第五章地震波速度.

合集下载

地震勘探原理-第5章地震波处理

地震勘探原理-第5章地震波处理

2021/3/16
9
• 通常地震波振幅随时间呈指数衰减。 高频衰减比低频快。
• 与震源强度和震源耦合有关的影响, 检波器灵敏度和检波器耦合及偏移距 的影响。对这类影响主要通过地表一 致性振幅校正程序,类似于自动剩余 静校正来完成。
2021/3/16
10
参数提取与分析的目的是为寻找在常规处 理或其他处理中常用的最佳处理参数,以 及有用的地震信息,如频谱分析、速度分 析、相关分析等。这类数字处理还可为校 正与偏移及各种滤波等处理提供速度和频 率信息,并可以自成系统处理出相应的成 果图件,如频谱、速度谱,通过相关分析 进行相关滤波等。
• 在数据处理中,将按时序排列的形 式转换为按道序排列(即第一道的所 有数据都排在第二道之前,使同一道 数据都排放在一起)这种预处理称为 数据解编或重排。
2021/3/16
2
• 二、编辑
• 在地震数据采集中,由于施工 现场复杂,外界干扰大,难免出 现一些不正常道和共炮点记录, 这些记录信噪比低,如果参与叠 加处理会严重影响处理效果。
2021/3/16
7
数字仪对信号进行增益控制时的增益指 数己记录在记录格式的阶码上,因此增 益恢复的公式为
A= A0 /2n 其中A0为记录到的采样值,A为地面检 波器接收到的增益控制前的振幅值,n 为阶码 (即增益指数)。
2021/3/16
8
球面扩散是当波离开震源时由于波 前扩散造成的振幅衰减,能量发生扩散, 波的强度减小,而波场的总能量不变。 如果介质是各向同性的,则能量衰减与 传播距离的平方成反比。通常速度都是 随深度的增加而增加.非弹性衰减是弹性 能量由于摩擦而耗散为热的吸收的结果, 波动能量消失。
2021/3/16

地震波的速度笔记

地震波的速度笔记

重点掌握V av、V R、VФ、V a和V p的概念及相应的计算公式。

掌握迭加速度V a的求取,以及由V a——V R——V n的过程。

了解V a的测定原理,以及各种速度之间的一些相互换算公式。

λ、μ拉梅系数,ρ介质密度,E杨式模量,υ泊松比,都是说明介质的弹性性质的参数。

在大多数情况下,υ=0.25。

E的大小和岩石的成分、结构有关,随着岩石的密度ρ增加,E比ρ增加的级次较高,所以当ρ↑—>Vs、Vp↑。

同一介质中,纵波、横波速度比。

通过对大量岩石样品进行研究,发现地震纵波与岩性密度(完全充水饱和体积密度)之间,存在着良好的定量关系。

可用加德纳公式表示:V:米/秒,ρ:克/厘米3六、与空隙率和含水性的关系在大多数沉积岩中,岩石的实际速度石油岩石基质的速度、空隙率、充满空隙的流体速度等因素来决定。

可用一个简单的关系式来表示:时间平均方程V:岩层的实际速度Vf:波在空隙流体中的速度Vr:岩石基质的速度Ф:岩石的空隙率适用条件:岩石空隙中只有油、气或水一种流体,并且流体压力与岩石压力相等。

