四种强度理论(1)

合集下载

材料力学强度理论

材料力学强度理论

9 强度理论1、 脆性断裂和塑性屈服脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。

塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。

2、四种强度理论(1)最大拉应力理论(第一强度理论)材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:01σσ= (2)最大伸长拉应变理论(第二强度理论):无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 01εε=(3)最大切应力理论(第三强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值,即: 0max ττ=(4)形状改变比能理论(第四强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即:u u 0dd =强度准则的统一形式 [] σσ≤*其相当应力: r11σ=σr2123()σ=σ-μσ+σ r313σ=σ-σ222r41223311()()()2⎡⎤σ=σ-σ+σ-σ+σ-σ⎣⎦ 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。

9.1图9.1所示的两个单元体,已知正应力σ =165MPa ,切应力τ=110MPa 。

试求两个单元体的第三、第四强度理论表达式。

图9.1[解] (1)图9.1(a )所示单元体的为空间应力状态。

注意到外法线为y 及-y 的两个界面上没有切应力,因而y 方向是一个主方向,σ是主应力。

显然,主应力σ 对与y 轴平行的斜截面上的应力没有影响,因此在xoz 坐标平面内可以按照平面应力状态问题对待。

外法线为x 、z 轴两对平面上只有切应力τ,为纯剪切状态,可知其最大和最小正应力绝对值均为τ,则图9.1(a )所示单元体的三个主应力为:τστσσσ-===321、、,第三强度理论的相当应力为解题范例r4σ=()eq313165110275a σσσστ=-=+=+=MPa第四强度理论的相当应力为:()eq4a σ==252.0== MPa(2)图9.1(b)所示单元体,其主应力为第三强度理论的相当应力为:()eq31322055275b σσσ=-=+=MPa第四强度理论的相当应力为:()eq4a σ=252.0==MPa9.2一岩石试件的抗压强度为[]σ=14OMPa,E=55GPa, μ=0.25, 承受三向压缩。

材料力学四个强度理论

材料力学四个强度理论

四大强度准则理论:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

τmax=τ0。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

发生塑性破坏的条件为:所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]。

工程力学中四种强度理论

工程力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用第一理论的应用和局限1、应用材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。

2、局限没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。

第二讲 四种常见的强度理论

第二讲 四种常见的强度理论

在复杂应力状态下一点处的最大切应力为
屈服的条件:
τ max
=
1 2
(σ1

σ3)
max
=
S
2
(σ1 − σ3 = σS )
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)
4.2.2 四种常见的强度理论
3、最大切应力理论(第三强度理论) 塑性材料
根据:当作用在构件上的外力过大时,其危险点处的材料就 会沿最大切应力所在截面滑移而发生屈服失效。
4.2.2 四种常见的强度理论
2、最大伸长线应变理论(第二强度理论) 脆性材料
根据:当作用在构件上的外力过大时,其危险点处的材料就
会沿垂直于最大拉应变方向的平面发生破坏。
基本假说:最大正应变(拉应变)1是引起材料脆断的因素。
失效准则:最大拉应变1
最大拉应变:
ε1 =
1 E
[σ1

μ(σ2+σ Nhomakorabea )]4.2.4 相当应力
1、相当应力
把各种强度理论的强度条件写成统一形式
σr σ
r称为复杂应力状态的相当应力.
σr1 = σ1 σr2 = σ1 − μ(σ2 + σ3 ) σr3 = σ1 − σ3
σr4 =
1 2
[(σ1

σ2 )2
+
(σ2

σ3)2
+
(σ3

σ1)2 ]
4.2.5 四种强度理论的适用范围
1、各种强度理论的适用范围
(1) 脆性材料选用第一或第二强度理论; (2) 塑性材料选用第三或第四强度理论; (3) 在二向和三向等拉应力时,无论是塑性还是脆性都发 生脆性破坏,故选用第一或第二强度理论; (4) 在二向和三向等压应力时,无论是塑性还是脆性材 料都发生塑性破坏,故选用第三或第四强度理论。

输送【机械工程】力学中四种强度理论

输送【机械工程】力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用第一理论的应用和局限1、应用材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。

