ln t C 2 2
1 2x x x 1 tan tan ln tan C 4 2 2 2 2
x2 p x q ( x )( x ) 其中B1 , Bk , C1 , Ck 为待定系数.
4
机动 目录 上页 下页 返回 结束
P( x) 都可分解成若干个 根据上述的结论,一个真分式 Q( x)
简单分式之和,而这些简单分式不外乎为以下四种类型:
A (1) xa A (2) (k 2,3, 4 ) k ( x a)
1 4 2x 1 原式 = 5 1 2x 1 x2
11
机动 目录 上页 下页 返回 结束
2 B 5 1 C 5
例2. 求 解: 已知
1 1 4 2x 1 2 2 (1 2 x)(1 x ) 5 1 2 x 1 x 1 x 2
x ln cos x sin x C a cos x b sin x dx 的积分. 说明: 此技巧适用于形为 c cos x d sin x
解: 令 3 cos x sin x
二 、可化为有理函数的积分举例
1. 三角函数有理式的积分 设
表示三角函数有理式 , 则
R(sin x , cos x) dx
求四种类型的不定积分:
A (1) dx A ln | x a | C xa A A (2) dx ( x a) k 1 C (k 2,3, 4, ) ( x a)k k 1 Ap (B )dx Ax B A d ( x 2 p x q) 2 (3) 2 dx 2 p 2 p2 2 x pxq x pxq ( x ) (q ) 2 4
的分式.(其中A、a、M、N、p、q为常数)
3
机动 目录 上页 下页 返回 结束
P( x) ( P( x), Q( x) 无公因子)都可 定理. 任何一个真分式 Q( x)
分解成若干个简单分式之和,并且 (1) 若Q(x)=0有k重实根a (即把Q(x)在实数范围内因式分 解,含有 ( x a)k 因子), 则分解时必含有以下的分式:
Ax B (3) 2 ( p 2 4q 0) x pxq Ax B (4) 2 ( p 2 4q 0, k 2,3, 4 ) ( x p x q)k
于是,求任何一个真分式的不定积分问题,也就转化为求
以上四种类型的不定积分.
5
机动 目录 上页 下页 返回 结束
t x 2
A Ap dt p2 2 k 1 a q ( x p x q) ( B ) 2 2 k Ik 4 2(k 1) 2 (t a )
四种类型的不定积分 都为初等函数
上一节例9 1 t 2 n 1 I k 1 2 n a 2 (t 2 a 2 ) n 2 n a 2 I k I 1 arctan t C 1 a a
9
机动 目录 上页 下页 返回 结束
(2) 用赋值法
x3 x3 A B 2 x 5 x 6 ( x 2)( x 3) x 2 x 3
x3 A (x 2) 原式 5 x 2 x 3 x 2 x3 6 B (x 3) 原式 x 3 x2 x 3
第四节 有理函数的积分
第四章
• 基本积分法 : 直接积分法 ; 换元积分法 ; 分部积分法
• 初等函数
求导
积分
初等函数
本节内容: 一、有理函数的积分 二、可化为有理函数的积分举例
1
机动 目录 上页 下页 返回 结束
有理函数 rational function 真分式 假分式 proper fraction improper fraction
7
机动 目录 上页 下页 返回 结束
有理函数的不定积分: 有理函数
相除
多项式 + 真分 式
分解
若干部分分式之和 其中部分分式的形式为
A MxN 2 ; ( k N , p 4q 0 ) k 2 k ( x a) ( x p x q)
结论: 有理函数的不定积分为初等函数.
8
机动 目录 上页 下页 返回 结束
例1. 将下列真分式分解为部分分式 :
解: (1) 用拼凑法
1 x ( x 1) 2 x( x 1) x( x 1) 2
1 1 2 ( x 1) x( x 1)
1 x ( x 1) 2 x( x 1) ( x 1) 1 1 1 2 x 1 x ( x 1)
一、 有理函数的积分
有理函数:
a0 x a1x P( x) R( x) Q( x)
n
n1
an
为真分式.
m n 时,
为假分式; m n 时,
简单分式: 形如
A MxN ; ( k N , p 2 4q 0 ) k 2 k ( x a) ( x p x q)
A 2 B AP 2x p 2 ln( x p x q) arctan C 2 4q p 2 4q p 2
6
机动 目录 上页 下页 返回 结束
求四种类型的不定积分:
Ap (B )dx Ax B A d ( x 2 p x q) 2 (4) 2 dx 2 p 2 p2 k 2 ( x p x q)k ( x p x q)k [( x ) (q )] 2 4p
1 1 2 ( x 1 )2 2 2 ( x 1 )2 2
x x
d( x 1 ) x
d( x 1 ) x
(见P348公式21)
1 2 2
arctan
x1 x
1 1 C ln 2 22 2 x1 2 x
17
常规 目录 上页 下页 返回 结束
x1 2 x
例3. 求 解: 原式
1 ( 2 x 2) 3 2
x 2x 3
2
2
dx
d( x 1) 1 d( x 2 x 3) 3 2 2 x 2x 3 ( x 1) 2 ( 2 ) 2 3 x 1 1 2 arctan C ln x 2 x 3 2 2 2
Ak A1 A2 2 ( x a) ( x a) ( x a) k
其中 A1 , A2 , Ak 为待定系数. (2) 若Q(x)=0有一对k重共轭复根 和 , (即把Q(x)在实数 范围内因式分解,含有 ( x2 p x q)k 因子),则分解时必含有 Bk x Ck B1 x C1 B2 x C2 2 2 2 2 ( x p x q) ( x p x q) ( x p x q) k
x 令 t tan 2
万能代换
t 的有理函数的积分
20
机动 目录 上页 下页 返回 结束
1 sin x dx . 例8. 求 sin x(1 cos x) x 解: 令 t tan , 则 2 x x x 2 sin 2 cos 2 2 tan 2 2t sin x 2 x x x sin 2 cos 2 2 1 tan 2 2 1 t 2
2 d(1 2 x) 1 d(1 x 2 ) 1 dx 原式 2 5 1 2x 5 1 x2 5 1 x 2 1 1 2 ln 1 2 x ln (1 x ) arctan x C 5 5 5
12
例1(3) 目录 上页 下页 返回 结束
得 A 1, B 1, C 1.
1 1 1 dx ∴ 原式 2 x 1 ( x 1) x 1
x 1 1 ln C x 1 x 1
14