2013年成都市中考数学试题及答案(word版_含详解)
2013成都中考数学试题及答案

成都市二O 一三年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( )(A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-14.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3(C )4 (D )55.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C )32-=6 (D )0)2013(-=06.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为( )(A )1.3×510 (B )13×410 (C )0.13×510 (D )0.13×6107.如图,将矩形ABCD 沿对角线BD 折叠,使点C 和点'C 重合,若AB=2,则'C D 的长为( )(A )1 (B )2 (C )3(D )48.在平面直角坐标系中,下列函数的图像经过原点的是( )(A )y=-x +3 (B )y=x5(C )y=x 2 (D )y=722-+-x x9.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根(C )只有一个实数根 (D )没有实数根10.如图,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为( )(A )40° (B )50° (C )80°(D )100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式312>-x 的解集为_______________.12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD,则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米.三.解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+- (2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:等级 成绩(用s 表示) 频数频率 A 90≤s ≤100 x0.08B 80≤s <9035 y C s <8011 0.22 合 计501请根据上表提供的信息,解答下列问题:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式;(2)结合图像直接比较:当0>x 时,1y 和2y 的大小. 20.(本小题满分10分) 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值;ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________.24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当33k =-时,2BP BO BA =⋅;○4PAB ∆面积的最小值为46.其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:62sin15cos 754-==,62cos15sin 754+==)二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ;(2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3tan 4ADB ∠=,4333PA AH -=,求BD 的长;(3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q .i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q、、三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii )取BC 的中点N ,连接,NP BQ .试探究PQNP BQ+是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.成都市二O 一三年高中阶段教育学校统一招生考试数学答案A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、10015.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122=19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <;当x=1时,21y y =;当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ; (2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE ,∴QH AP PH AD =, ECQHBC BH =;设AP=x ,QH=y ,则有53yBH =∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x ,∴053=-x y 即xy 53=∴53==y x PQ DP(3)3342B 卷21.31-22.11723.3 24.③④25.c b ±2,c b 21322-+或c b --22626. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒27.(1)如图,连接DO 并延长交圆于点E ,连接AE ∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k34∴∠P=30°,∠PDH=60°∴∠BDE=30° 连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k)又∵PCPA PD ⨯=2∴)]4325(3434[)334()8(2k k k k -+⨯-=解得k=334-∴AC=7324)4325(343+=-+k k∴S=23175900)7324(3252121+=+⨯⨯=•AC BD28.(1)12212-+-=x x y(2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQNP BQ+的最大值是510。
2023年四川省成都市树德中学自主招生考试数学模拟试题(含详解)

2023年四川省成都市树德中学自主招生考试数学模拟试卷一、单选题1.下列判断正确的是( )B.若,则是同类二次根式2.下列四个运算中,只有一个是正确的.这个正确运算的序号是( )①;③;④.A.①B.②C.③D.④3.如图(1),在一个边长为m 的正方形纸片上剪去两个相同的小长方形,得到一个如图(2)所示的图案,若再将剪下的两个小长方形拼成一个如图(3)所示的新长方形,则新长方形的周长可表示为( )图(1)图(2) 图(3)A. B. C. D.4.如图,在菱形中,,点E 、F 分别在边BC 、CD 上,不与各端点重合,且,连接BF 、DE 交于点M ,延长ED 到H ,使,连接AM 、AH ,则以下四个结论:①;② ;③是等边三角形;④,其中正确结论的个数是( )A.1B.2C.3D.45.如图,圆环中大圆的半径为r ,小圆的半径为长,AB 为大圆的直径,则阴影部分的面积为( )0.5<0ab =0a b ===01333-+=-=()32528a a =844a a a -÷=-23m n-24m n -410m n-48m n-ABCD AB BD =BE CF =DH BM =BDF DCE ≅△△120BMD ∠=︒AMH △2S ABCD AM =四边形2rA.B.C.D.6.如图,在直角坐标系的第一象限内,是边长为2的等边三角形,设直线截这个三角形所得位于直线左侧的图形(阴影部分)的面积为S ,则S 关于t 的大致函数图象是()A. B.C. D.7.在一个不透明的袋子里装有2个红球和1个白球,它们除颜色外都相同,从中摸出一个球,放回搅匀后,再摸出一个球.两次都摸到红球的概率是( )A.B.C.D.8.如图,,都经过A 、B 两点,且点O 在上,连接并延长,交于点C ,连接交于点D ,连接,,若,则的长为( )A.B.9.小强用一根长为的铁丝围成矩形,则矩形的最大面积是( )A. B. C. D.10.在,0,-1,这四个数中,最小的数是( )2π4r 23π4r 2π8r 23π8r AOB △():02l x t t =≤≤13232949O e 1O e 1O e AO O e BC 1O e AD AD BO ⊥3AB =»BDπ22π316cm 216cm 232cm 264cm 28cm 1212-A.B.0C.D.-1二、填空题11.若,则______,______,______.12.若,则的值为______.13.如图,点C 在线段上,且,分别以、为边在线段的同侧作正方形、,连接、,则______.14.若,则______.15.如图,一块含30°角的直角三角板ABC ,,将其绕点A 顺时针旋转得到,当B ,A ,在一条直线上时,顶点C 所走的路径长为______.16.如图,在中,G 是CD 上一点,连接BG 并延长,交AD 的延长线于点E ,点F 在AB 上,且,,,则______°.三、解答题17.解方程18.如图,已知:中,,,点D 是的中点,点P 是边上的一个动点.1212-()2242x mx n ax ++=+m =a =n =)11a a a +=>1a a-AB 2AC BC =AC BC AB ACDE BCFG EC EG tan CEG ∠=a -()240c +-=a b c -+=1BC =AB C ''C 'ABCD Y AF CG =30E ∠=︒50C ∠=︒BFD ∠=()()231=1x x --Rt ABC △90BAC ∠=︒AB AC =BC BC图1 图2 图3 图4(1)如图1,若点与点重合,连接,则与的位置关系是 ;(2)如图2,若点在线段上,过点作于点,过点作于点,则,和这三条线段之间的数量关系是______;(3)如图3,在(2)的条件下,若的延长线交直线于点,求证:;(4)如图4,已知,若点从点出发沿着向点运动,过点作于点,过点作于点,设线段的长度为,线段的长度为,试求出点在运动的过程中的最大值.19.在平面直角坐标系中,抛物线与直线l :交于,B 两点,与y 轴交于,对称轴为直线.(1)请直接写出该抛物线的解析式;(2)设直线l 与抛物线的对称轴的交点为F ,在对称轴右侧的抛物线上有一点G,若,且,求点G 的坐标;(3)若在直线上有且只有一点P ,使,求k 的值.20.如图,已知同一平面内四个点A ,B ,C ,D ,请按要求完成下列问题:(1)画直线AB ,射线BD ,连接AC ;(2)在线段AC 上求作点P ,使得;(保留作图痕迹)(3)过点P 作直线l ,使得;(保留作图痕迹)(4)请在直线l上确定一点Q ,使点Q 到点C 与点D 的距离之和最短,并写出画图的依据.21.阅读下列两则材料,回答问题:材料一:我们将与称为一对“对偶式”因为P D AP AP BC P BD B BE AP ⊥E C CF AP ⊥F CF BE EF BE AD M CP AM =4BC =P B BC C B BE AP ⊥E C CF AP ⊥F BE 1d CF 2d P 12d d +xOy 2y ax bx c =++()0y kx m k =+>()1,0A ()0,3C 2x =12AF FB =6BAG S =△12y =-90APB ∠=︒CP AC AB =-l AB ∥+,所以构造“对俩式”相乘可以有效地将和中的”去掉..解:,材料二:如图,点,点,以AB 为斜边作,则,于是,,所以反之,可将代数式到点的距离.的值看作点到点的距离.(1)利用材料一,解关于x,其中;(2的最小值,并求出此时y 与x 的函数关系式,写出x 的取值范围;②将①所得的y 与x 的函数关系式和x 的取值范围代入中解出x ,直接写出x 的值.22.如图,已知直线与抛物线相交于A ,B 两点,点在轴上,点在轴上,点在抛物线上.(1)求该抛物线的表达式.22a b =-=-2=()()251510x x ⨯+=---=2=5=()11,A x y ()22,B x y Rt ABC △()21,C x y 12AC x x =-12BC y y =-AB =()11,x y ()22,x y ===(),x y ()1,1-2=4x ≤y =22y x =+2y ax bx c =++A x B y ()3,0C(2)正方形的顶点为直角坐标系原点,顶点在线段上,顶点在轴正半轴上,若与全等,求点的坐标.(3)在条件(2)下,点是线段上的动点(点不与点重合),将沿所在的直线翻折得到,连接,求长度的取值范围.OPDE O P OC E y AOB △DPC △P Q CD Q D POD △PQ POD '△AD 'AD '2023年四川省成都市树德中学自主招生考试数学模拟试卷一、单选题1.【答案】D【分析】A 选项采取作差法,即可得到答案;B 选项考虑或;C 选项考虑a ,b 的取值范围;D 选项,先化简成最简二次根式,再判断是否为同类二次根式.【详解】解:A.,故此项错误;B.若,则或,故此项错误;C.,,选项未写条件,故此项错误;D.,是同类二次根式,故此项正确;故选D.【点睛】此题考查了二次根式的意义及运算法则,实数的乘法与比较,正确掌握运算法则是解答此题的关键.2.【答案】D【分析】直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的除法运算法则分别化简即可得出答案.【详解】①,故①错误;无法计算,故②错误;③,故③错误;④,正确,故选D.【点睛】本题考查了实数的运算、二次根式的加减、积的乘方、同底数幂的乘法等,熟练掌握各运算的运算法则是解题的关键.3.【答案】D【分析】通过观察图形,表示出新长方形的长与宽,再根据长方形周长公式即可确定其周长.