在实际条件下,时间平均方程必须用一个压差调节系数C加以修正。

第二节几种速度概念一、平均速度一组水平层状介质中,某一界面以上介质的平均速度是地震波垂直入射到该界面所走的总路程与总时间之比。

地震波传播遵循是“沿最小时间路程传播”。

在层状介质中,最小时间路程是折线而不是直线。

二、均方根速度VR地震波传播遵循“费马原理”,沿最小时间路程传播。

在均匀介质中最小时间路程是直线。

水平介面:均匀介质反射波时距曲线是一条双曲线,方程把水平层状介质情况下的反射波时距曲线近似当作双曲线求出的波速,就是这一水平层状介质的均方根速度。

如果一条时距曲线的方程可以写成这样的形式,表示波以常速传播,波速等于式中X2项的分母的平方根。

对于覆盖层为连续介质,只给出对应的基本公式。

在一定假设前提下,方程可写成三、等效速度倾斜界面,共中心点时距曲线方程为:与均匀介质、水平界面情况一样。

关于地震波的传播速度

关于地震波的传播速度

关于地震波的传播速度
1、纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。

2、横波是剪切波,在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。

地震波是由地震震源向四处传播的振动,指从震源产生向四周辐射的弹性波。

按传播方式可分为纵波(P波)、横波(S波)(纵波和横波均属于体波)和面波(L波)三种类型。

地震发生时,震源区的介质发生急速的破裂和运动,这种扰动构成一个波源。

由于地球介质的连续性,这种波动就向地球内部及表层各处传播开去,形成了连续介质中的弹性波。

地震学的主要内容之一就是研究地震波所带来的信息。

地震波是一种机械运动的传布,产生于地球介质的弹性。

它的性质和声波很接近,因此又称地声波。

但普通的声波在流体中传播,而地震波是在地球介质中传播,所以要复杂得多,在计算上地震波和光波有些相似之处。

波动光学在短波的情况下可以过渡到几何光学,从而简化了计算;同样地,在一定条件下地震波的概念可以用地震射线来代替而形成了几何地震学。

不过光波只是横波,地震波却纵、横两部分都有,所以在具体的计算中,地震波要复杂得多。

地震波速度模型及其应用

地震波速度模型及其应用

地震波速度模型及其应用地震波速度模型是地震学中的一个重要研究领域,它对于我们理解地震波的传播规律、预测地震危险性以及构建地震工程设计等方面具有重大意义。

本文将介绍地震波速度模型的基本原理,以及其在地震学研究和地震工程方面的应用。

一、地震波速度模型的基本原理地震波是地震事件中传播的一种波动现象,其速度与介质的物理性质密切相关。

地震波速度模型是指对地下介质中地震波传播速度进行建模和研究的过程。

通常地震波速度模型可以分为纵波速度模型和横波速度模型两个方面。

纵波速度模型(Vp)是指地震波在地下介质中的纵向传播速度。

纵波速度受到介质的密度、岩石类型、孔隙度、饱和度等多种因素的影响。

科学家通过采集地震数据并进行分析,可以获得不同深度下地下介质的纵波速度分布情况。

纵波速度模型的建立可以帮助我们了解地下介质的物理性质,预测地震活动的强度和传播方式等。

横波速度模型(Vs)是指地震波在地下介质中的横向传播速度。

横波速度也受到介质的物理性质的影响,但相对于纵波速度更加敏感于介质的密度和岩石类型。

横波速度模型的建立可以帮助我们确定地下介质的失稳性,提供地震工程设计中的重要参数。

二、地震波速度模型的应用1. 地震学研究领域地震波速度模型在地震学研究中起到了重要的作用。

通过建立地下介质的速度模型,科学家可以对地震波的传播路径进行模拟和预测。

这对于理解地震波传播的规律、地震活动的危险性评估以及地震预警系统的建立具有重要意义。

地震波速度模型也可以用于确定地震震源机制,研究地震的发生机制和地震活动的时空演化规律。

2. 地震工程设计地震波速度模型在地震工程设计中扮演着至关重要的角色。

结合地下介质的速度模型,工程师可以预测地震波在地表产生的破坏规模和传播方向,从而确保建筑物和工程结构在地震中的安全性。

地震波速度模型还可以帮助工程师确定合适的地震动输入,为地震安全设计提供依据。

3. 地震监测和勘探地震波速度模型也在地震监测和勘探中起到了重要作用。

地震勘探原理题库讲解

地震勘探原理题库讲解

第一章地震波的运动学第一节地震波的基本概念第二节反射地震波的运动学第三节地震折射波运动学第二章地震波动力学的基本概念第一节地震波的频谱分析第二节地震波的能量分析第三节影响地震波传播的地质因素第四节地震记录的分辨率第三章地震勘探野外数据的野外采集第一节野外工作方法第二节地震勘探野外观测系统第三节地震波的激发和接收第四节检波器组合第五节地震波速度的野外测定第四章共中心点迭加法原理第一节共中心点迭加法原理第二节多次反射波的特点第三节多次叠加的特性第四节多次覆盖参数对迭加效果的影响及其选择原则第五节影响迭加效果的因素第五章地震资料数字处理第一节提高信噪比的数字滤波第二节反滤波第三节水平迭加第四节偏移归位第五节地震波的速度第六章地震资料解释第一节地震资料构造解释工作概述第二节时间剖面的对比第三节地震反射层位的地质解释第四节各种地质现象在时间剖面上的特征和解释第五节地震剖面解释中可能出现的假象第六节反射界面空间位置的确定第七节构造图、等厚图的绘制及地质解释第八节水平切片的解释一、名词解释第一章地震波的运动学1、波动(难度90区分度30)2、波前(难度89区分度31)3、波尾(难度89区分度31) 