绝对值2比较

合集下载

初一数学(北京版)相反数和绝对值(2)

初一数学(北京版)相反数和绝对值(2)
a
引入新知
求+7的绝对值距离是7个单位长度,
所以+7的绝对值仍是+7,记作 7 7.
引入新知
求-5的绝对值:
5个单位长度
数轴上表示-5的点到原点的距离是5个单位长度,
所以-5的绝对值是+5,记作 5 5. 特殊地,我们规定0的绝对值是0,记作 0 0.
25,- 5 ,- 0.16,0,16546,- 0.0001. 12
解: -0.16 = -( - 0.16) =0.16;
应用新知
例2 分别求下列有理数的绝对值
25,- 5 ,- 0.16,0,16546,- 0.0001. 12
解: 0 = 0;
应用新知
例2 分别求下列有理数的绝对值
25,- 5 ,- 0.16,0,16546,- 0.0001. 12
探究新知
例1 (1)依次用数轴上的点A,B,C,D,E,F,O分 别表示下列各数:-2,+3, -4, -2.5,1,5,0
-2.5
(2)分别求出这几个数的绝对值.
探究新知
(2)分别求出这几个数的绝对值.
-2的绝对值 2个单位长度
在数轴上表示-2的点A,到原点的距离是2个单位长度,所以-2
的绝对值是+2,记作 2 2.
探究新知
(2)分别求出这几个数的绝对值.
-2.5的绝对值 2.5个单位长度
-2.5
在数轴上表示-2.5的点D,到原点的距离是2.5个单位长度,
所以-2.5的绝对值是 +2.5,记作 2.5 2.5.
探究新知
(2)分别求出这几个数的绝对值.
1的绝对值
1个单位长度
在数轴上表示1的点E,到原点的距离是1个单位长度,所以1的

第一章 有理数绝对值2 有理数大小比较 (人教版七年级上)

第一章 有理数绝对值2 有理数大小比较 (人教版七年级上)
在日常生活和生产中,我们借助绝对值 的意义可以判断某些产品质量的好差,你 能回答下列问题吗? 正式排球比赛对所有排球的质量有严 格的规定,下列5个质量检测结果:(用正 数记超过质量的克数,用负数记不足质量 的克数) +15,-10,+25,-25,-8 请指出哪个排球的质量好一些.
(1)正数大于0,0大于负数,正数 大于负数; (2)两个负数,绝对值大的反而小.
异号两数比 较要考虑它们的 正负.
24 5 ( 2) 和- ; 35 7
两负数相比较,绝 对值大的反而小.
解:两个负数做比较,先求它们的绝对值.
24 24 5 5 25 = , . 35 35 7 7 35 24 25 因为 , 35 35 24 5 所以 - , 35 7 24 5 所以 - . 35 7
再次观察下列数,现在你会比较它们 的大小吗?
> -8 -6___ > -7 5___
-2___0 <
负数和负数 正数和负数
负数和0 正数和0
> 2____0
任意几个数比较大小方法: (1)按照负数<0,0<正数,负数<正数 的规定比较; (2)在数轴上找出每个数,观察它们 从左到右的顺序,
练一练
1.数轴上表示数a的点与原点的距离叫做数a
的绝对值.
2. |a|≥0. 3.(1)如果a>0,那么|a|=a; (2)如果a<0,那么|a|=-a; (3)如果a=0,那么|a|=0.
4.有理数大小比较方法:
(1)负数<0,0<正数,负数<正数;
(2)两负数相比较,绝对值大的反而小; (3)将数在数轴上表示,按从左到右的顺序 排列,即是数从小到大的顺序.

初中数学知识点精讲精析 绝对值 (2)

初中数学知识点精讲精析 绝对值 (2)

2.3 绝对值学习目标1.会借助数轴,理解绝对值和相反数的概念。

2.知道| a|的含义以及互为相反数的两个数在数轴上的位置关系。

3.会求一个数的绝对值和相反数,能用绝对值比较两个负数的大小。

知识详解1.相反数(1)相反数的定义像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0。

相反数的理解:①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数③0的相反数为0是相反数定义的重要组成部分。

(2)相反数的求法求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数。

一个有理数a,它的相反数是多少呢?有理数a的相反数是-a.这里a可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a=2时,-a=-2,2与-2是互为相反数;当a=-1时,-a=-(-1),因为-1的相反数是1,所以-(-1)=1;当a=m+n时,-a=-(m +n),所以m+n的相反数是-(m+n).(3)相反数的几何意义一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等。