【详解】解:∵观察图形可知,新长方形的长为:,宽为:,0a =0b =0.521==-2>0>0.50->0.5>0ab =0a =0b ==0a ≥0b >0113133-+=()32628aa =844a a a -÷=-m n -3m n -∴周长为,故D 正确.故选:D.【点睛】本题主要考查的是列代数式和整式加减在几何图形中的应用,能够通过观察图形用含m 、n 的式子表示出长方形的长与宽,是解题的关键.4.【答案】C【分析】由题意易得△ABD 是等边三角形,然后可证判定①,则有,根据三角形外角的性质可判定②,然后可得,则有,,然后可判定③,最后根据全等三角形的性质及等积法可进行判断④.【详解】解:∵四边形是菱形,,∴,∴、都是等边三角形,∴,∵,∴,即,∴,故①正确;∴,∵,∴,故②正确;∵,,∴,∵,∴,∴,∵,∴,∴,,∴,∴是等边三角形,故③正确;∵,∴的面积等于四边形的面积,∵是等边三角形,其面积为,∴,故④错误;综上所述:正确的个数有3个;()2348m n m n m n -+-=-BDF DCE ≅△△DBF EDC ∠=∠ABM ADH ≅△△AH AM =BAM DAH ∠=∠ABCD AB BD =AB BD AD BC CD ====ABD △BDC △60BDF C ∠=∠=︒BE CF =BC BE CD CF -=-DF CE =()SAS BDF DCE ≅△△DBF EDC ∠=∠60DMF DBF BDE EDC BDE BDC ∠=∠+∠=∠+∠=∠=︒120BMD ∠=︒60DEB EDC C EDC ∠=∠+∠=∠+︒60ABM ABD DBF DBF ∠=∠+∠=∠+︒DEB ABM ∠=∠AD BC ∥ADH DEB ∠=∠ADH ABM ∠=∠DH BM =()SAS ABM ADH ≅△△AH AM =BAM DAH ∠=∠60MAH MAD ADH MAD BAM BAD ∠=∠+∠=∠+∠=∠=︒AMH △ABM ADH ≅△△AMH △ABMD AMH△2AMH S AM =△2S ABMD AM =四边形故选C.【点睛】本题主要考查菱形的性质及等边三角形的性质与判定,熟练掌握菱形的性质及等边三角形的性质与判定是解题的关键.5.【答案】D【分析】根据圆的面积公式:,计算出半圆的面积,用大半圆的面积减小半圆的面积即可得出结果.【详解】解:大半圆的面积为:;小半圆的面积为:;阴影部分的面积为: .故选D.【点睛】本题考查计算阴影部分的面积,有理数的混合运算,熟练掌握圆的面积公式是解题的关键.6.【答案】C【分析】分和两种情况,利用三角形的面积公式,可以表示出S 与t 的函数关系式,即可做出选择.【详解】解:①当时,如图,∵轴,为等边三角形,∴,∴,,∴,即,故S 与t 之间的函数关系式的图像应为自变量在、开口向上的二次函数图像;②当时,如图,,,2πS r =211π2S r =2221ππ228r r S ⎛⎫=⋅=⎪⎝⎭22212ππ3π288r r r S S S =-=-=01t ≤≤12t <≤01t ≤≤l y ∥AOB △60COD ∠=︒OD t =tan 60CD OD =⋅︒=212OCD S OD CD =⋅⋅=△()201t S =≤≤01t ≤≤12t <≤60CBD ∠=︒2BD t =-∴,∴,即,∴故S 与t 之间的函数关系式的图像应为自变量在、开口向下的二次函数图像,故选:C.【点睛】本题考查三角形的面积公式、二次函数图像特征、解直角三角形、60°角的正切值,正确列出函数关系式,掌握二次函数图像是解答的关键,注意实际问题的图像只是一部分.7.【答案】D【分析】首先根据题意列出表格,由列表法求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可得出答案,注意此题属于放回实验.【详解】解:根据题意列出表格:红1红2白红1(红1,红1)(红2,红1)(白,红1)红2(红1,红2)(红2,红2)(白,红2)白(红1,白)(红2,白)(白,白)根据列表法可知:所有等可能的结果共有9种,其中两次都摸到红球的有4种,所以两次都摸到红球的概率是,故选D.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.【答案】D【分析】过作,垂足为E ,连接,易证AC 、AD 分别是,的直径,根据垂径定理可得,进而易证是等边三角形,在中,利用正切求出AD ,进而即可求)tan 602CD BD t =⋅︒=-)2122BCD S BD CD t =⋅⋅=-△)))221222212S t t t =⨯-=+<-≤12t <≤491O 1O E AB ⊥1O B O e 1O e AB AO =ABO △Rt BAD △解.【详解】如图,过作,垂足为E ,连接,∵AC 是的直径,∴,∴AD 是的直径,∵,∴,∴,∵,∴,,∴,∵是等边三角形,∴,∵,∴,∴,在中,, ∴,故选:D.【点睛】本题考查圆的综合题,涉及到弧长公式、圆周角定理、垂径定理、等边三角形的判定及其性质、等腰三角形的性质、正切,解题的关键是熟练掌握圆的性质及定理求出的直径AD .9.【答案】A【分析】设矩形长为,则宽为,面积,利用二次函数求最值即可求得矩形的最大面积.1O 1O E AB ⊥1O B O e 90ABC ∠=︒1O e AD BO ⊥AB AO =ABO AOB ∠=∠3AB =3AO =3BO =3AO AB BO ===ABO △60BAO ∠=︒BAD DAO ∠=∠30BAD ∠=︒160BO D ∠=︒Rt BAD△30cos AB AD ︒===»6012π3606BDr =⋅=⨯=1O e ()cm 08x x <<()8cm x -()8S x x =-【详解】解:设矩形长为,则宽为,面积.,,由于,S有最大值,当时,S最大是16.所以矩形的最大面积是. 故答案为16.【点睛】本题主要考查二次函数解决实际问题,解决本题的关键是要根据题意列出函数关系式,再求二次函数最值.10.【答案】D【详解】试题分析:因为负数小于0,正数大于0,正数大于负数,所以在,0,-1,这四个数中,最小的数是-1,故选D.考点:正负数的大小比较.二、填空题11.【答案】±8,±2,4【分析】把右边的式子展开,和右边的式子对比,利用对应系数相等求得答案解决问题.【详解】,∴,;;.故答案为±8;±2;4.【点睛】考查完全平方公式的运用,在变形的过程中不要改变式子的值.12.【分析】根据,得到,然后根据完全平方公式,及算术平方根进行计算即可.【详解】∵∴∵∴.()cm08x x<<()8cmx-()8S x x=-28S x x=-+()2416x=--+10-<4x=216cm1 21 2 -()22ax+()22222444ax a x ax x mx n+=++=++ 24a=2a=±48m a==±4n=1 a>10 aa ->1a>1aa->1aa+=1aa-==【点睛】本题考查了完全平方公式,及算术平方根的使用,熟知此知识点是解题的关键.13.【答案】【分析】设,则,然后利用正方形的性质求得CE 、CG 的长、,进而说明为直角三角形,最后运用正切的定义即可解答.【详解】解:设,则∵正方形∴, 同理:, ∴.故答案为.【点睛】本题考查了正方形的性质和正切的定义,根据正方形的性质说明是直角三角形是解答本题的关键.14.【答案】9【分析】根据非负数的性质即可解答.【详解】解:∵∴,,∴ ,,,∴.故答案为9.【点睛】本题考查绝对值、算术平方根、平方的非负性,解题关键是正确求出a 、b 、c 的值.15.【分析】得出点C 经过的路径是圆心角150°,半径为的弧,代入弧长公式计算即可.【详解】:在中,∵,∴,12BC a =2AC a =45GCDECD ∠==︒ECG △BC a =2AC a =ACDEEC ==1452ACD ECD ∠=∠=︒CG =1452BCD GCD ∠=∠=︒1tan 2CG CEG CE ∠===12ECG △()240a c -+-=20a -=30b +=40c -=2a =3b =-4c =()2349a b c -+=--+=AC =Rt ABC △1BC =30BAC ∠=︒AC =∵绕点C 顺时针方向旋转到的位置,∴,∴点C 经过的路径是圆心角150°,半径为的弧,∴顶点C,【点睛】本题主要考查了含30°角的直角三角形的性质,旋转的性质,弧长公式等知识,确定点B 的运动路径是解题的关键.16.【答案】80【分析】根据平行四边形的对角相等可得,对边相等可得,利用三角形的内角和定理求出,然后求出四边形是平行四边形,最后利用平行四边形的邻角互补列式计算即可得解.【详解】解:在中,,,,∵,∴,∵,∴,又∵,∴四边形是平行四边形,∴,∴.故答案为:80.【点睛】本题考查了平行四边形的判定和性质,三角形的内角和定理,熟练掌握平行四边形的判定方法与性质是解题的关键.三、解答题17.【答案】,【分析】先移项,再利用因式分解法进行求解即可.【详解】解:移项得:,提取公因式得:,去括号得:,合并同类项得:,∴,,∴,.Rt ABC △AB C ''△150CAC '∠=︒AC ==A C ∠=∠AB CD =ABE ∠BGDF ABCD Y 50A C ∠=∠=︒AB CD =AB CD ∥30E ∠=︒1805030100ABE ∠=︒-︒-︒=︒AF CG =BF DG =BF BG ∥BGDF DF BG ∥180********BFD ABE ∠=︒-∠=︒-︒=︒11x =24x =()()2311=0x x ---()()131=0x x ---⎡⎤⎣⎦()()131=0x x --+()()14=0x x --10x -=40x -=11x =24x =【点睛】本题考查了一元二次方程的解法,熟练掌握因式分解法解一元二次方程的一般步骤是解题的关键.18.【答案】(1)(2)(3)见解析(4)4【分析】(1)利用等腰三角形的性质可得答案;(2)利用证明,得,即可;(3)由(2)同理可证.再利用证明,得;(4)用两种方法表示的面积,可得,当时,最小,此时,可得答案.【详解】(1)解:∵点是的中点,点与点重合,∴,故答案为:;(2),∵,,∴,则,∴,∵,∴,∴,,∴,故答案为:;(3),理由如下:证明:∵,.∴,,∵,,∴.又∵,∴.∴,.∵在等腰中,点是的中点,∴∵,∴在和中,AP BC⊥CF BE EF=+AAS ACF BAE ≅△△CF AE =AF BE =CF AE =ASA CFP AEM ≅△△CP AM =ABC △128d d AP+=AP BC ⊥AP 2AP =D BC P D AP BC ⊥AP BC ⊥CF BE EF =+BE AP ⊥CF AP ⊥90AEB AFC BAC ∠=∠=∠=︒90BAE EAC EAC ACF ∠+∠=∠+∠=︒BAE ACF ∠=∠AB AC =()AAS ACF BAE ≌△△CF AE =AF BE =CF BE EF =+CF BE EF =+CP AM =BE AP ⊥CF AP ⊥90AFC AEB ∠=∠=︒90CFP AEM ∠=∠=︒90BAE FAC ∠+∠=︒90ACF FAC ∠+∠=︒BAE ACF ∠=∠AB AC =()AAS ACF BAE ≅△△BAE ACF ∠=∠CF AE =Rt ABC △D BC 45BAD ACD ∠=∠=︒BAE ACF ∠=∠CFP △AEM △FCP EAM CF AECFP AEM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴,∴;(4)∵,∴,,由图形可知,,∴.当时,即:点与点重合,最小,此时.∴的最大值为4.【点睛】本题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定与性质,三角形的面积,垂线段最短等知识,利用面积法表示出是解决问题(4)的关键.19.【答案】(1);(2);(3)【分析】(1)抛物线与x 轴另外一个交点坐标为,则函数的表达式为:,即:,即可求解;(2)分点G 在点B 下方、点G 在点B 上方两种情况,分别求解即可;(3)由,则,即可求解.【详解】解:(1)∵,两点,对称轴为直线,则抛物线与轴另外一个交点坐标为,则函数的表达式为:,即:,解得:,故抛物线的表达式为:①;(2)过点作轴交对称轴于点,设对称轴与轴交于点.图1()ASA CFP AEM ≅△△CP AM =AD BC ⊥142ABC S BC AD =⋅=△122AD BC ==11422ABC APB APC S S S AP BE AP CF =+=⋅+⋅=△△△128d d AP+=AP BC ⊥P D AP 2AP =12d d +128d d AP +=243y x x =-+()5,8G k =()3,0()()()21343y a x x a x x =--=-+33a =PAS BPT :△△AS PT PS BT=()1,0A B 2x =x ()3,0()()()21343y a x x a x x =--=-+33a =1a =243y x x =-+B BM x ∥M x N∴,又,则,点的坐标为,设直线的解析式为,则,则,则,①若点在点下方,则过点作轴交于,则设点,,图2∴,即:,,无解;②若点在点上方,则过点作交轴于,则,即:,则,则,则可设直线的解析式为:,将代入得,.∴直线的解析式为②,联立①②并解得:或5(舍去0),∴;(3)分别过点,作直线的垂线,垂足分别为,,图312AF AN BF BM ==1AN =2BM =B ()4,3AB y kx b =+043k b k b +=⎧⎨+=⎩11k b =⎧⎨=-⎩1y x =-G B G GQ y ∥AB Q ()2,43G t t t -+(),1Q t t -()2136314322BAG AQG BGQ S S S OQ t t t ==+=⨯=--+-△△△258t t -+0∆<G B G GH AB ∥x H 6BAG ABH S S ==△△1362AH ⨯=4AH =()3,0H -GH y x t =+()3,0H -3t =-GH 3y x =-0x =()5,8G A B 12y =-S T则,则,直线的解析式为③,联立①③并解得:或,则点,设:,则有两个相等实数根,,解得:(舍去负值),故:【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.20.