4、波面(难度89区分度31) 5、等相面(80 、 33) 6、波阵面(81 、 34)7、波线(70 、 33) 8、射线(72 、 40)9、振动曲线(75 、 42) 10、波形曲线(76 、 44) 11、波剖面(65 、 46) 12、子波(60 45)13、视速度(80 、 30) 14、射线平面(60 、 47)15、运动学(70 、 55) 16、时距曲线(68、 40) 17、正常时差(60 、 45) 18、动校正(60、 60) 19、几何地震学(70 、 35)第二章地震波动力学的基本概念1、动力学(70 、 40)2、物理地震学(71、 35)3、频谱(50 、 50)4、波的发散(90 、 30)5、波散(90 、 31)6、频散(80、 35)7、吸收(70 、 40 )8、纵向分辨率(60、40)9、垂向分辨率(60、40)10、横向分辨率(60、40)11、水平分辨率(60、40)12、菲涅尔带(50、45) 13、主频(65、40)第三章地震勘探野外数据的野外采集1、规则干扰波(90、30)2、不规则干扰波(90、30)3、观测系统(80、35)4、多次覆盖(65、50) 5、共反射点道集(70、45)6、检波器组合(90、30)7、方向特性(75、30)8、方向效应(90、30)第四章共中心点迭加法原理1、共中心点迭加(70、40)2、水平迭加(60、40)3、剩余时差(60、50)第五章地震资料数字处理1、偏移迭加(75、30)2、平均速度(85、30)3、均方根速度(80、30)4、迭加速度(70、40)第六章地震资料解释1、标准层(50、40)2、绕射波(40、50)3、剖面闭合(30、60)4、三维地震(70、30) 5、水平切片(45、60) 6、等厚图(65、40) 7、构造图(80、30)二、填空题第一章1、振动在介质中的传播就是()。

地震勘探概论5_地震波的速度

地震勘探概论5_地震波的速度

12
第一节 地震波在岩石中的传播速度

地震勘探是以研究地震波在地下岩层中的传播为基础; 对不同的地区,其沉积环境、沉积模式不同,所沉积的地

层,传播速度,地表条件及地下地质构造的复杂程度都不尽相
同,对地震勘探的地质效果也都会产生不同的影响;

速度是地震勘探中一个重要的参数,也是地震勘探的物理
基础之一。反射波、折射波和透射波的产生主要是弹性介质在
(三) 主要用途 1. Vα较精确地反映了波在非均匀介质 中传播的真速度。
2. 它作为判别各种速度精确度的一个
特定的标准。
57
七、三种速度的比较
(一)实例分析
对其VaV、VR、Vα三种速度进行比较
58
七、三种速度的比较
(一)实例分析
对其Vav、VR、Vα三种速度进行比较
59
七、三种速度的比较
(一)实例分析
(三) 主要用途
作为实际工作中的动校正速度。
53
五、层速度
(一) 概念
指按速度分层的速度。
54
五、层速度
(二) 求取方法
1. 用声波测井求取层速度 优点:分层细致、准确。
2. 根据地震测井资料计算层速度
特点:Vn资料比较粗,只能反映一些 大的地段地层的速度差异 3. 由均方根速度计算Vn (Dix公式) 注意:Dix公式适用于炮检距不太大 的情形。
4310 4420 4560 4670 5160 5450
对其VaV、VR、Vα三种速度的计算进行
60
七、三种速度的比较
(二)定性结论 1. 当介质不均匀时,地震波沿不同射线传播的 速度是不同的; 2. 对某一个介质结构,只有一个平均速度和一 个均方根速度,并且有 VR ≥ Vav ; 3. x=0时,Vav 的精度高,x=某一值时,VR的 精度较高。

第五章 地震波速度

第五章 地震波速度

p Castagna(1985)泥岩线公式为:
1.360 1.16 s
Smith(1987)趋势线公式: p 0.790 1.425 s
p 0.937 1.35 s 甘利灯(1990)趋势线公式:
李庆忠(1992)趋势线公式:
p 0.0874 s2 0.994 s 1.250




纯砂

第一节 影响地震速度的主要因素
在实际工作中不能生搬硬套加德纳公式,要建立勘探区域的速 度与密度的经验关系。 1993年Castagna通过大量的实验室数据和测井、地震数据分 别对不同的岩性,如泥岩、砂岩、石灰岩、白云岩和硬石膏给 出了速度与密度的经验关系方程:
aV bVp c
第一节 影响地震速度的主要因素
⑴油-水两相 当含水饱和度从0变化 到1,也就是从完全含 油到完全含水,砂岩 的波速是单调增大的。 当深度增大时,总的 变化值减小。 ⑵气-水两相 当含水饱和度从0变化 到0.8时,波速是随之 缓缓减小的,然后随 着含水饱和度的增大 而增大,在含水饱和 度为0.95时急剧增大。
第一节 影响地震速度的主要因素
(3)密度 几乎各种岩石的波速都随密度增大而 增大。 最著名的速度与密度的经验关系式是 由加德纳(Gardner)总结美国多个 地区多种岩石(岩石饱和盐水,最大 深度约7400米)得到的:


硬石膏
石灰

白 云岩
0.31v 0.25 p
纯泥岩
密度(g / cm3);v p 纵波速度(m / s)
地震勘探中,要针对目的层统计出不同岩性(甚至含流体)地 震波速度随深度的变化关系曲线,为岩性解释提供基础资料。

地震波速度公式(一)

地震波速度公式(一)

地震波速度公式(一)地震波速度公式1. 引言地震波速度是地震学中的重要概念,用于描述地震波在地球内部传播的速度。

本文将介绍地震波速度的相关公式,并通过示例解释其含义。

2. P波速度公式P波(纵波)是地震波中传播速度最快的一种波,其速度由下述公式给出:Vp = k1 * √(λ + 2μ)其中,Vp表示P波速度,k1为比例系数,λ为纵波速度模量,μ为剪切波速度模量。

示例:假设某地的纵波速度模量λ为 km/s,剪切波速度模量μ为 km/s,计算该地的P波速度。

解:根据 P波速度公式可知:Vp = k1 * √( + 2*)假设比例系数k1为,则有:Vp = * √( + 2*) = * √() ≈ km/s因此,该地的P波速度约为 km/s。

3. S波速度公式S波(横波)是地震波中传播速度次快的一种波,其速度由下述公式给出:Vs = k2 * √μ其中,Vs表示S波速度,k2为比例系数,μ为剪切波速度模量。

示例:假设某地的剪切波速度模量μ为 km/s,计算该地的S波速度。

解:根据 S波速度公式可知:Vs = k2 * √()假设比例系数k2为,则有:Vs = * √() ≈ km/s因此,该地的S波速度约为 km/s。

4. 层析成像法速度公式层析成像法是一种地震波速度成像的方法,常用于地下构造探测。

其速度计算公式如下:V = 2π/λ其中,V表示地震波速度,λ为波长。

示例:假设地震波波长λ为10 m,计算对应的地震波速度。

解:根据层析成像法速度公式可知:V = 2π/10 ≈ m/s因此,该地震波的速度约为 m/s。

5. 总结本文介绍了地震波速度的三种公式,分别是P波速度公式、S波速度公式和层析成像法速度公式。

通过示例计算,解释了各个公式的含义和应用。

地震波速度的研究对于地震学和地质学领域的研究至关重要,有助于了解地球内部的结构以及预测地震活动的发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 p
其中a,b,c是经验系数,ρ的单位是g/cm3 泥岩: a=-0.0261, b=0.373, c=1.458, Vp=1.5~5.0km/s
砂岩: a=-0.0115,
石灰岩:a=-0.0296, 白云岩:a=-0.0235,
b=0.261,
b=0.441, b=0.390,
c=1.515, Vp=1.5~6.0km/s
第一节 影响地震速度的主要因素
大量理论研究、实验室研究和实际资料都证明,地震波的传 播速度与地下岩石的性质,如岩石的弹性常数、岩石的成分、 密度、埋藏深度、孔隙度、地质年代、含流体性质以及温度等 因素息息相关。
第一节 影响地震速度的主要因素
(1)弹性常数
E 1- 2 K 4 / 3 p 1 1 2
Vs2
第一节 影响地震速度的主要因素
①因为流体的μ=0,所以流体中不能传播横波。 1914年,德国地球物理学家古 登堡发现地下2900千米处地震波的 传播速度有明显变化,后证实这里 是地核与地幔的分界层。人们将这 个界面称为“古登堡界面”。通过 此界面向下,纵波突然下降,横波 完全消失,并以此推断外核为液态 金属。
第一节 影响地震速度的主要因素
(4)构造历史和地质年代的影响
许多实际观测资料表明,同样深 度、成分相似的岩石,当地质年代 不同时,波速也不同,年代老的岩 石比年青的岩石具有较高的速度。 在强烈褶皱地区,经常观测到速度 的增大;在隆起的构造顶部,则发 现速度减低。一般地说,地震波在 岩石中的传播速度随地质过程中的 构造作用力的增大而增大。
c=1.963, Vp=3.5~6.4km/s c=1.242, Vp=4.5~7.1km/s
硬石膏:a=-0.0203,
b=0.321,
