工程力学中四种强度理论

合集下载

四大强度理论对比

四大强度理论对比

四大强度理论1、最大拉应力理论(第一强度理论):ﻫ这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:ﻫσ1=σb。

σb/s=[σ]ﻫ所以按第一强度理论建立的强度条件为:ﻫﻫσ1≤[σ].ﻫ2、最大伸长线应变理论(第二强度理论):ﻫ这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

ﻫεu=σb/E;ε1=σb/E。

由广义虎克定律得:ﻫε1=[σ1-u(σ2+σ3)]/Eﻫ所以σ1-u(σ2+σ3)=σb.ﻫ按第二强度理论建立的强度条件为:ﻫσ1-u(σ2+σ3)≤[σ]。

ﻫ3、最大切应力理论(第三强度理论):ﻫ这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

τmax=τ0。

ﻫ依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1—σ3)/2.所以破坏条件改写为σ1-σ3=σs。

4、形状改变比能理论按第三强度理论的强度条件为:σ1-σ3≤[σ]。

ﻫﻫ(第四强度理论):ﻫﻫ这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力ﻫﻫ状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

ﻫ发生塑性破坏的条件为:所以按第四强度理论的强度条件为:2、sqrt(σ1^2+σ2^2+σ3^2—σ1σ2-σ2σ3-σ3σ1)〈[σ]四个强度理论的比较名称最大拉应力理论第一强度理论最大伸长线应变理论第二强度理论最大剪应力理论第三强度理论形状改变比能理论第四强度理论理论根据当作用在构件上的外力过大时,其危险点处的材料就会沿最大拉应力所在截面发生脆断破坏当作用在构件上的外力过大时,其危险点处的材料就会沿最大伸长线应变的方向发生脆断破坏当作用在构件上的外力过大时,其危险点处的材料就会沿最大剪应力所在截面滑移而发生屈服破坏对材料破坏原因的假设最大拉应力1是引起材料脆断破坏的因素;也就是认为不论在什么样的应力状态下,只要构件内一点处的三个主应力中最大的拉应力1到达材料的极限值jx,材料就会发生脆断破坏最大伸长线应变1是引起材料脆断破坏的因素;也就是认为不论在什么样的应力状态下,只要构件内一点处的最大伸长线应变1到达了材料的极限值jx,材料就会发生脆断破坏最大剪应力max是引起材料屈服破坏的因素;也就是认为不管在什么样的应力状态下,只要构件内一点处的最大剪应力max达到材料的极限值jx,该点处的材料就会发生屈服破坏形状改变比能d是引起材料屈服破坏的因素;也就是说不论在什么样的复杂应力状态下,只要构件内一点处的形状改变比能达到材料的极限值 d jx,该点处的材料就会发生屈服破坏材料极限值获得方法通过任意一种使试件发生破坏的试验来确定通过任意一种使试件发生脆断破坏的试验来确定通过任意一种使试件发生屈服破坏的试验来确定表示极限应力jx由简单的拉伸试验知ﻫjx =b极限应变jxﻫ由单向拉伸试件在拉断时其横截面上的正应力jx决定ﻫjx=jx /E极限剪应力jxﻫ由单向拉伸试验知ﻫjx=s /2ﻫs为材料的屈服极限极限形状改变比能 d jxﻫ在简单拉伸条件下因1=s,2=3=0d jx=材料破坏条件脆断破坏1=b(a)脆断破坏ﻫ1=jx=jx /E(b)屈服破坏max=jx =s /2 (c)屈服破坏ﻫ d= d jx强度条件1≤[] (1—59)ﻫ[]由b除以安全系数得到公式中的1必[1-(2+3)]≤[]ﻫ(1-60)ﻫ[]由jx除以安全系数得到(1—3)≤[] (1-61)[]由s除以安全系数得到这一理论的缺点是没有考虑对中间主应力2材料屈服的影响。