2、局限没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。

四种常用强度理论

四种常用强度理论

四种常用强度理论强度理论是推测强度失效原因的一些假说。

认为材料之所以按某种方式失效,是应力、应变或应变能密度等因素中某一因素引起的。

四种常用强度理论(1)最大拉应力理论(第一强度理论):试验证明,这一理论与铸铁、陶瓷、玻璃、岩石和混凝土等脆性材料的拉断试验结果相符,例如由铸铁制成的构件,不论它是在简单拉伸、扭转、二向或三向拉伸的复杂应力状态下,其脆性断裂破坏总是发生在最大拉应力所在的截面上。

但是这一理论没有考虑其他两个主应力的影响,且对没有拉应力的状态(如单向压缩、三向压缩等)也无法应用(2)最大伸长线应变理论(第二强度理论):(3)最大切应力理论(第三强度理论):(4)畸变能密度理论(第四强度理论):注意:1、对以上四个强度理论的应用,一般说脆性材料如铸铁、混凝土等用第一和第二强度理论;对塑性材料如低碳钢用第三和第四强度理论。

2、脆性材料或塑性材料,在三向拉应力状态下,应该用第一强度理论;在三向压应力状态下,应该用第三强度理论或第四强度理论。

3、第三强度理论概念直观,计算简捷,计算结果偏于保守;第四强度理论着眼于形状改变比能,但其本质仍然是一种切应力理论。

4、在不同情况下,如何选用强度理论,不单纯是个力学问题,而与有关工程技术部门长期积累的经验及根据这些经验制订的一整套计算方法和许用应力值有关。

第一强度理论--看一下它的强度条件的取得。

在简单拉伸试验中,三个主应力有两个是零,最大主应力就是试件横截面上该点的应力,当这个应力达到材料的极限强度sb时,试件就断裂。

因此,根据此强度理论,通过简单拉伸试验,可知材料的极限应力就是sb。

于是在复杂应力状态下,材料的破坏条件是s1=sb (a)考虑安全系数以后的强度条件是s1≤[s](1-59)需指出的是:上式中的s1必须为拉应力。

在没有拉应力的三向压缩应力状态下,显然是不能采用第一强度理论来建立强度条件的。

第二强度理论--看看它的强度条件的取得此理论下的脆断破坏条件是e1=ejx =sjx /E (b)由式(1-58)可知,在复杂应力状态下一点处的最大线应变为e1=[s1-m(s2+s3)]/E代入(b)可得[s1-m(s2+s3)]/E =sjx /E 或[s1-m(s2+s3)]=sjx将上式右边的sjx 除以安全系数及得到材料的容许拉应力[s]。

四个强度理论及其相当应力

四个强度理论及其相当应力

195MPa
(4)对图d 所示的单元体,计算 r3 ,r4
解:求主应力 由图知 : x=30MPa, y=70MPa, xy= - 40MPa 可求得
70MPa 40MPa
30MP
1 3
30
2
70
30
2
70
2
402
94.72
50 20 5
MPa
5.28
50MPa (d)
2 50 MPa
128MPa
(3)对于图 c 所示的单元体,
70MPa
由图知: 1= 80MPa , 2= –70MPa , 3= –140MPa
r3 1 3 80 140 220 MPa
80MPa (c)
140MPa
r4
1 2
1
2
2
2
3
2
3
1
2
1 2
80
702
70
1402
140
802
(
2
3)]
即 [σ1 ν (σ 2 σ 3)] σ u
强度条件为:
[ ( )]
r2
1
2
3
(9-2-2)
第 二 类强度理论
三、 最大剪应力理论 (第三强度理论) 根据:当作用在构件上的外力过大时,其危险点处的材料就会 沿最大剪应力所在截面滑移而发生屈服失效。
基本假说: 最大剪应力 max 是引起材料屈服的因素。
例题 9-1 对于图示各单元体,试分别按第三强度理论及第 四 强度理论求相当应力。
解: (1)对于图 (a) 所示的单元体, 由图知 1= 0,2= 3= –100MPa,
100MPa 100MPa

工程力学中四大强度理论

工程力学中四大强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容。

一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。

局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由于材料的破坏按其物理本质分为脆断和屈服两类形式,所以,强度理论也就相应地分为两类,下面就来介绍目前常用的四个强度理论。