2.绝对值(1)绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

①绝对值是一个数在数轴上的对应点离开原点的长度,如图中,点-4距离原点4个单位长度,则-4的绝对值就是4②绝对值是一个距离。

(2)绝对值的表示方法一个数a的绝对值记作|a|,读作a的绝对值.如,+4的绝对值记作|+4|,-8的绝对值记作|-8|。

(3)绝对值的代数意义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0。

用式子表示为:|a|=⎩⎪⎨⎪⎧ a ,a>0,0,a =0,-a ,a<0.3.绝对值的性质(1)数轴上表示某个数的点到原点的距离越近,它的绝对值就越小,到原点的距离越远,它的绝对值就越大。

2021年北师在版七年级数学上册2 绝对值课件

2021年北师在版七年级数学上册2 绝对值课件
4.通过运用绝对值解决实际问题,体会绝对值的意义和作 用. 3.能求一个数的绝对值和相反数,会利用绝对值比较两个 负数的大小. 2.知道|a|的含义以及互为相反数的两个数在数轴上的 位置关系. 1.借助数轴,理解相反数和绝对值的概念.
探究新知
知识点 1 相反数 甲、乙两人最初都在O城市,现甲要到O城市的东方30km
探究新知
知识点 2 绝对值
观察下列每对数,并把它们在数轴上标出:
6和- 6,2和 -2,1和-1
-6
-2 -1 1 2
6
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
表示每对数的两个点在数轴上有什么特点? 表示每对数的两点分别位于原点的两边且到原点的距离相等.
探究新知
两只狗分别 距原点多远?
北师大版 数学 七年级 上册
2.3 绝对值
导入新知
观察下列每对数,并把它们在数轴上标出: 5和- 5,3和 -3,1.5和-1.5
-5 -3 -1.5
1.5 3
5
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
想一想 上述各对数之间有什么特点? 每一对数数字相同,符号不同.
素养目标
素养考点 求相反数
例 如果a与﹣2互为相反数,那么a等于( B )
A.-2 B.2
C.-12
D.
1 2
方法点拨:求一个数的相反数的方法:求一个具体数的 相反数时,只需改变这个数前面的符号,其他部分不变.
巩固练习
变式训练
下列说法: ①-2是相反数; ② 2是相反数; ③-2是2的相反数; ④-2和2互为相反数. 其中正确的有( B ) A.1个 B.2个 C.3个 D.4个
课堂检测

《绝对值》(2)教案 (公开课)2022年

《绝对值》(2)教案 (公开课)2022年

§2.3绝对值〔2〕二、教学目标1、使学生进一步掌握绝对值概念;2、使学生掌握利用绝对值比较两个负数的大小;3、注意培养学生的推时论证能力 三、教学重点和难点负数大小比较 四、教学手段现代课堂教学手段 五、教学方法启发式教学 六、教学过程〔一〕、从学生原有认知结构提出问题1、计算:|+15|;|-31|;|0| 2、计算:|21-31|;|-21-31|.3、比较-(-5)和-|-5|,+(-5)和+|-5|的大小4、哪个数的绝对值等于0?等于31?等于-1? 5、绝对值小于3的数有哪些?绝对值小于3的整数有哪几个? 6、a ,b 所表示的数如以下列图,求|a|,|b|,|a+b|,|b-a| 7、假设|a|+|b-1|=0,求a ,b这一组题从不同角度提出问题,以使学生进一步掌握绝对值概念 解:1、|+15|=15,|-31|=31,|0|=0让学生口答这样做的依据 2、|21-31|=|61|=61|,|-21-31=-〔-21-31〕。

说明:“| |〞有两重作用,即绝对值和括号3、因为-(-5)=5,-|-5|=-5,5>-5, 所以-(-5)>-|-5|。

这里需讲清一个问题,即-(-5)和-|-5|的读法,让学生熟悉,-(-5)读作-5的相反数,-|-5|读作-5绝对值的相反数因为+(-5)=-5,+|-5|=,-5<5, 所以+(-5)<+|-5|4、0的绝对值等于0,±31的绝对值等于31,没有什么数的绝对值等于-1(为什么?)用符号语言表示应为:|0|=0,|+31|=31|,|-31|=31。