【答案】(1)见详解(2)见详解(3)见详解(4)见详解【分析】(1)依据要求用直尺作图即可;(2)以A 为圆心、AB 为半径画弧交AC 于点P 即可;(3)以P 为圆心、AP 为半径画弧将AC 于点E ,再以E 点为圆心、AB 为半径画弧,两弧交于点F ,连接PF ,直线PF 即为所求的直线l ;(4)连接CD 交直线l 于点Q ,Q 点即为所求.【详解】(1)作图如下:直线AB 、射线BD 、线段AC 即为所求;(2)作图如下:PAS BPT :△△AS PT PS BT=l y kx k =-1x =3k +()23,2B k k k ++PS x =()2112222x k x k k ⎛⎫+-=++ ⎪⎝⎭()2222410k k k ∆=+---=k =k =点P 即为所求;(3)作图如下:直线l 即为所求;证明:连接EF 、PB ,由作图可知,,,根据(2)的作图可知,即有:,,,即有,∴,∴,即直线l 即为所求;(4)作图如下:直线l 即为所求;∵,∴依据两点之间线段最短,有当且仅当C 、Q 、D 三点共线时,有,即作图依据为:两点之间线段最短.【点睛】本题考查作图-复杂作图,直线,射线,线段的定义以及全等三角形在尺规作图中的应用等知识,PE AP =EF PB =PF PE =AP AB =AP PE =AB PF =EF PB =PEF APB ≅△△EPF PAB ∠=∠l AB ∥QC QD CD +≥QC QD CD +=解题的关键是理解直线,射线,线段的定义,属于中考常考题型.21.【答案】(1);(2)①,;②【分析】(1)根据理解材料一的内容进行解答,比对这题很容易解决.(2)①中把根式下的式子转化成平方平方的形式,转化成点到点的距离问题,根据两点之间距离最短,所以当三个点共线时距离最短,可以求出最小值和函数关系式②中也根据材料二的内容来解答求出x 的值.【详解】(1)根据材料一;∵,,,,,∴解得:,∴;(2)②解:由材料二知:,的值看作点到点的距离到点的距离,,即点与点,在同一条直线上,并且点位点的中间,,且,5x =-()2621y x x =+-≤≤1+()()20416x x ⨯=---=2=8=5=3=5x =-()2621y x x =+-≤≤===(),x y ()1,8(),x y ()2,2-+=+(),x y ()1,8()2,2-(),x y ()()1,82,2-+===21x -≤≤设过,,的直线解析式为:∴,解得:,∴;②∵中,∵,(i ),又∵(ii )由(i )(ii,解得:(舍), ,∴x 的值为【点睛】本题是材料阅读题,属于新定义题,理解新定义的内容是解题的关键.22.【答案】(1)该抛物线的表达式为;(2)点的坐标为或;(3或【分析】(1)先求得点,点,利用待定系数法即可求解;(2)分两种情况讨论:和,利用全等三角形的性质求解即可;(3)按照(2)的结论,分两种情况讨论,当P 、、三点共线时,线段长度取得最大值,当点与点重合时,线段长度取得最小值,据此求解即可.【详解】(1)解:令,则,令,则,(),x y ()1,8()2,2-y kx b=+822k b k b=+⎧⎨=-+⎩26k b =⎧⎨=⎩()2621y x x =+-≤≤y =26y x =+26x +=+()222512236x x x x +-=++-++26x =+1=+72x =+11x =>2x =1224233y x x =-++P ()1,0()2,03AD '≤≤5AD '≤≤()1,0A -()0,2B AOB DPC ≅△△AOB CPD ≅△△D 'C AD 'Q C AD '0x =222y x =+=0y =022x =+解得,点,点,把,,代入,得,解得,∴该抛物线的表达式为;(2)解:若和全等,且,分两种情况:①,则,,∵,∴,∴点的坐标为;②,则,∴正方形的边长为2,∴点P 的坐标为;综上,点P 的坐标为或;(3)解:①点P 的坐标为时,∵与关于对称,∴,1x =-()1,0A -()0,2B ()1,0A -()0,2B ()3,0C 2y ax bx c =++09302a b c a b c c -+=⎧⎪++=⎨⎪=⎩23432a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩224233y x x =-++AOB △DPC △90AOB DPC ∠=∠=︒AOB DPC ≅△△1AO PD ==2OB PC ==3OC =321OP =-=P ()1,0AOB CPD ≅△△2OB PD ==OPDE ()2,0()1,0()2,0()1,0D PQ '△PQD △PQ P P D D '=∴点在以点为圆心,1为半径的圆上运动,当Q 点与C 点重合时取得最小值,,此时,当P ,,C 三点共线时,取得最大值,最大值为②点P 的坐标为时,∵与关于对称,∴,∴点在以点P 为圆心,2为半径的圆上运动,当P 、C 、三点共线时,线段长度取得最大值,最大值为;当Q 点与C 点重合时,点的坐标为,此时∴或.【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,点和圆的位置关系,解题的关键是正确进行分类讨论.D 'P AD'()1,1D '-AD '===D 'AD '213AP PD '+=+=3AD '≤≤()2,0D PQ '△PQD △PQ P P D D '=D 'D 'AD '325AP PD '+=+=D '()2,2-AD '==5AD '≤≤3AD '≤≤5AD '≤≤。
2022年四川省成都市中考数学真题(含解析)

z2022年四川省成都市中考数学试题及答案数学A 卷第Ⅰ卷(选择题)一、选择题(本大题共8个小题,每小题均有四个选项,其中只有一项符合题目要求)1. 的相反数是( ) A. B.C. D.2. 2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为( ) A.B.C.D.3. 下列计算正确的是( ) AB. C.D.4. 如图,在和中,点,,,在同一直线上,,,只添加一个条件,能判定是( )A.B. C. D.5. 在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是( ) A. 56B. 60C. 63D. 726. 如图,正六边形内接于⊙,若⊙的周长等于,则正六边形的边长为( )37-3737-73-7321.610´51.610´61.610´71.610´2m m m +=()22m n m n -=-222(2)4m n m n +=+2(3)(3)9m m m +-=-ABC !DEF !A E B D AC DF !AC DF =ABC DEF△≌△的BC DE =AE DB =A DEF Ð=ÐABC D Ð=ÐABCDEF O O 6pzA.B.C. 3D.7. 中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有个,甜果有个,则可列方程组为( )A. B. C.D.8. 如图,二次函数图像与轴相交于,两点,对称轴是直线,下列说法正确的是( )A.B. 当时,的值随值的增大而增大C. 点的坐标为D.第Ⅱ卷(非选择题)二、填空题(本大题共5个小题)9. 计算:______.x y 100041199979x y x y +=ìïí+=ïî100079909411x y x y +=ìïí+=ïî100079999x y x y +=ìí+=î1000411999x y x y +=ìí+=î2y ax bx c =++的x ()1,0A -B 1x =0a >1x >-y x B ()4,0420a b c ++>()23a -=z10. 关于x 的反比例函数的图像位于第二、四象限,则m 的取值范围是________. 11. 如图,和是以点为位似中心的位似图形.若,则与的周长比是_________.12. 分式方程的解是_________. 13. 如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交边于点.若,,,则的长为_________.三、解答题(本大题共5个小题)14. 计算:. (2)解不等式组:. 15. 2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.2m y x-=ABC !DEF !O :2:3OA AD =ABC !DEF!31144x x x-+=--ABC !B C 12BC M N MN AB E 5AC =4BE =45B Ð=°AB 113tan 3022-æö-°+-ç÷èø3(2)252123x x x x +³+ìïí--<ïî①②z等级 时长:(单位:分钟) 人数 所占百分比420根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中的值为_________; (2)该校共有500名学生,请你估计等级为学生人数;(3)本次调查中,等级为的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16. 2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角时,顶部边缘处离桌面的高度的长为,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角时(点是的对应点),用眼舒适度较为理想.求此时顶部边缘处离桌面的高度的长.(结果精确到;参考数据:,,)A 02t £<xB 24t £<C 46t £<36%D 6t ³16%x B的A 150AOB Ð=°A AC 10cm 108A OB ¢Ð=°A ¢A A ¢AD ¢1cm sin 720.95°»cos720.31°»tan 72 3.08°»z17. 如图,在中,,以为直径作⊙,交边于点,在上取一点,使,连接,作射线交边于点.(1)求证:; (2)若,,求及的长. 18. 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于,两点.(1)求反比例函数的表达式及点的坐标;(2)过点作直线,交反比例函数图象于另一点,连接,当线段被轴分成长度比为的两部分时,求的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设是第三象限内的反比例函数图象上一点,是平面内一点,当四边形是完美筝形时,求,两点的坐标.B 卷一、填空题(本大题共5个小题)19. 已知,则代数式的值为_________. Rt ABC △90ACB Ð=°BC O AB D CD E BE CD =DE CE ABF A ACF Ð=Ð8AC =4cos 5ACF Ð=BF DE xOy 26y x =-+ky x=(),4A a B B A AC C BC AC y 1:2BC P Q ABPQ P Q 2272a a -=2211a a a a a--æö-÷ç÷èøz20. 若一个直角三角形两条直角边的长分别是一元二次方程的两个实数根,则这个直角三角形斜边的长是_________.21. 如图,已知⊙是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是_________.22. 距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是_________;当时,的取值范围是_________.23. 如图,在菱形中,过点作交对角线于点,连接,点是线段上一动点,作关于直线的对称点,点是上一动点,连接,.若,,则的最大值为_________.二、解答题24. 随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是2640x x -+=O h t 25h t mt n =-++w t h t h 01t ££w 23t ££w ABCD D DE CD ^AC E BE P BE P DE P ¢Q AC P Q ¢DQ 14AE =18CE =DQ P Q ¢-z,乙骑行的路程与骑行的时间之间的关系如图所示.(1)直接写出当和时,与之间的函数表达式; (2)何时乙骑行在甲的前面?25. 如图,在平面直角坐标系中,直线与抛物线相交于,两点(点在点左侧),点关于轴的对称点为.(1)当时,求,两点的坐标;(2)连接,,,,若的面积与的面积相等,求的值; (3)试探究直线是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由. 26. 如图,在矩形中,,点是边上一动点(点不与,重合),连接,以为边在直线的右侧作矩形,使得矩形矩形,交直线于点.18km/h ()km s ()ht 00.2t ££0.2t >s t xOy ()30y kx k =-¹2y x =-A B AB的B y B¢2k =A B OA OB AB ¢BB ¢B AB ¢V OAB !k 'AB ABCD ()1AD nABn =>E AD E A D BE BE BE EBFG EBFG ∽ABCD EG CDH(1)【尝试初探】在点的运动过程中,与始终保持相似关系,请说明理由. (2)【深入探究】若,随着点位置的变化,点的位置随之发生变化,当是线段中点时,求的值.(3)【拓展延伸】连接,,当是以为腰的等腰三角形时,求的值(用含的代数式表示).E ABE △DEH △2n =E H H CD tan ABE ÐBH FH BFH △FH tan ABE Ðn2022年四川省成都市中考数学试题及答案数学A 卷第Ⅰ卷(选择题)一、选择题(本大题共8个小题,每小题均有四个选项,其中只有一项符合题目要求)1. 的相反数是( ) A.B. C. D.【答案】A 【解析】【分析】直接根据相反数的求法求解即可. 【详解】解:任意一个实数a 的相反数为-a 由 −的相反数是 ; 故选A .【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.2. 2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为( )A. B.C.D.