材料力学在工程设计中常用的强度理论有四种

材料力学在工程设计中常用的强度理论有四种

材料力学在工程设计中常用的强度理论有四种材料力学是研究材料力学性能和强度的学科,它在工程设计中起着至关重要的作用。

材料力学可以通过各种理论和方法来分析和预测材料在不同工程应用中的强度和性能。

在工程设计中,常用的材料强度理论有四种,分别是极限强度理论、变形能量理论、排斥原则理论和应变能量密度理论。

极限强度理论是最早也是最简单的一种强度理论,它基于材料的抗拉和抗压强度来进行设计。

根据极限强度理论,当应力达到材料的抗拉或抗压强度时,材料就会发生破坏。

这种理论适用于一些简单的材料和结构设计,但对于复杂的应力状态和材料特性不够准确。

变形能量理论是一种基于变形能量的强度理论,它是由应力和应变能量的平衡关系来进行设计。

根据变形能量理论,当变形能量达到最大值时,材料就会发生破坏。

这种理论考虑了材料的变形特性和应力-应变关系,对于复杂应力状态下的材料强度预测更加准确。

排斥原则理论是一种基于材料本身的排斥性质进行设计的强度理论。

根据排斥原则理论,材料的破坏是由于材料内部的排斥效应达到一定程度而引起的。

这种理论考虑了材料的微观结构和材料本身的排斥性质,对于一些高强度和高韧性材料的设计有着重要的应用价值。

应变能量密度理论是一种综合考虑材料的应力、应变和能量的强度理论。

根据应变能量密度理论,当应变能量密度达到临界值时,材料就会发生破坏。

这种理论综合了材料的应力、应变、能量等多种因素,对于复杂应力状态下的材料强度预测非常准确。

在工程设计中,选择合适的强度理论对于材料的设计和分析有着重要的意义。

不同的强度理论适用于不同的材料和结构,根据具体的工程需求和要求选择合适的强度理论进行设计是十分重要的。

同时,强度理论也需要结合实际工程情况和应力状态进行修正和调整,以提高预测的精度和合理性。

总之,材料力学在工程设计中常用的强度理论有极限强度理论、变形能量理论、排斥原则理论和应变能量密度理论。

选择合适的强度理论对于材料的设计和分析至关重要,需要综合考虑材料的特性和应力状态,同时还需要结合实际工程情况进行修正和调整。

四个强度理论及其相当应力

四个强度理论及其相当应力

《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学
一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世称欧
四个强度理论及其相当应力
在常温、静载荷下,常用的四个强度理论分两类
第 一类强度理论——以脆断作为破坏的标志
包括:最大拉应力理论和最大伸长线应变理论
第 二类强度理论——以出现屈服现象作为破坏的标志
包括:最大剪应力理论和形状改变比能理论
第 一类强度理论
一、 最大拉应力理论(第一强度理论)
根据:当作用在构件上的外力过大时,其危险点处的材 料就会沿最大拉应力所在截面发生脆性断裂。
文的美感,培养学生的翻译兴趣,但可能会降低译文的准确性。因此,需两种翻译方式都做必要引导。全文直译内容见《我的积累本》。目标导学四:解读文段,把握文本内容1.赏析第一段,说说本文是如
何引出“醉翁亭”的位置的,作者在此运用了怎样的艺术手法。
明确:首先以“环滁皆山也”五字领起,将滁州的地理环境一笔勾出,点出醉翁亭坐落在群山之中,并纵观滁州全貌,鸟瞰群山环抱之景。接着作者将“镜头”全景移向局部,先写“西南诸峰,林壑尤美”,
2
2
2
u f 6E
σ1 σ 2 σ 2 σ3 σ3 σ1
单轴受拉时:
σ1 σ s , σ 2 σ3 0
代入上式,可得材料的极限值
u fu

1 ν
6E

2
2 s

工程力学中四种强度理论

工程力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用第一理论的应用和局限1、应用材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。

2、局限没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。

输送【机械工程】力学中四种强度理论

输送【机械工程】力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用第一理论的应用和局限1、应用材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。