这里应再次强调绝对值是数轴上的点与原点的距离,并指出距离是非负量5、绝对值小于3的数是从-3到3中间的所有的有理数,有无数多个;但绝对值小于3的整数只有五个:-2,-1,0,1,2用符号语言表示应为:因为|x|<3,所以-3<x <3如果x 是整数,那么x=-2,-1,0,1,26、由数轴上a 、b 的位置可以知道a <0,b >0,且|a|<|b| 所以|a|=-a ,|b|=b ,|a+b|=a+b ,|b-a|=b-a 7、假设a+b=0,那么a ,b 互为相反数或a ,b 都是0,因为绝对值非负,所以只有|a|=0,|b-1|=0,由绝对值意义得a=0,b-1=0用符号语言表示应为:因为|a|+|b-1|=0,所以a=0,b-1=0, 所以a=0,b=1〔二〕、师生共同探索利用绝对值比较负数大小的法那么 利用数轴我们已经会比较有理数的大小由上面数轴,我们可以知道c <b <a ,其中b ,c 都是负数,它们的绝对值哪个大?显然c >b 引导学生得出结论:两个负数,绝对值大的反而小这样以后在比较负数大小时就不必每次再画数轴了 〔三〕、运用举例 变式练习 例1 比较-421与-|—3|的大小 例2 a >b >0,比较a ,-a ,b ,-b 的大小 例3 比较-32与-43的大小 课堂练习1、比较以下每对数的大小:32与52;|2|与36;-61与112;73-与52-2、比较以下每对数的大小: -107与-103;-21与-31;-51与-201;-21与-32〔四〕、小结先由学生表达比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了 七、练习设计1、判断以下各式是否正确:(1)|-01|<|-001|; (2)|-31|<41; (3) 32<43-; (4)81>-712、比较以下每对数的大小:(1)-85与-83;(2)-113与-0273;(3)-73与-94;(4)- 65与-1110;(5)- 32与-53;(6)- 97与-1193、写出绝对值大于3而小于8的所有整数4、你能说出符合以下条件的字母表示什么数吗? (1)|a|=a ; (2)|a|=-a ; (3)xx =-1; (4)a >-a ;(5)|a|≥a ; (6)-y >0; (7)-a <0; (8)a+b=05假设|a+1|+|b-a|=0,求a ,b 八、板书设计2.3绝对值〔2〕〔一〕知识回忆 〔三〕例题解析 〔五〕课堂小结例1、例2〔二〕观察发现 〔四〕课堂练习 练习设计九、教学后记在传授知识的同时,一定要重视学科根本思想方法的教学关于这一点,布鲁纳有过精彩的论述他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路〞,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力不但使数学学习变得容易,而且会使得别的学科容易学习显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和开展数学能力为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内窬形式地传授本课中,我们有意识地突出“分类讨论〞这一数学思想方法,以期使学生对此有一个初步的认识与了解平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。

绝对值2教案

绝对值2教案

学科:数学 教学内容:绝对值【基础知识精讲】1.给出一个数,能求出它的绝对值. 2.会利用绝对值比较两个负数的大小.【重点难点解析】 明确绝对值的意义一个数的绝对值就是数轴上表示这个数的点与原点的距离,这就是绝对值的几何意义,即表示数a 的点是P ,则一定是|a|=OP .绝对值的代数定义是:设a 为有理数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值为0,注意对于任何有理数a ,都有0||≥a ,在今后的学习中很重要.A .重点、难点提示B .考点指要绝对值是初中数学的一个重要内容,也是中考的必考内容之一。

一个数的绝对值与这个数的关系:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

比较两个负数的大小,可利用绝对值比较,也可以利用数轴比较。

【难题巧解点拨】例1 求下列各数的绝对值: -32,53+,0,-2.1 解:32|32|=-,5353=+,|0|=0,|-2.1|=2.1。

例2 比较下列各组数的大小:(1)-1与0 (2)-1与-2 (3)32-与-2.1 解:(1)因为-1在数轴上的对应点在0在数轴上的对应点的左边,所以-1<0。