【答案】C 【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是非负数;当原数的绝对值<1时,n 是负数. 【详解】解答:解:160万=1600000=, 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3. 下列计算正确的是( ) A.B.37-3737-73-73373721.610´51.610´61.610´71.610´61.610´2m m m +=()22m n m n -=-zC. D.【答案】D 【解析】【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.,故该选项错误,不符合题意; B.,故该选项错误,不符合题意; C.,故该选项错误,不符合题意; D.,故该选项正确,符合题意; 故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.4. 如图,在和中,点,,,在同一直线上,,,只添加一个条件,能判定的是( )A. B.C.D.【答案】B 【解析】【分析】根据三角形全等的判定做出选择即可.【详解】A 、,不能判断,选项不符合题意; B 、,利用SAS 定理可以判断,选项符合题意; C 、,不能判断,选项不符合题意; D 、,不能判断,选项不符合题意; 故选:B .【点睛】本题考查三角形全等的判定,根据SSS 、SAS 、ASA 、AAS 判断三角形全等,找出三角形全等的条件是解答本题的关键.5. 在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据众222(2)4m n m n +=+2(3)(3)9m m m +-=-2m m m +=()222m n m n -=-2224(2)4m n m n mn ++=+2(3)(3)9m m m +-=-ABC !DEF !A E B D AC DF !AC DF =ABC DEF △≌△BC DE =AE DB =A DEF Ð=ÐABC D Ð=ÐBC DE =ABC DEF △≌△AE DB =ABC DEF △≌△A DEF Ð=ÐABC DEF △≌△ABC D Ð=ÐABC DEF △≌△的z数是( ) A. 56 B. 60C. 63D. 72【答案】B 【解析】【分析】结合题意,根据众数的性质分析即可得到答案.【详解】根据题意,56,60,63,60,60,72这组数据的众数是:60 故选:B .【点睛】本题考查了众数的知识;解题的关键是熟练掌握众数的定义: 众数是指在统计分布上具有明显集中趋势点的数值,也就是一组数据中出现次数最多的数值.6. 如图,正六边形内接于⊙,若⊙的周长等于,则正六边形的边长为( )A.B.C. 3D.【答案】C 【解析】【分析】连接OB ,OC ,由⊙O 的周长等于6π,可得⊙O 的半径,又由圆的内接多边形的性质,即可求得答案. 【详解】解:连接OB ,OC ,∵⊙O 的周长等于6π, ∴⊙O 的半径为:3, ∵∠BOC 360°=60°, ABCDEF O O 6p 61=´∵OB =OC ,∴△OBC 是等边三角形, ∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3, 故选:C .【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.7. 中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有个,甜果有个,则可列方程组为( )A. B. C.D. 【答案】A 【解析】【分析】根据题意可以列出相应的方程组,从而可以解答本题. 【详解】解:设苦果有个,甜果有个,由题意可得,故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组的有关知识,正确找到相等关系是解决本题的关键.8. 如图,二次函数的图像与轴相交于,两点,对称轴是直线,下列说法正确的是( )x y 100041199979x y x y +=ìïí+=ïî100079909411x y x y +=ìïí+=ïî100079999x y x y +=ìí+=î1000411999x y x y +=ìí+=îx y 100041199979x y x y +=ìïí+=ïî2y ax bx c =++x ()1,0A -B 1x =zA. B. 当时,的值随值的增大而增大C. 点的坐标为D.【答案】D 【解析】【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即,故该选项不符合题意; B 、根据图像开口向下,对称轴为,当,随的增大而减小;当,随的增大而增大,故当时,随的增大而增大;当,随的增大而减小,故该选项不符合题意;C 、根据二次函数的图像与轴相交于,两点,对称轴是直线,可得对称轴,解得,即,故该选项不符合题意; D 、根据可知,当时,,故该选项符合题意;故选:D .【点睛】本题考查二次函数的图像与性质,根据图像得到抛物线开口向下,根据对称轴以及抛物线与轴交点得到是解决问题的关键.第Ⅱ卷(非选择题)二、填空题(本大题共5个小题)9. 计算:______.【答案】 【解析】【分析】根据幂的乘方可直接进行求解. 【详解】解:;0a >1x >-y x B ()4,0420a b c ++>0a <1x =1x >y x 1x <y x 11x -<<y x 1x >y x 2y ax bx c =++x ()1,0A -B 1x =()112B x x +-==3B x =()3,0B ()3,0B 2x =420y a b c =++>x ()1,0A -()3,0B ()23a -=6a ()236a a -=z故答案为.【点睛】本题主要考查幂的乘方,熟练掌握幂的乘方是解题的关键. 10. 关于x 的反比例函数的图像位于第二、四象限,则m 的取值范围是________. 【答案】 【解析】【分析】根据反比例函数的性质即可确定m-2的符号,从而求解. 【详解】根据题意得:m-2<0, 解得:m <2. 故答案为:m <2.【点睛】本题考查了反比例函数的性质,对于反比例函数y =(k≠0),(1)k >0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内. 11. 如图,和是以点为位似中心的位似图形.若,则与的周长比是_________.【答案】 【解析】【分析】根据位似图形的性质,得到,根据得到相似比为,再结合三角形的周长比等于相似比即可得到结论. 【详解】解:和是以点为位似中心的位似图形,, , ,, 6a 2m y x-=2m <kxABC !DEF !O :2:3OA AD =ABC !DEF !2:5OCA OFD D D !:2:3OA AD =25CA OA OA FD OD OA AD ===+!ABC !DEF !O \OCA OFD D D !\CA OAFD OD=!:2:3OA AD=\25CA OA OA FD OD OA AD ===+根据与的周长比等于相似比可得, 故答案为:.【点睛】本题考查相似图形的性质,掌握位似图形与相似图形的关系,熟记相似图形的性质是解决问题的关键. 12. 分式方程的解是_________. 【答案】 【解析】【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解. 【详解】解:解:化整式方程为:3﹣x ﹣1=x ﹣4, 解得:x =3,经检验x =3是原方程的解, 故答案为:.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.13. 如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交边于点.若,,,则的长为_________.【答案】7 【解析】【分析】连接EC ,依据垂直平分线的性质得.由已知易得,在Rt △AEC 中运用勾股定理求得AE ,即可求得答案.\ABC !DEF !25ABC DEF C CA C FD D D ==2:531144x x x-+=--3x =31144x x x-+=--为3x =ABC !B C 12BC M N MN AB E 5AC =4BE =45B Ð=°AB EB EC =90BEC CEA ÐÐ=°=zc【详解】解:由已知作图方法可得,是线段的垂直平分线, 连接EC ,如图,所以,所以, 所以∠BEC =∠CEA =90°, 因为,, 所以, 在中,,所以, 因此的长为7. 故答案为:7.【点睛】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得即可.三、解答题(本大题共5个小题)14. 计算:. (2)解不等式组:. 【答案】(1)1;(2) 【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解. 【详解】解:MNBC BE CE =45ECB B Ð=Ð=°5AC =4BE =4CE =AEC△3AE =347AB AE BE =+=+=ABAE 113tan 3022-æö°+ç÷èø3(2)252123x x x x +³+ìïí--<ïî①②12x -£<(1)===1.(2)不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15. 2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个113tan3022-æö°+ç÷èø-+´+23323-123(2)252123x xx x+³+ìïí--<ïî①②根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中的值为_________; (2)该校共有500名学生,请你估计等级为的学生人数;(3)本次调查中,等级为的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率. 【答案】(1)50, (2)200 (3) 【解析】【分析】(1)利用概率计算公式先求出总人数,再求出等级为A 的学生人数;(2)利用概率计算公式先求出等级为B 的学生所占的百分比,再求出等级为B 的学生人数;(3)记两名男生为a ,b ,记两名女生为c ,d ,通过列出表格列出所有可能的结果,用恰有一男一女的结果数除以总的结果数,即可得到恰好抽到一名男生和一名女生的概率. 【小问1详解】解:∵D 组人数为8人,所占百分比为16%, ∴总人数为人, ∴. 【小问2详解】解:等级为B 的学生所占的百分比为, ∴等级为B 的学生人数为人.小问3详解】解:记两名男生为a ,b ,记两名女生为c ,d ,列出表格如下:∴一共有12种情况,其中恰有一男一女的有8种, ∴恰好抽到一名男生和一名女生的概率. 【点睛】本题考查了列表法与树状图法,概率计算公式的熟练应用是解答本题的关键. 16. 2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角x B A 8%23816%50÷=4508%x =÷=205040%÷=50040%200´=【82123P ==z时,顶部边缘处离桌面的高度的长为,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角时(点是的对应点),用眼舒适度较为理想.求此时顶部边缘处离桌面的高度的长.(结果精确到;参考数据:,,)【答案】约为 【解析】【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △中,根据正弦函数求得的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =, 在Rt △中,,cm ,∴cm .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键. 17. 如图,在中,,以为直径作⊙,交边于点,在上取一点,使,连接,作射线交边于点.(1)求证:; (2)若,,求及的长. 150AOB Ð=°A AC 10cm 108A OB ¢Ð=°A ¢A A ¢A D ¢1cm sin 720.95°»cos 720.31°»tan 72 3.08°»19cm A DO ¢A D ¢10201sin 302OC ==A DO ¢18072A OCA OB 20OA OA ¢==sin 72200.9519A D OA =盎唇!Rt ABC △90ACB Ð=°BC O ABD CDE BE CD =DE CE ABF A ACF Ð=Ð8AC =4cos 5ACF Ð=BF DEz【答案】(1)见解析 (2)BF =5, 【解析】【分析】(1)根据中,,得到∠A +∠B =∠ACF +∠BCF =90°,根据,得到∠B =∠BCF ,推出∠A =∠ACF ;(2)根据∠B =∠BCF ,∠A =∠ACF ,得到AF =CF ,BF =CF ,推出AF =BF = AB ,根据,AC =8,得到AB =10,得到BF =5,根据,得到,连接CD ,根据BC 是⊙O 的直径,得到∠BDC =90°,推出∠B +∠BCD =90°,推出∠A =∠BCD ,得到,推出,得到,根据∠FDE =∠BCE ,∠B =∠BCE ,得到∠FDE =∠B ,推出DE ∥BC ,得到△FDE ∽△FBC ,推出,得到. 【小问1详解】解:∵中,, ∴∠A +∠B =∠ACF +∠BCF =90°, ∵, ∴∠B =∠BCF , ∴∠A =∠ACF ; 【小问2详解】∵∠B =∠BCF ,∠A =∠ACF ∴AF =CF ,BF =CF , ∴AF =BF = AB , ∵,AC =8, ∴AB =10, ∴BF =5, ∵,∴, 连接CD ,∵BC 是⊙O 的直径,4225DE =Rt ABC △90ACB Ð=°BE CD =124cos cos 5AC ACF A AB Ð===6BC ==3sin 5BC A AB ==3sin 5BD BCD BC Ð==185BD =75DF BF BD =-=DE DF BC BF =4225DE =Rt ABC △90ACB Ð=°BE CD =124cos cos 5AC ACF A AB Ð===6BC ==3sin 5BC A AB ==z∴∠BDC =90°, ∴∠B +∠BCD =90°, ∴∠A =∠BCD , ∴, ∴, ∴, ∵∠FDE =∠BCE ,∠B =∠BCE , ∴∠FDE =∠B , ∴DE ∥BC , ∴△FDE ∽△FBC , ∴, ∴.