1、最大拉应力理论:
这一理论又称为第一强度理论。

这一理论认为破坏主因是最大拉应力。

不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。

破坏形式:断裂。

破坏条件:σ1 =σb
强度条件:σ1≤[σ]
实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。

缺点:未考虑其他两主应力。

使用范围:适用脆性材料受拉。

如铸铁拉伸,扭转。

2、最大伸长线应变理论
这一理论又称为第二强度理论。

这一理论认为破坏主因是最大伸长线应变。

不论复杂、简单的应力状态,只要第一主应变达
到单向拉伸时的极限值,即断裂。

破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。

破坏形式:断裂。

脆断破坏条件:ε1=εu=σb/E
ε1=1/E[σ1−μ (σ2+σ3)]
破坏条件:σ1−μ(σ2+σ3) =σb
强度条件:σ1−μ(σ2+σ3)≤[σ]
实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。

但是,其实验结果只与很少的材料吻合,因此已经很少使用。

缺点:不能广泛解释脆断破坏一般规律。

使用范围:适于石料、混凝土轴向受压的情况。

3、最大切应力理论:
这一理论又称为第三强度理论。

这一理论认为破坏主因是最大切应力
maxτ。

不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。

破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。

破坏形式:屈服。

破坏因素:最大切应力。

τmax=τu=σs/2
屈服破坏条件:τmax=1/2(σ1−σ3)
破坏条件:σ1−σ3=σs
强度条件:σ1−σ3≤[σ]
实验证明,这一理论可以较好地解释塑性材料出现塑性变形的现象。

但是,由于没有考虑2σ的影响,故按这一理论设计的构件偏于安全。

缺点:无2σ影响。

使用范围:适于塑性材料的一般情况。

形式简单,概念明确,机械广用。

但理论结果较实际偏安全。

4、形状改变比能理论
这一理论又称为第四强度理论。

这一理论认为:不论材料处在什么应力状态,材料发材料力学生屈服的原因是由于形状改变比能(du)达到了某个极限值。

由此可建立如下
破坏条件: 1/2(σ1−σ2)2+2(σ2−σ3)2+(σ3−σ1)2=σs
强度条件:σr4= 1/2(σ1−σ2)2+ (σ2−σ3)2 + (σ3−σ1)2≤[σ] 根据几种材料(钢、铜、铝)的薄管试验资料,表明形状改变比能理论比第三强度理论更符合实验结果。

在纯剪切下,按第三强度理论和第四强度理论的计算结果差别最大,这时,由第三强度理论的屈服条件得出的结果比第四强度理论的计算结果大15%。

四种强度理论的统一形式:令相当应力σrn,有强度条件统一表达式
σrn≤[σ]。

相当应力的表达式:
σr1=σ1≤[σ]
σr2=σ1−μ(σ2+σ3)≤[σ]
σr3=σ1−σ3≤[σ]
σr4= 1/2(σ1−σ2)2+(σ2−σ3)2+(σ3−σ1)2≤[σ]
5、莫尔强度理论
莫尔强度理论并不是简单地假设材料的破坏是由某一
个因素(例如应力、应变或比能)达到了其极限值而引起的,它是以各种应力状态下材料的破坏试验结果为依据,考虑了材料拉、压强度的不同,承认最大切应力是引起屈服剪断的主要原因并考虑了剪切面上正应力的影响而建立起来的强度理论。

莫尔强度理论考虑了材料抗拉和抗压能力不等的情况,这符合脆性材料
(如岩石混凝土等)的破坏特点,但未考虑中间主应力2σ的影响是其不足之处。

6. 强度理论的适用范围
不仅取决于材料的性质,而且还与危险点处的应力状态有关。

一般情况下,脆性材料选用关于脆断的强度理论与莫尔强度理论,塑性材料选用关于屈服的强度理论。

但材料的失效形式还与应力
状态有关。

例如,无论是塑性或脆性材料,在三向拉应力情况下将以断裂形式失效,宜采用最大拉应力理论。

在三向压应力情况下都引起塑性变形,宜采用第三或第四强度理论。

相关文档
最新文档