2、局限没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。

工程力学中四大强度理论

工程力学中四大强度理论

为了探讨引导资料损害的顺序,对于资料损害大概做废举止了假设即为强度表里,简述工程力教中四大强度表里的基础真量.之阳早格格创做一、四大强度表里基础真量介绍:1、最大推应力表里(第一强度表里):那一表里认为引起资料坚性断裂损害的果素是最大推应力,无论什么应力状态,只消构件内一面处的最大推应力σ1达到单背应力状态下的极限应力σb,资料便要爆收坚性断裂.于是伤害面处于搀纯应力状态的构件爆收坚性断裂损害的条件是:σ1=σb.σb/s=[σ] ,所以按第一强度表里修坐的强度条件为:σ1≤[σ].2、最大伸少线应变表里(第二强度表里):那一表里认为最大伸少线应变是引起断裂的主要果素,无论什么应力状态,只消最大伸少线应变ε1达到单背应力状态下的极限值εu,资料便要爆收坚性断裂损害. εu=σb/E;ε1=σb/E.由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb.按第二强度表里修坐的强度条件为:σ1-u(σ2+σ3)≤[σ].3、最大切应力表里(第三强度表里):那一表里认为最大切应力是引起伸服的主要果素,无论什么应力状态,只消最大切应力τmax达到单背应力状态下的极限切应力τ0,资料便要爆收伸服损害.依轴背推伸斜截里上的应力公式可知τ0=σs/2(σs——横截里上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2. 所以损害条件改写为σ1-σ3=σs.按第三强度表里的强度条件为:σ1-σ3≤[σ].4、形状改变比能表里(第四强度表里):那一表里认为形状改变比能是引起资料伸服损害的主要果素,无论什么应力状态,只消构件内一面处的形状改变比能达到单背应力状态下的极限值,资料便要爆收伸服损害.二、四大强度表里适用的范畴1、百般强度表里的适用范畴及其应用(1)、第一表里的应用战限造应用:资料无裂纹坚性断裂做废场合(坚性资料二背大概三背受推状态;最大压应力值不超出最大推应力值大概超出已几).限造:出思量σ2、σ3对于资料的损害效率,对于无推应力的应力状态无法应用.(2)、第二表里的应用战限造应用:坚性资料的二背应力状态且压应力很大的情况.限造: 与极少量的坚性资料正在某些受力场合下的真验截止相切合.(3)、第三表里的应用战限造应用:资料的伸服做废场合.限造:出思量σ2对于资料的损害效率,估计截止偏偏于仄安.(4)、第四表里的应用战限造应用:资料的伸服做废场合.限造:与第三强度表里相比更切合本量,但是公式过于搀纯.2、归纳去道:第一战第二强度表里适用于:铸铁、石料、混凝土、玻璃等,常常以断裂形式做废的坚性资料.第三战第四强度表里适用于:碳钢、铜、铝等,常常以伸服形式做废的塑性资料.3、以上是常常的道法,正在本量中,有搀纯受力条件下,哪怕共种资料的做废形式也大概分歧,对于应的强度表里也会随之改变.比圆,正在三背应力情景下,某些塑性资料会浮现出坚性资料最典范的断裂做废,又大概者正佳好异.比较典范的例子,如碳钢资料螺钉,单背推伸时会断裂而不会伸服.果此简直情况还要简直分解.三、四种强度表里的比较如下:。

四大强度理论对比

四大强度理论对比

四大强度理论1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

τmax=τ0。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

发生塑性破坏的条件为:所以按第四强度理论的强度条件为:2、sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]四个强度理论的比较极限形状改变比能μd jx在简单拉伸条件下因σ1=σs,σ2 =σ3=0 μd jx =。

四个强度理论

四个强度理论
理论以脆断为破坏标志,包括最大拉应力理论和最大伸长线应变理论。最大拉应力理论认为材料在最大拉应力达到极限时发生脆断,而最大伸长线应变理论则考虑材料在垂直于最大伸长线应变方向的平面发生脆断。第二类强度理论以屈服现象为破坏标志,涵盖最大剪应力理论和形状改变比能理论。最大剪应力理论指出材料在最大剪应力所在截面发生屈服失效,而形状改变比能理论则认为材料的屈服与形状改变比能有关。这些理论在应用时需确保所选理论与实际破坏形式相对应,并且用于确定许用应力的极限应力值也必须与该破坏形式相匹配。通过具体例题,可以进一步理解和掌握这些强度理论在实际问题中的应用方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容
一、四大强度理论基本内容介绍:
1、最大拉应力理论(第一强度理论):
这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:
σ1=σb。

σb/s=[σ]
所以按第一强度理论建立的强度条件为:
σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):
这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:
ε1=[σ1-u(σ2+σ3)]/E
所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:
σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):
这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)
由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):
这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力
状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

二、四大强度理论适用的范围
1、各种强度理论的适用范围及其应用
第一理论的应用和局限
1、应用
材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。

2、局限
没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。

第二理论的应用和局限
1、应用
脆性材料的二向应力状态且压应力很大的情况。

2、局限
与极少数的脆性材料在某些受力形势下的实验结果相吻合。

第三理论的应用和局限
1、应用
材料的屈服失效形势。

2、局限
没考虑σ2对材料的破坏影响,计算结果偏于安全。

第四理论的应用和局限
1、应用
材料的屈服失效形势。

2、局限
与第三强度理论相比更符合实际,但公式过于复杂。

2、总结来讲:
第一和第二强度理论适用于:铸铁、石料、混凝土、玻璃等,通常以断裂形式失效的脆性材料。

第三和第四强度理论适用于:碳钢、铜、铝等,通常以屈服形式失效的塑性材料。

以上是通常的说法,在实际中,有复杂受力条件下,哪怕同种材料的失效形
式也可能不同,对应的强度理论也会随之改变。

例如,在三向应力状况下,某些塑性材料会呈现出脆性材料最经典的断裂失效,又或者正好相反。

比较经典的例子,如碳钢材料螺钉,单向拉伸时会断裂而不会屈服。

因此具体情况还要具体分析。

相关文档
最新文档