【点睛】本题主要考查了圆周角,解直角三角形,勾股定理,相似三角形,解决问题的关键是熟练掌握圆周角定理及推论,运用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性质.18. 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于,两点.3sin 5BD BCD BC Ð==185BD =75DF BF BD =-=DE DFBC BF=4225DE =xOy 26y x =-+k y x=(),4A a Bz(1)求反比例函数的表达式及点的坐标;(2)过点作直线,交反比例函数图象于另一点,连接,当线段被轴分成长度比为的两部分时,求的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设是第三象限内的反比例函数图象上一点,是平面内一点,当四边形是完美筝形时,求,两点的坐标. 【答案】(1)反比例函数的表达式为,点的坐标为 (2)(3), 【解析】【分析】(1)首先把点A 的坐标代入,即可求得点A 的坐标,再把点A 的坐标代入,即可求得反比例函数的解析式,再利用方程组,即可求得点B 的坐标; (2)设直线AC 的解析式为y =kx +b ,点C 的坐标为,直线AC 与y 轴的交点为点D , 把点A 、C 的坐标分别代入y =kx +b ,可求得点D 的坐标为,可求得AD 、CD 的长,再分两种情况分别计算,即可分别求得; (3)方法一:如图,过点作,交的另一支于点,过点作轴的平行线,过点作轴的垂线,交于点,作交于点,设交于点,根据,求得点的坐标,进而求得的解析式,设点D 的坐标为(a ,b ),根据定义以及在直线上,建立方程组,即可求得点的坐标.B A AC C BC AC y 1:2BC P Q ABPQ P Q 4yx=B ()2,2()4,1--()1,5-26y x =-+ky x=4,m m æöç÷èø40,4m æö+ç÷èøB PB AB ^4y x=P P x B x C AD BC ^D ,BQ AP M ADB BCP !!∽P AP AQ AB =M AP Q【小问1详解】解:把点A 的坐标代入, 得,解得a =1, 故点A 的坐标为(1,4), 把点A 的坐标代入, 得k =4,故反比例函数的表达式为, , 得, 解得,,故点A 的坐标为(1,4),点的坐标为; 【小问2详解】解:设直线AC 的解析式为y =kx +b ,点C 的坐标为,直线AC 与y 轴的交点为点D ,把点A 、C 的坐标分别代入y =kx +b ,得, 解得,故点D 的坐标为,26y x =-+426a =-+k y x=4yx=264y x y x =-+ìïí=ïî232=0x x -+11x =22x =B ()2,24,m m æöç÷èø44k b mk b m +=ìïí+=ïî444k m b m ì=-ïïíï=+ïî40,4m æö+ç÷èøAD \==CD ==z如图:当AD :CD =1:2时,连接BC ,,得,得, 解得或(舍去), 故或(舍去), 故此时点C 的坐标为(-2,-2),如图:当CD :AD =1:2时,连接BC ,,得, 得, 解得或(舍去), 12=2264120m m -+=4212640m m +-=24m =216m =-2m =-2m =BC \==12=22164630m m -+=4263160m m +-=214m =216m =-z故或(舍去), 故此时点C 的坐标为 ,综上,BC 的长为【小问3详解】解:如图,过点作,交的另一支于点,过点作轴的平行线,过点作轴的垂线,交于点,作交于点,设交于点,如图∵设,,则又即解得或(舍去) 则点设直线的解析式为,将点,解得 直线的解析式为12m =-12m =1,82æö--ç÷èøBC \==2B PB AB ^4y x=P P x B x C AD BC ^D ,BQ AP M ()()1,4,2,2A B \()2,4D 4,P m m æöç÷èø0m <42,2,2,1PC m BC DB AD m=-=-==90°Ð=!ABP 90ABD PBC BPC \Ð=°-Ð=ÐD C Ð=Ð\ADB BCP !!∽AD DBBC PC \=12=422m m --4m =-2m =()4,1P --PA y sx t =+()1,4A ()4,1P --414s t s t -+=-ìí+=î13s t =ìí=î\PA 3y x =+z设,根据题意,的中点在直线上,则 ∵则解得或(在直线上,舍去).综上所述,.【点睛】本题考查一次函数与反比例函数的综合,利用待定系数法求一次函数及反比例函数的解析式,平面直角坐标系中两点间距离公式,相似三角形的判定与性质等知识,采用分类讨论的思想和待定系数法求解析式是解决本题的关键.B 卷一、填空题(本大题共5个小题)19. 已知,则代数式的值为_________.【答案】##3.5##3 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值; 【详解】解: (),Q a b BQ M PB M 2222a b ++æöç÷èø,QA AB ====()()22223=22145a b a b ++ì+ïíï-+-=î15a b =-ìí=î06a b =ìí=îAB ()1,5Q \-()()4,1,1,5P Q ---2272a a -=2211a a a a a--æö-÷ç÷èø72122211a a a a a --æö-÷ç÷èø=== = =.,移项得,左边提取公因式得, 两边同除以2得, ∴原式=. 故答案为:. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20. 若一个直角三角形两条直角边的长分别是一元二次方程的两个实数根,则这个直角三角形斜边的长是_________. 【答案】【解析】【分析】由题意解一元二次方程得到再根据勾股定理得到直角三角形斜边的长是【详解】解:一个直角三角形两条直角边的长分别是一元二次方程的两个实数根,由公式法解一元二次方程可得根据勾股定理可得直角三角形斜故答案为:【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.22211a a a aa a æö---÷ç÷èø22211a a a a a -+-÷22(1)1a a a a -´-(1)a a -2-a a 2272a a -=2227a a -=22()7a a -=272a a -=72722640x x -+=2640x x -+=3x =3x =!2640x x -+=\2640x x -+=66322x ±±===±\==zc21. 如图,已知⊙是小正方形外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是_________.【答案】【解析】【分析】如图,设OA =a ,则OB =OC =a ,根据正方形内接圆和外接圆的关系,求出大正方形、小正方形和圆的面积,再根据概率公式计算即可. 【详解】解:如图,设OA =a ,则OB =OC =a , 由正方形的性质可知∠AOB =90°,,由正方形的性质可得CD =CE =OC =a , ∴DE =2a ,S 阴影=S 圆-S 小正方形=,S 大正方形=,∴这个点取在阴影部分的概率是,故答案为:【点睛】本题考查了概率公式、正方形的性质、正方形外接圆和内切圆的特点、圆的面积计算,根据题意弄清楚图形之间的关系是解题的关键.22. 距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与O的24p-AB ==)()2222222a a a a p p p -=-=-()2224a a =()222244a a p p --=24p -hz物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是_________;当时,的取值范围是_________.【答案】 ①. ②. 【解析】【分析】根据题意,得-45+3m +n =0,,确定m ,n 的值,从而确定函数的解析式,根据定义计算确定即可.【详解】根据题意,得-45+3m +n =0,,∴ , ∴ ,解得m =50,m =10,当m =50时,n =-105;当m =10时,n =15; ∵抛物线与y 轴交于正半轴, ∴n >0,∴, ∵对称轴为t ==1,a =-5<0,∴时,h 随t 的增大而增大,当t =1时,h 最大,且(米);当t =0时,h 最最小,且(米); ∴w =, ∴w 的取值范围是, 故答案为:. 当时,的取值范围是t 25h t mt n =-++w t h t h 01t ££w 23t ££w 05w ££520w ££24(5)204(5)n m ´-´-=´-24(5)204(5)n m ´-´-=´-2204000m n +-=2605000m m -+=251015h t t =-++102(5)-´-01t ££max 20h =min 15h =max min 20155h h -=-=05w ££05w ££23t ££wz∵对称轴为t ==1,a =-5<0,∴时,h 随t 的增大而减小,当t =2时,h =15米,且(米);当t =3时,h 最最小,且(米); ∴w =,w =, ∴w 的取值范围是, 故答案为:.【点睛】本题考查了待定系数法确定抛物线的解析式,函数的最值,增减性,对称性,新定义计算,熟练掌握函数的最值,增减性,理解新定义的意义是解的关键.23. 如图,在菱形中,过点作交对角线于点,连接,点是线段上一动点,作关于直线的对称点,点是上一动点,连接,.若,,则的最大值为_________.【解析】【分析】延长DE ,交AB 于点H ,确定点B 关于直线DE 的对称点F ,由点B ,D 关于直线AC 对称可知QD=QB ,求最大,即求最大,点Q ,B ,共线时,,根据“三角形两边之差小于第三边”可得最大,当点与点F 重合时,得到最大值.连接BD ,即可求出CO ,EO ,再说明,可得DO ,根据勾股定理求出DE ,然后证明,可求BH ,即可得出答案.【详解】延长DE ,交AB 于点H ,∵,ED ⊥CD , ∴DH ⊥AB .102(5)-´-123t ££<max 20h =min 0h =max min 20155h h -=-=max min 20020h h -=-=520w ££520w ££ABCD D DE CD ^AC E BE P BE P DE P ¢Q AC P Q ¢DQ 14AE =18CE =DQ P Q ¢-Q D Q P ¢-Q B Q P ¢-P ¢Q D Q P Q B Q P B P ¢¢¢-=-=BP ¢P ¢E O D D O C V :V E O D B H D V :V AB CD !。
2022年中考数学试题分项版解析汇编(第02期)专题1.3 代数式(含解析)

专题1.3 代数式一、单选题1.【四川省内江市2018年中考数学试卷】下列计算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.详解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选:D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.2.【湖北省恩施州2018年中考数学试题】下列计算正确的是()A. a4+a5=a9 B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2【答案】B点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.3.【湖北省宜昌市2018年中考数学试卷】下列运算正确的是()A. x2+x2=x4 B. x3•x2=x6 C. 2x4÷x2=2x2 D.(3x)2=6x2【答案】C【解析】分析:根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论.详解:A、x2+x2=2x2,选项A错误;B、x3•x2=x3+2=x5,选项B错误;C、2x4÷x2=2x4﹣2=2x2,选项C正确;D、(3x)2=32•x2=9x2,选项D错误.故选:C.点睛:本题考查了整式的混合运算,牢记整式混合运算的运算法则是解题的关键.4.【湖北省宜昌市2018年中考数学试卷】1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A. a=1,b=6,c=15 B. a=6,b=15,c=20C. a=15,b=20,c=15 D. a=20,b=15,c=6【答案】B点睛:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.【山东省威海市2018年中考数学试题】已知5x=3,5y=2,则52x﹣3y=()A. B. 1 C. D.【答案】D【解析】分析:首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.详解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y=.故选:D.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.【湖南省张家界市2018年初中毕业学业考试数学试题】观察下列算式: , , , ,, , , …,则…的未位数字是( )A. 8 B. 6 C. 4 D. 0【答案】B点睛:本题考查的是尾数特征,根据题意找出数字循环的规律是解答此题的关键.7.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019 B. 2018 C. 2016 D. 2013【答案】D【解析】【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.8.