(2)因为|-1|=1,|-2|=2,1<2,所以-2<-1。

(3)在为3232=-,|-2.1|=2.1,1.232<,所以321.2-<-。

(两个负数的比较,转化成了它们的绝对值的大小的比较,即两个正数的大小的比较,这就是化归转化的思想)注:比较两个有理数的大小,还可以应用数轴比较,这样较直观。

方便,同学们不妨试一试。

例3 已知a>b>0,试比较-a 与-b 的大小。

解法一:因为a>b>0,所以-a<0,-b<0, 而|-a|=a ,|-b|=b ,又a>b ,所以-a<-b 。

人教版初中七年级数学第一单元有理数《绝对值(2)》教案

人教版初中七年级数学第一单元有理数《绝对值(2)》教案

人教版初中七年级数学第一单元有理数1.2.4 第二课时 有理数的大小比较一、教学目标(一)学习目标1.理解并掌握有理数大小的比较的方法;2.会比较有理数的大小,并能正确地使用“>”或“<”号连接; 3.通过对有理数大小比较方法的推理,培养学生的数学推理能力.(二)学习重点运用绝对值的知识比较两个负数的大小;(三)学习难点有理数大小比较的推理.二、教学设计(一)课前设计 1.预习任务(1)在数轴上,右边的数总比左边的数大; (2)正数大于0,负数小于0,正数大于负数; (3)两个负数比较,绝对值大的反而小. 2.预习自测(1)有理数a 在数轴上对应的点如图所示,则a ,a -,-1的大小关系是 ( )A .1-<<-a aB .a a <-<-1C .a a -<-<1D .1-<-<a a【知识点】有理数的大小比较 【数学思想】数形结合【解题过程】解:由数轴可知:a a -<-<1【思路点拨】根据数轴上的点,左边的数总比右边的数小即可求解. 【答案】Ca(2)下列四个数中,最大的数是( ) A .-6 B .-2 C .0 D .21- 【知识点】有理数的大小比较【解题过程】解: 题意可得:02126<-<-<-【思路点拨】根据两个负数比较绝对值大的反而小和0大于负数即可求解. 【答案】 C(3)在5,23,-1,+0.001这四个数中,小于0的数是 ( ) A .5 B .23C .-1D .+0.001【知识点】有理数的大小比较 【解题过程】解:在5,23,-1,+0.001这四个数中,小于0的数是 -1. 【思路点拨】根据0大于负数,正数大于0,正数大于负数即可求解. 【答案】C(4)下列四组有理数的大小比较正确的是( )A .3121->- B .11+->--C .3121< D .3121->-【知识点】有理数的大小比较 【解题过程】解: 因为623131,632121==-==-且6263> 所以3121-<-,故A 错误; 因为11,11-=+--=--,所以11+-=--,故B 错误;又C 错误;故应选D . 【思路点拨】根据有理数大小比较的法则即可求解. 【答案】D .(二)课堂设计1.知识回顾(1)绝对值的定义是什么? (2)绝对值的法则是什么? (3)数轴的三要素是什么?2.问题探究探究一有理数大小的比较法则活动①某一天我国5个城市的最低气温如图所示:(1)比较这5个城市,哪个城市的最低气温最低?是多少?哪个城市的最低气温最高?是多少?(2)你能将这5个城市的最低气温按从低到高的顺序排列吗?(3)请你将这5个数字分别在数轴上表示出来?学生举手抢答.总结:(1)数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数总小于右边的数.师问:对于正数、0和负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?学生举手抢答.总结:有理数大小比较的法则:一般地,(1)正数大于0,0大于负数,正数大于负数;(2)两个负数比较,绝对值大的反而小.【设计意图】学生通过生活中的实际问题的大小比较,自然的引出有理数大小的比较方法,体验数学来源于生活的本质,通过小组合作和师生互动,激发学生学习热情的同时,锻炼学生的小组合作能力,分析归纳的能力等.探究二会比较有理数的大小,并能正确地使用“>”或“<”号连接★活动①:会比较有理数的大小,并能正确地使用“>”或“<”号连接例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0【知识点】有理数的大小比较【数学思想】数形结合.【解题过程】解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.5 4【思路点拨】画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.【答案】-3.5<-112<0<12<4<+5.练习:把如图的直线补充成一条数轴,并表示下列各数:0,-(+4),312,-(-2),|-3|,+(-5),并用“<”号连接.【知识点】有理数的大小比较. 【数学思想】数形结合.【解题过程】解:∵-5<-4<0<2<3<312,∴+(-5)<-(+4)<0<-(-2)<|-3|<312,在数轴上表示:【思路点拨】先判断各数的大小,然后确定数轴的三要素即可在数轴上表示各数的位置. 【答案】+(-5)<-(+4)<0<-(-2)<|-3|<312【设计意图】通过练习,理解用数轴比较大小的方法,体会数形结合给解题带来的方便。