c=1.732, Vp=4.6~7.4km/s
第一节 影响地震速度的主要因素
Brocher(2005)根据大量的岩芯、测井和VSP资料建立了新 的纵波速度与密度的经验公式:
E s 2 1
2(1 ) 2 2 Vs 1 2 k (V p 4 / 3Vs ) Vp
它们分别表示纵波和横波在介质中的传播速度,可知弹性波 在均匀各向同性介质中的传播速度是由介质的弹性常数和密度 决定的。如果能求得岩石的地震纵波和横波速度以及密度就可 以得到弹性常数k和μ。
第素 第二节 几种地震速度的概念 第三节 地震速度参数的测定方法 第四节 地震速度之间的相互关系
地震波的速度是指地震波在地下岩层中的传播速度,简称地震速度。 它既是研究地球内部结构的最重要参数,也是地震勘探中最重要的参数 之一,渗透到地震资料处理和解释的大部分环节。在地震正演研究、地 震时深转换、地震偏移、地震反演、储层描述等过程中,都需要同地震 速度打交道。 根据不同的研究目的,往往加一些前缀赋予特定的含义,比如:平均 速度、瞬时速度、射线速度、层速度、偏移速度、叠加速度、均方根速 度等等。 计算各种地震速度的方法也不是单一的,包括实验室岩芯速度测井、 地震测井、垂直地震剖面、地震速度分析等方法。
Faust(1951)统计美国和加拿大 500口井砂岩、泥岩速度数据与地质时 间和深度的关系总结出了速度、年代 和深度的关系式如下:
岩性 气层砂岩 泊松比 0.12~0.22
油层砂岩
水层砂岩 泥岩 钙质泥岩 砾岩
0.21~0.25
0.24~0.35 0.25~0.40 0.32~0.43 0.22~0.38
含气砂岩 具有低泊 松比和低 速度比
煤层
0.33~0.49
第一节 影响地震速度的主要因素
某气藏泊松比变化剖面
Top
Base
3 5 1.6612Vp 0.4731 Vp2 0.0671 Vp 0.0043Vp4 0.000106Vp
其中VP 的单位是ft/s、ρ的单位是g/cm3,Vp=1.5~8.5km/s。 该公式适用深度范围较大,在石油地震勘探中仅仅只能作为参 考。 石油地震勘探中一定要建立适合本地区本地层的深度范围的 地震速度与密度的经验关系。
第一节 影响地震速度的主要因素
(3)密度 几乎各种岩石的波速都随密度增大而 增大。 最著名的速度与密度的经验关系式是 由加德纳(Gardner)总结美国多个 地区多种岩石(岩石饱和盐水,最大 深度约7400米)得到的:


硬石膏
石灰

白 云岩
0.31v 0.25 p
纯泥岩
密度(g / cm3);v p 纵波速度(m / s)
剖面中显示:由于含气砂岩具有低泊松比,所以气藏顶部位一个 负的反射(泊松比σ减小) 以及在气藏底部为一个正的反射(泊松比 σ增加)。
第一节 影响地震速度的主要因素
(2)岩性 造岩矿物成分不同的岩石,由于造岩矿物的密度、体积模量、 剪切模量的不同,又由于造岩矿物是组成岩石的主要成分,因 此是影响岩石弹性性质的主要因素。




纯砂

第一节 影响地震速度的主要因素
在实际工作中不能生搬硬套加德纳公式,要建立勘探区域的速 度与密度的经验关系。 1993年Castagna通过大量的实验室数据和测井、地震数据分 别对不同的岩性,如泥岩、砂岩、石灰岩、白云岩和硬石膏给 出了速度与密度的经验关系方程:
aV bVp c
第一节 影响地震速度的主要因素
②纵波速度大于横波速度 P波:P代表主要 (Primary)或压缩 (Pressure)前进速 度最快,也最早抵达。 S波:S意指次要 (Secondary)或剪力 (Shear),前进速度 小于P波
第一节 影响地震速度的主要因素
③纵横波速度比可以用泊松比 表示,可以用来区分岩性
沉积岩:1500~6000 花岗岩:4500~6500 玄武岩:4500~8000 变质岩:3500~6500 在单独利用地震纵波速度无法 区分岩性的情况下,人们提出 了利用纵波和横波速度之比 (VP/VS)与泊松比关系图 (也称交汇图)、VP/VS与 VP交汇图、AVO(振幅随炮 检波距变化)分析等新的方法 来区分不同的岩性。
相关文档
最新文档