【湖北省武汉市2018年中考数学试卷】计算(a﹣2)(a+3)的结果是()A. a2﹣6 B. a2+a﹣6 C. a2+6 D. a2﹣a+6【答案】B【解析】【分析】根据多项式的乘法法则进行解答即可.【详解】(a﹣2)(a+3)=a2+3a-2a-6=a2+a﹣6,故选B.【点睛】本题考查了多项式的乘法,熟练掌握多项式乘法的运算法则是解题的关键.【湖北省随州市2018年中考数学试卷】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”9.(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A. 33 B. 301 C. 386 D. 571【答案】C【点睛】本题主要考查数字的变化规律,解题的关键是由图形得出第n个三角形数为1+2+3+…+n=,第n个正方形数为n2.10.【湖北省随州市2018年中考数学试卷】下列运算正确的是()A. a2•a3=a6 B. a3÷a﹣3=1C.(a﹣b)2=a2﹣ab+b2 D.(﹣a2)3=﹣a6【答案】D【解析】【分析】根据同底数幂的乘法、同底数幂的除法、完全平方公式、幂的乘方逐一进行计算即可得.【详解】A、a2•a3=a5,故A选项错误;B、a3÷a﹣3=a6,故B选项错误;C、(a﹣b)2=a2﹣2ab+b2,故C选项错误;D、(﹣a2)3=﹣a6,故D选项正确,故选D.【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方的运算法则.11.【山东省烟台市2018年中考数学试卷】如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A. 28 B. 29 C. 30 D. 31【答案】C点睛:本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.12.【湖北省黄石市2018年中考数学试卷】下列计算中,结果是a7的是()A. a3﹣a4 B. a3•a4 C. a3+a4 D. a3÷a4【答案】B【解析】分析:根据同底数幂的乘、除法法则、合并同类项法则计算,判断即可.详解:A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=.故选:B.点睛:本题考查的是同底数幂的乘、除法、合并同类项,掌握它们的运算法则是解题的关键.13.【江苏省盐城市2018年中考数学试题】下列运算正确的是()A. B. C. D.【答案】C点睛:本题考查合并同类项、同底数幂的乘除法以及幂的乘方运算,解答本题的关键是熟悉并灵活运用各法则进行计算.14.【四川省内江市2018年中考数学试题】下列计算正确的是()A.a+a=a2 B.(2a)3=6a3 C.(a﹣1)2=a2﹣1 D.a3÷a=a2【答案】D【解析】分析:根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.详解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a-1)2=a2-2a+1≠a2-1,故该选项错误;D,a3÷a=a2,故该选项正确,故选:D.点睛:本题考查了并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则,解题的关键是熟记以上各种运算法则.15.【浙江省宁波市2018年中考数学试卷】在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A. 2a B. 2b C. D.【答案】B【点睛】本题考查了正方形的性质,整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.二、填空题16.【山东省菏泽市2018年中考数学试题】若,,则代数式的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把,,代入即可求解.详解:,,,故答案为:点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.17.【江苏省泰州市2018年中考数学试题】计算:x•(﹣2x2)3=_____.【答案】﹣4x7【解析】分析:直接利用积的乘方运算法则化简,再利用单项式乘以单项式计算得出答案.详解:x•(﹣2x2)3=x•(﹣8x6)=﹣4x7.故答案为:﹣4x7.点睛:此题主要考查了积的乘方运算、单项式乘以单项式,正确掌握运算法则是解题关键.18.【浙江省杭州市临安市2018年中考数学试卷】已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=_____.【答案】109【点睛】本题考查了规律型——数字的变化类,观察出整数与分数的分子分母的关系是解题的关键.19.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】根据下列各式的规律,在横线处填空:,,,…,﹣_____=.【答案】【解析】分析:根据给定等式的变化,可找出变化规律“(n为正整数)”,依此规律即可得出结论.详解:∵,,,…,∴(n为正整数).∵2018=2×1009,∴.故答案为:.点睛:本题考查了规律型中数字的变化类,根据等式的变化,找出变化规律“(n为正整数)”是解题的关键.20.【江苏省淮安市2018年中考数学试题】(a2)3=_____.【答案】a6【解析】分析:直接根据幂的乘方法则运算即可.详解:原式=a6.故答案为a6.点睛:本题考查了幂的乘方与积的乘法:(a m)n=a mn(m,n是正整数);(ab)n=a n b n(n是正整数).21.【山东省淄博市2018年中考数学试题】将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【答案】2018点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.22.【四川省达州市2018年中考数学试题】已知a m=3,a n=2,则a2m﹣n的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m-n的值为多少即可.详解:∵a m=3,∴a2m=32=9,∴a2m-n==4.5.故答案为:4.5.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.23.【湖北省孝感市2018年中考数学试题】我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【答案】11点睛:本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.24.【广西壮族自治区桂林市2018年中考数学试题】将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为__________【答案】(505,2)点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.25.【黑龙江省大庆市2018年中考数学试卷】若2x=5,2y=3,则22x+y=_____.【答案】75【解析】【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进而得出答案即可.【详解】∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75,故答案为:75.【点睛】本题考查了同底数幂的乘法以及幂的乘方,熟练掌握运算法则是解题的关键.26.【广西壮族自治区玉林市2018年中考数学试卷】已知ab=a+b+1,则(a﹣1)(b﹣1)=_____.【答案】2【解析】【分析】将(a﹣1)(b﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.【详解】(a﹣1)(b﹣1)= ab﹣a﹣b+1,当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.【点睛】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.27.【上海市2018年中考数学试卷】某商品原价为a元,如果按原价的八折销售,那么售价是_____元.(用含字母a的代数式表示).【答案】0.8a【点睛】本题考查了销售问题、列代数式,弄清题意,列出符合题意的代数式是解题的关键.28.【上海市2018年中考数学试卷】计算:(a+1)2﹣a2=_____.【答案】2a+1【解析】【分析】原式利用完全平方公式展开,然后合并同类项即可得到结果.【详解】(a+1)2﹣a2=a2+2a+1﹣a2=2a+1,故答案为:2a+1.【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键. 29.【吉林省长春市2018年中考数学试卷】计算:a2•a3=_____.【答案】a5.【解析】【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【详解】a2•a3=a2+3=a5,故答案为:a5.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数的幂的乘法的运算法则是解题的关键.30.【云南省昆明市2018年中考数学试题】若m+=3,则m2+=_____.【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.31.【广西钦州市2018年中考数学试卷】观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是_____.【答案】3【点睛】本题考查了规律题——数字的变化类,正确得出尾数变化规律是解题关键.32.【湖北省荆门市2018年中考数学试卷】将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,,,,,…,,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018=_____.【答案】63【解析】【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【详解】∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点睛】本题考查了规律型——数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.33.【湖北省黄冈市2018年中考数学试题】若a-=,则a2+值为_______________________.【答案】8点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.34.【四川省成都市2018年中考数学试题】已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【答案】【解析】分析:根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.详解:S1=,S2=-S1-1=--1=-,S3=,S4=-S3-1=-1=-,S5=,S6=-S5-1=(a+1)-1=a,S7=,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=-.故答案为:-.点睛:本题考查了规律型中数字的变化类,根据数值的变化找出S n的值每6个一循环是解题的关键.三、解答题35.【山东省淄博市2018年中考数学试题】先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【答案】2ab﹣1,=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.36.【湖南省邵阳市2018年中考数学试卷】先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=.【答案】4ab,﹣4.【解析】【分析】原式利用平方差公式,以及完全平方公式进行展开,去括号合并得到最简结果,把a与b 的值代入计算即可求出值.【详解】(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣2,b=时,原式=﹣4.【点睛】本题考查了整式的混合运算﹣化简求值,熟练掌握乘法公式以及整式混合运算的运算顺序及运算法则是解本题的关键.37.【江苏省无锡市2018年中考数学试题】计算:(1)(﹣2)2×|﹣3|﹣()0;(2)(x+1)2﹣(x2﹣x)【答案】(1)11;(2)3x+1.点睛:本题主要考查了整式的运算与实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、绝对值、完全平方公式、去括号法则、合并同类项等考点的运算.38.【湖北省襄阳市2018年中考数学试卷】先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.【答案】3【解析】【分析】根据平方差公式、单项式乘多项式和完全平方公式进行展开,然后进行合并化简,最后再将x、y的值代入化简后的式子即可解答本题.【详解】(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2=x2﹣y2+xy+2y2﹣x2+2xy﹣y2=3xy,当x=2+,y=2﹣时,原式=3×(2+)×(2﹣)=3.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握整式的混合运算顺序以及乘法公式是解答本题的关键.39.【湖北省宜昌市2018年中考数学试卷】先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.【答案】点睛:本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.40.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.。