班课讲义有理数(二)绝对值相反数和比较大小

班课讲义有理数(二)绝对值相反数和比较大小

标题: 有理数(二)——相反数、绝对值教学目标重点、难点教 学 内 容一、 知识点梳理+例题(一)相反数1.在数轴上分别找出表示各数的点。

6与―6,―213与213,―1.5与1.5 想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与―6,―213与213,―1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。

3.发现、总结相反数的定义:象这样只有符号不同的两个数称互为相反数 (opposite number)。

理解:代数定义:只有符号不同的两个数互为相反数。

0的相反数是0。

几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。

0的相反数是0。

说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。

“0的相反数是0”是相反数定义的一部分。

这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。

补充:一.相反数定义:只有符号不同的两个数叫做互为相反数定义的理解: “只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。

不能理解为只要符号不同的两个数就互为相反数。

另外,“0的相反数是0”也是相反数定义的一部分。

关于“数a 的相反数是-a”,应该明确的是-a 不一定是正数,a 不一定是正数。

关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二.相反数的意义(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。

如5与-5是互为相反数。

(3)0的相反数是0。

也只有0的相反数是它的本身。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3) ( 1)与 | 1 |;(4) 3 与 2。
9
10
43
怎样比较两个负数的大小
(1) 先分别求出两个负数的绝对值;
(2) 绝对值大的那个负数反而小,用“>” 或“<”表示出来。
有理数大小比较法则:
1、在数轴上表示的两个数,右边的总 比左边的数大。
2、正数都大于零,负数都小于零, 正数大于负数。
2.比较下列各组数的大小:
(1)- 和-
(2)- 和-1.42
(3)- 和-| |
(4)- 和-
3、 比较大小 -(-2) -(-3) +(-3) -(-3)
-0.25————(
1) 3
-(-a) a
4、挑战自我
(1)若a>0,b<0,|a|<|b|,则你能比较 a、b、-a、-b这四个数的大小吗?
北京在某日6时,14时,20时
50
的气温分别为-5ºC,4ºC和
45 40
35
-3ቤተ መጻሕፍቲ ባይዱC.你能把温度从高到低 30 25
排列吗?
20 15
10
5
0
-5
-10
-15
-20
把有理数-3,-5,4和0表示在数轴 上,这些数的大小与其在数轴上 的点的位置有什么关系?




-5 -4 -3 -2 -1 0 1 2 3 4 5
1.59
-10、-8两数中,哪个数大?它们的绝对值 呢?
表示-10的点A比表示-8的点B离开原 点比较 远 。 显然|-10| > |-8| ,点A在点B的左 边, 所以-10 < -8。
规律3: 两个负数,绝对值大的反而小。 一个数的绝对值大于或等于0。
例2、比较下列各数的大小:
(1) - 1 与 - 0.01 ;(2) - | - 2 | 与 0
(2)小明在课外书上看到一道习题: “若a表示一个有理数,请比较a与-a的 大小”,他觉得太简单了,马上就得出 了a> -a的结论,你知道小明是根据哪 一条法则得出来的吗?他说得有道理吗?
5、思考:
我的收获是 … … 我感受到了… … 我的问题存在于… …
3、两个正数比较大小,绝对值大 的数大;两个负数比较大小,绝对 值大的数反而小。
1.在数轴上,下面说法中不正确的( ) A.两个有理数,绝对值大的离原点远 B.两个有理数,大的在右边 C.两个负有理数,大的离原点近 D.两个正有理数,大的离原点远
2.在数轴上,下面说法中不正确的是( ) A.两个有理数,绝对值大的离原点远 B.两个有理数,大的在右边 C.两个负有理数,大的离原点近 D.两个正有理数,大的离原点远
规律1:在数轴上表示的两个数,右 边的数总比左边的数大.
例1 在数轴上表示数2,0,-1, 并把它们两两比较大小,用“<”号连接
规律2:正数都大于零, 负数都小于零, 正数大于一切负数.
习题1、用“>”或“<”号填空。
(1)3.5 (2)-2.8 (3)-1.95 (4)0 (5)-7
0 0
-4 3
相关文档
最新文档