2024年上海市中考数学试题 (含答案)

2024年上海市初中学业水平考试数学试卷1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(每题4分,共24分)1.如果x y >,那么下列正确的是()A .55x y +<+ B.55x y -<- C.55x y > D.55x y ->-【答案】C【解析】【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3x f x x -=-的定义域是()A.2x = B.2x ≠ C.3x = D.3x ≠【答案】D【解析】【分析】本题考查求函数定义域,涉及分式有意义的条件:分式分母不为0,解不等式即可得到答案,熟练掌握求函数定义域的方法是解决问题的关键.【详解】解:函数2()3x f x x -=-的定义域是30x -≠,解得3x ≠,故选:D .3.以下一元二次方程有两个相等实数根的是()A.260x x -= B.290x -=C.2660x x -+= D.2690x x -+=【答案】D【解析】【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=>,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=>,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=>,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯=,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数2.3 2.3 2.83.1方差 1.050.78 1.050.78A.甲种类B.乙种类C.丙种类D.丁种类【答案】B【解析】【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可.解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为()A.菱形B.矩形C.直角梯形D.等腰梯形【答案】A【解析】【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积法确定CH BF AE DG ===,再由菱形的判定即可得到答案.【详解】解:如图所示:四边形ABCD 为矩形,OBC OAD S S ∴= ,OC OB OA OD ===,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,11112222OBC OAD S S OC BF OB CH OD AE OA DG ∴==⋅=⋅=⋅=⋅ ∴CH BF AE DG ===,如果四个垂线拼成一个四边形,那这个四边形为菱形,故选:A .6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是()A.内含B.相交C.外切D.相离【答案】B【解析】【分析】本题考查圆的位置关系,涉及勾股定理,根据题意,作出图形,数形结合,即可得到答案,熟记圆的位置关系是解决问题的关键.【详解】解: 圆A 半径为1,圆P 半径为3,圆A 与圆P 内切,∴圆A 含在圆P 内,即312PA =-=,P ∴在以A 为圆心、2为半径的圆与ABC 边相交形成的弧上运动,如图所示:∴当到P '位置时,圆P 与圆B 圆心距离PB 最大,为=325<+=,∴圆P 与圆B 相交,故选:B .二、填空题(每题4分,共48分)7.计算:()324x =___________.【答案】664x 【解析】【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-=______.【答案】22b a -【解析】【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.9.已知1=,则x =___________.【答案】1【解析】【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)【答案】3810⨯【解析】【分析】本题考查科学记数法,按照定义,用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,按要求表示即可得到答案,确定a 与n 的值是解决问题的关键.【详解】解:蓝光唱片的容量是普通唱片的53210800081025⨯==⨯倍,故答案为:3810⨯.11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)【答案】减小【解析】【分析】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,牢记“当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小”是解题的关键.利用一次函数图象上点的坐标特征,可求出137k =-,结合正比例函数的性质,即可得出y 的值随x 的增大而减小.【详解】解: 正比例函数y kx =的图象经过点(7,13)-,137k ∴-=,解得:137k =-,又1307k =-< ,y ∴的值随x 的增大而减小.故答案为:减小.12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.【答案】57︒##57度【解析】【分析】本题考查了菱形的性质,等腰三角形的性质以及三角形内角和定理,利用菱形性质得出AB BC =,利用等边对等角得出BAC ACB ∠=∠,然后结合三角形内角和定理求解即可.【详解】解:∵四边形ABCD 是菱形,∴AB BC =,∴()()11180180665722BAC ACB ABC ∠=∠=︒-∠=︒-︒=︒,故答案为:57︒.13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.【答案】4500【解析】【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.【答案】3【解析】【分析】本题主要考查了已知概率求数量,一元一次不等式的应用,设袋子中绿球有3x 个,则根据概率计算公式得到球的总数为5x 个,则白球的数量为2x 个,再由每种球的个数为正整数,列出不等式求解即可.【详解】解:设袋子中绿球有3x 个,∵摸到绿球的概率是35,∴球的总数为3355x x ÷=个,∴白球的数量为532x x x -=个,∵每种球的个数为正整数,∴20x >,且x 为正整数,∴0x >,且x 为正整数,∴x 的最小值为1,∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =uur r,若2AE EC =,则DC = ___________(结果用含a ,b 的式子表示).【答案】23a b - 【解析】【分析】本题考查了平面向量的知识,解答本题的关键是先确定各线段之间的关系.先求出23AE AC =,从而可得AB AE EB =+ .【详解】解: 四边形ABCD 是平行四边形,DC AB ∴∥,DC AB =.E 是AC 上一点,2AE EC =,23AE AC ∴=, 23AB AE EB AE BE b =+=-=- ,∴23DC a b =- ,故答案为:23a b - .16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.【答案】2000【解析】【分析】本题考查条形统计图及用样本的某种“率”估计总体的某种“率”,正确得出需要AR 增强讲解的人数占有需求讲解的人数的百分比是解题关键.先求出需求讲解的人数占有效问卷的百分比,再根据条形统计图求出需要AR 增强讲解的人数占有需求讲解的人数的百分比,进而可得答案.【详解】解:∵共回收有效问卷1000张,其中700人没有讲解需求,剩余300人有需求讲解,∴需求讲解的人数占有效问卷的百分比为300100%30%1000⨯=,由条形统计图可知:需要AR 增强讲解的人数为100人,∴需要AR 增强讲解的人数占有需求讲解的人数的百分比为10013003=,∴在总共2万人的参观中,需要AR 增强讲解的人数约有12000030%20003⨯⨯=(人),故答案为:200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.【答案】27或47##47或27【解析】【分析】本题考查了平行四边形的翻折,求余弦值,等腰三角形的判定及性质,解题的关键是利用分类讨论的思想进行求解.【详解】解:当C '在AB之间时,作下图,根据::1:3:7AC AB BC '=,不妨设1,3,7AC AB BC '===,由翻折的性质知:FCD FC D ''∠=∠,CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD FBA '''∴∠+∠=∠+∠,BC F FBA '∴∠=∠。
【真题】安徽省2018年中考数学试题含答案解析(Word版)

2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1。
的绝对值是()A。
B. 8 C. D。
【答案】B【详解】数轴上表示数—8的点到原点的距离是8,所以—8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635。
2亿科学记数法表示()A。
B。
C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|〈10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635。
2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|〈10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C。
D。
【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得。
【详解】A. ,故A选项错误;B。
,故B选项错误;C。
,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键。
4。
一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得。
【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A。
2023年四川省宜宾中考数学试题(含答案解析)

宜宾市2023年初中学业水平考试暨高中阶段学校招生考试数学(考试时间:120分钟,全卷满分:150分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1.2的相反数是()A.2B. -22.下列计算正确的是()A. 4a-2a = 2 B. 2ab+3ba = 5abC. a + a 2 =a 3D. 5x 2y-3xy 2 =2xy3.下列图案中,既是轴对称图形,又是中心对称图形的是()A.4.为积极践行节能减排的发展理念,宜宾大力推进“电动宜宾"工程,2022年城区己建成充电基础设施接口超过8500个.将8500用科学记数法表示为() C. 8.5X1O 3 D. 8.5xlO 4B. 85x102A. ().85 xlO 4ZD=24。
,则ZE 等于()C. 24°D. 16°6. “今有鸡兔同笼,上有三十五头,下有九十四足, 问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有x 只,兔有y 只,则所列方程组正确的是( )A.x+y = 354x + 2y = 94 B.x+y = 352x+4y = 94 C.x+y = 944x+2y = 35 D.x+y = 942x+4y = 357.如图,己知点A 、B 、C 在。
O 上,C 为AB 的中点.若ZBAC = 35°,则NAO8等于( )A.140°B.120°C.110°D.70°x-228.分式方程J=—的解为()x-3x-3A.2B.3C.4D.59.《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的''会圆术”.如图,AB是以点O为圆心、Q4为半径的圆弧,N是的中点,MN CAB.“会圆术”给出AB的弧长/的近似值计算公式:MNl=当OA=4,ZAOB=60°时,贝以的值为()OA11-4右 C.8-2>/3 D.8-4^310.如图,边长为6的正方形ABCQ中,M为对角线8。
2024年四川省成都市中考化学试题(含答案解析)

A.分子体积变大B.分子个数增多
C.分子运动加快D.分子种类改变
5.“生命宝贵,安全第一”。下列情况的灭火方法或原理错误的是
选项
实例
方法
原理
A
森林发生火灾
开辟隔离带
隔离可燃物
B
家用电器着火
用水浇灭
降低温度
C
酒精洒在桌上起火
用湿毛巾盖灭
降低温度,隔绝空气
D
2.任务二:设计并制作净水器。下列说法合理的是
A.用聚氯乙烯塑料制作外壳,安全环保
B.小卵石和石英砂主要除去可溶性杂质
C.用活性炭净水是因为其结构疏松多孔
D.蓬松棉的主要作用是提高净水的速率
3.任务三:展示并评价作品。下列评价不合理的是
A.净化水硬度变得更小B.制作材料廉价易得
C.制作简单,操作简便D.作品设计简洁美观
A.反应①一定是置换反应B.反应②有氢气生成
C.反应③④一定有沉淀生成D.丙是盐
第Ⅱ卷(非选择题,共43分)
二、(本题只有1个小题,共8分)
15.根据图文回答下列问题。
(1)2015年,屠呦呦因青蒿素的研究获得诺贝尔奖。
①“青蒿”中除含有青蒿素外,还富含______(填“纤维素”或“蛋白质”)。
②青蒿素(C15H22O5)中质量分数最高的元素是______。保持青蒿素化学性质的最小微粒是______。
③目前,新能源车与燃油车相比,优点有______(填序号)。
a.节能环保b.智能化程度高c.废旧电池回收成本高
三、(本题只有1个小题,共10分)
16.几种作物的无土栽培营养液部分溶质的质量分数如表,配制溶液的仪器如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市二O 一三年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( ) (A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C )32-=6 (D )0)2013(-=06.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为( )(A )1.3×510 (B )13×410 (C )0.13×510 (D )0.13×6107.如图,将矩形ABCD 沿对角线BD 折叠,使点C 和点'C 重合,若AB=2,则'C D 的长为( ) (A )1 (B )2 (C )3 (D )48.在平面直角坐标系中,下列函数的图像经过原点的是( ) (A )y=-x +3 (B )y=x5(C )y=x 2 (D )y=722-+-x x 9.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根 (D )没有实数根10.如图,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为( ) (A )40° (B )50° (C )80° (D )100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式312>-x 的解集为_______________. 12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90° (1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:等级 成绩(用s 表示) 频数频率 A 90≤s ≤100 x0.08B 80≤s <9035 y C s <8011 0.22 合 计501请根据上表提供的信息,解答下列问题: (1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当33k =-时,2BP BO BA =⋅;○4PAB ∆面积的最小值为46. 其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______. (参考数据:62sin15cos 754-==, 62cos15sin 754+==) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上) 26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ;(2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由: (2)若3tan 4ADB ∠=,4333PA AH -=,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标; ii )取BC 的中点N ,连接,NP BQ .试探究PQNP BQ+是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.成都市二〇一三年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案及评分意见说明:(一)考生的解法与“参考答案”不同时,可参照“答案的评分标准”的精神进行评分(二)如解答的某一步计算出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步骤应得的分数.(四)评分的最小单位是1分,得分或扣分都不能出现小数.A卷(共100分)第Ⅰ卷(共30分)一、选择题(每小题3分,共30分)1.B;2.C;3.A;4.D;5.B;6.A;7.B;8.C;9.A;10.D.第Ⅱ卷(共70分)二、填空题(每小题4分,共16分)x ;12.10;13.60;14.100.11.2三、 解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分) (1)解:原式=343223++-······4分=4.······6分(2)解:由①+②,得 36x =, ∴2x =.······3分把2x =代入①,得 21y +=,∴ 1y =-.······5分 ∴ 原方程组的解为 2,1.x y =⎧⎨=-⎩······6分16.(本小题满分6分)解:原式=2(1)(1)1a a a a --÷-······4分=(1)a a -21(1)a a -⋅- ······5分 =a .······6分17.(本小题满分8分)解:(1)如图,△AB ′C ′为所求三角形.······4分(2)由图可知, 2AC =,∴线段AC 在旋转过程中所扫过的扇形的面积为:2902360S π⋅==π.······8分18.(本小题满分8分) 解:(1)4,0.7;(每空2分)······4分(2)由(1)知获得A 等级的学生共有4人,则另外两名学生为A 3和A 4.画如下树状图:所有可能出现的结果是:(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 2,A 1),(A 2,A 3),(A 2,A 4),(A 3,A 1),(A 3,A 2),(A 3,A 4),(A 4,A 1),(A 4,A 2),(A 4,A 3).······7分 或列表如下:······7分由此可见,共有12种可能出现的结果,且每种结果出现的可能性相同,其中恰好抽到A 1,A 2两名学生的结果有2种. ∴P (恰好抽到A 1,A 2两名学生)21126==. ·····8分19.(本小题满分10分)解:(1)∵ 一次函数11y x =+的图象经过点(A m ,2),∴ 21m =+. ······1分 解得 1m =.······2分 ∴ 点A 的坐标为(1A ,2).······3分∵ 反比例函数2ky x=的图象经过点(1A ,2), ∴ 21k =. 解得 2k =.∴ 反比例函数的表达式为22y x=. ······5分(2)由图象,得当01x <<时,12y y <;······7分当1x =时,12y y =; ······8分当1x >时,12y y >.······10分20.(本小题满分10分)解:(1)证明:∵BD ⊥BE ,A ,B ,C 三点共线,∴∠ABD +∠CBE =90°.······1分∵∠C =90°, ∴∠CBE +∠E =90°. ∴∠ABD =∠E .又∵∠A =∠C ,AD =BC , ∴△DAB ≌△BCE (AAS).······2分∴AB=CE .∴AC=AB+BC=AD+CE .······3分(2)ⅰ)连接DQ ,设BD 与PQ 交于点F .∵∠DPF =∠QBF =90°,∠DFP =∠QFB , ∴△DFP ∽△QFB .······4分∴DF PFQF BF=. 又∵∠DFQ =∠PFB ,∴△DFQ ∽△PFB .······5分∴∠DQP =∠DBA . ∴tan tan DQP DBA ∠=∠. 即在Rt △DPQ 和Rt △DAB 中,DP DAPQ AB=. ∵AD=3,AB=CE=5, ∴35DP PQ =. ·····7分ⅱ)线段DQ 的中点所经过的路径(线段)长为2334.······10分B 卷(共50分)一、填空题(每小题4分,共20分) 21.13-; 22.711; 23.0或1;24.③④;25.2p b c =+;62p c +=+(每空2分).二、解答题(本大题共3个小题,共30分) 26.(本小题满分8分)解:(1)当37t <≤时,设v kt b =+,把(3,2),(7,10)代入得23,107.k b k b =+⎧⎨=+⎩······1分解得2,4.k b =⎧⎨=-⎩······2分∴2 4.v t =- ······3分(2)当03t ≤≤时,2.s t = ······4分当37t <≤时,[]1232(24)(3)2s t t =⨯++-- 249.t t =-+······6分∴总路程为:2747930-⨯+=,且73021 6.10⨯=> 令21s =,得24921t t -+=.解得16t =,22t =-(舍去).∴该物体从P 点运动到Q 点总路程的710时所用的时间是6秒. ······8分 27.(本小题满分10分)解:(1)PD 与⊙O 相切.理由如下:······1分过点D 作直径DE ,连接AE . 则∠DAE =90°.∴∠AED + ∠ADE =90°.∵∠ABD =∠AED ,∠PDA =∠ABD , ∴∠PDA =∠AED .······2分∴∠PDA +∠ADE =90°. ∴PD 与⊙O 相切.······3分(2)连接BE ,设AH =3k ,∵3tan 4ADB ∠=,PA AH =,AC ⊥BD 于H .∴DH =4k ,AD =5k ,()3PA k =,PH PA AH =+=.∴tan 3DH P PH ==∴∠P =30°,8PD k =. ······4分∵BD ⊥AC , ∴∠P +∠PDB =90°. ∵PD ⊥DE ,∴∠PDB +∠BDE =90°. ∴∠BDE =∠P =30°. ∵DE 为直径,∴∠DBE =90°,DE =2r =50.······5分 ∴cos 50cos30253BD DE BDE =⋅∠=︒=······6分(3)连接CE .∵DE 为直径, ∴∠DCE =90°.∴4sin sin 50405CD DE CED DE CAD =⋅∠=⋅∠=⨯=. ······7分∵∠PDA =∠ABD =∠ACD ,∠P =∠P , ∴△PDA ∽△PCD . ∴PD DA PAPC CD PD==. ∴()43385408k k kPC k==.解得:PC =64,433k =. ······8分∴()()264433644337243AC PC PA k =-=-=-=+ ······9分 ∴S 四边形ABCD = S △ABD + S △CBD1122BD AH BD CH =⋅+⋅ 12BD AC =⋅ 1753900= ······10分28.(本小题满分12分)解:(1)由题意,得点B 的坐标为(4,–1).······1分∵抛物线过点A (0,–1),B (4,–1)两点,∴21,1144.2c b c -=⎧⎪⎨-=-⨯++⎪⎩解得2,1.b c =⎧⎨=-⎩ ∴抛物线的函数表达式为:21212y x x =-+-.······3分(2)ⅰ)∵A 的坐标为(0,–1),C 的坐标为(4,3).∴直线AC 的解析式为:y =x –1.设平移前的抛物线的顶点为P 0,则由(1)可得P 0的坐标为(2,1),且P 0在直线AC 上. ∵点P 在直线AC 上滑动,∴可设P 的坐标为(m ,m -1),则平移后的抛物线的函数表达式为21()(1)2y x m m =--+-.解方程组21,1()(1).2y x y x m m =-⎧⎪⎨=--+-⎪⎩得{11,1,x m y m ==-{222,3.x m y m =-=- 即P (m ,m -1),Q (m -2,m -3).过点P 作PE ∥x 轴,过点Q 作QE ∥y 轴,则 PE =m -(m -2)=2,QE =(m -1)-(m -3)=2. ∴PQ =22AP 0.······5分若△MPQ 为等腰直角三角形,则可分以下两种情况:①当PQ 为直角边时:M 到PQ 的距离为为22(即为PQ 的长).由A (0,-1),B (4,-1),P 0(2,1)可知:△ABP 0为等腰直角三角形,且BP 0⊥AC ,BP 0=22.过点B 作直线l 1∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线l 1的解析式为:1y x b =+.又∵点B 的坐标为(4,–1),∴114b -=+.解得15b =-. ∴直线l 1的解析式为:5y x =-. 解方程组25,12 1.2y x y x x =-⎧⎪⎨=-+-⎪⎩得:114,1,x y =⎧⎨=-⎩222,7.x y =-⎧⎨=-⎩ ∴1(4,1)M -,2(2,7)M --.······7分②当PQ 为斜边时:MP =MQ =2,可求得M 到PQ 的距离为为2.取AB 的中点F ,则点F 的坐标为(2,-1).由A(0,-1),F(2,-1),P 0(2,1)可知:△AFP 0为等腰直角三角形,且F 到AC 的距离为2.∴过点F 作直线l 2∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线l 2的解析式为:2y x b =+. 又∵点F 的坐标为(2,–1), ∴212b -=+.解得23b =-. ∴直线l 2的解析式为:3y x =-. 解方程组23,12 1.2y x y x x =-⎧⎪⎨=-+-⎪⎩ 得: 1115,25,x y ⎧=+⎪⎨=-+⎪⎩2215,2 5.x y ⎧=-⎪⎨=--⎪⎩ ∴3(15,25)M +-+,4(15,25)M ---.······9分综上所述:所有符合条件的点M 的坐标为:1(4,1)M -,2(2,7)M --,3(15,25)M +-+,4(15,25)M ---.ⅱ) PQNP BQ+存在最大值,理由如下: 由ⅰ)知PQ =22,当NP +BQ 取最小值时,PQNP BQ+有最大值.取点B 关于AC 的对称点B ′,易得B ′ 的坐标为(0,3),BQ = B ′Q . 连接QF ,FN ,QB ′,易得FN PQ . ∴四边形PQFN 为平行四边形. ∴NP=FQ .∴NP +BQ =F Q + B ′P ≥F B ′222425+=当B ′,Q ,F 三点共线时,NP +BQ 最小,最小值为25 ∴PQ NP BQ +的最大值 222510.······12分。