通信原理课程设计

合集下载

通信原理课程设计

通信原理课程设计

通信原理课程设计引言:通信原理是现代通信技术的基础,通过该课程的学习,可以帮助学生掌握通信原理的基本概念、原理和应用。

课程设计是该课程的重要组成部分,通过设计一个实际的通信系统,学生可以将理论知识应用于实践,加深对通信原理的理解和掌握。

本文将详细介绍通信原理课程设计的步骤、内容和要求。

一、课程设计步骤通信原理课程设计通常包括以下步骤:1. 确定课程设计的目标和要求:明确设计的目标是什么,要求学生达到什么样的水平。

2. 选择课程设计的主题:根据学生的实际情况和教学资源,选择一个合适的主题。

3. 确定课程设计的内容和范围:明确设计的内容是什么,需要学生完成哪些任务。

4. 分析和研究相关知识和技术:学生需要对通信原理相关的知识和技术进行深入的研究和分析。

5. 设计通信系统的结构和功能:根据课程设计的要求,设计通信系统的结构和功能。

6. 实现通信系统的硬件和软件:根据设计的结果,实现通信系统的硬件和软件。

7. 进行实验和测试:对设计的通信系统进行实验和测试,验证其性能和可靠性。

8. 分析和总结实验结果:对实验和测试结果进行分析和总结,评估设计的通信系统的优缺点。

9. 撰写课程设计报告:根据课程设计的要求,撰写课程设计报告,详细记录设计的过程和结果。

二、课程设计内容通信原理课程设计的内容可以根据具体的主题进行选择和确定,以下是一些常见的设计内容:1. 信号调制与解调:设计一个简单的模拟调制解调系统,实现信号的调制与解调过程。

2. 信道编码与解码:设计一个简单的信道编码解码系统,实现对信号进行编码和解码的过程。

3. 数字调制与解调:设计一个数字调制解调系统,实现数字信号的调制与解调过程。

4. 信道传输与接收:设计一个信道传输与接收系统,实现信号的传输和接收过程。

5. 信号处理与分析:设计一个信号处理与分析系统,实现对信号进行处理和分析的功能。

6. 无线通信系统设计:设计一个简单的无线通信系统,实现无线信号的传输和接收过程。

通信原理课程设计

通信原理课程设计

通信原理课程设计一、课程设计目的。

通信原理是电子信息类专业的重要基础课程,旨在使学生掌握通信原理的基本概念、基本原理和基本方法,为学生今后学习专业课程和从事相关工作打下坚实的基础。

因此,本课程设计旨在通过理论学习和实践操作,培养学生的通信原理分析和解决问题的能力,提高学生的创新意识和实践能力。

二、课程设计内容。

1. 通信原理基础知识的学习。

通过教材学习和课堂讲解,学生应该掌握通信系统的基本概念、信号的基本特性、传输介质的特性、调制解调原理等基础知识。

2. 通信原理实验操作。

学生应该通过实验操作,掌握信号的产生与采集、调制解调器的使用、传输介质的特性测试等实际操作技能,加深对通信原理知识的理解。

3. 通信原理课程设计。

学生应该根据所学知识,结合实际案例,进行通信原理课程设计,包括信号的传输与接收、调制解调器的设计与应用、通信系统的性能分析等内容。

三、课程设计方法。

1. 教学方法。

采用理论教学与实践操作相结合的教学方法,注重培养学生的动手能力和实际应用能力。

2. 学习方法。

学生应该注重理论知识的学习,同时积极参与实验操作,灵活运用所学知识进行课程设计。

3. 评估方法。

采用考试、实验报告、课程设计报告等多种评估方法,全面评价学生的学习情况和能力水平。

四、课程设计要求。

1. 学生应按时完成课程设计任务,按要求提交实验报告和课程设计报告。

2. 学生应积极参与课堂讨论、实验操作,主动学习,提高自主学习能力。

3. 学生应严格遵守实验室规章制度,注意实验室安全,保护实验设备。

4. 学生应认真对待课程设计,理论与实践相结合,力求做到学以致用。

五、课程设计效果评估。

1. 通过考试和实验报告评分,全面评价学生的学习情况和能力水平。

2. 通过课程设计报告评分,评价学生的课程设计能力和创新意识。

3. 学生对通信原理的理解和掌握情况,通过课程设计效果评估,指导教师调整教学方法,提高教学质量。

六、总结。

通信原理课程设计是通信原理课程的重要组成部分,通过课程设计,学生可以将所学理论知识与实际应用相结合,提高学习兴趣,增强动手能力,培养创新意识和实践能力。

通信原理课课程设计6

通信原理课课程设计6

通信原理课课程设计6一、教学目标本节课的教学目标是使学生掌握通信原理的基本概念、基本原理和基本方法,能够运用通信原理分析和解决实际问题。

具体目标如下:1.理解通信系统的组成和基本原理;2.掌握调制、解调、编码和解码的基本概念和方法;3.了解通信系统的性能评估方法。

4.能够运用通信原理分析和解决实际问题;5.能够使用仿真软件进行通信系统的模拟和分析;6.能够进行通信系统的调试和优化。

情感态度价值观目标:1.培养学生对通信技术的兴趣和热情,提高学生对通信技术的认识;2.培养学生团队合作意识和沟通能力,提高学生解决实际问题的能力;3.培养学生对科学研究的热情和责任感,提高学生的科学研究能力。

二、教学内容本节课的教学内容主要包括通信系统的组成、调制解调技术、编码解码技术以及通信系统的性能评估。

具体内容包括:1.通信系统的组成:通信系统的基本概念、发送端、接收端、传输介质等;2.调制解调技术:调制的基本概念、调制的方法、解调的基本概念和解调的方法;3.编码解码技术:编码的基本概念、编码的方法、解码的基本概念和解码的方法;4.通信系统的性能评估:通信系统的性能指标、性能评估的方法。

三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:通过教师的讲解,使学生掌握通信原理的基本概念、基本原理和基本方法;2.讨论法:通过小组讨论,培养学生团队合作意识和沟通能力,提高学生解决实际问题的能力;3.案例分析法:通过分析实际案例,使学生能够运用通信原理分析和解决实际问题;4.实验法:通过实验操作,使学生能够掌握调制解调技术、编码解码技术,提高学生的实践能力。

四、教学资源为了支持本节课的教学内容和教学方法的实施,将选择和准备以下教学资源:1.教材:通信原理教材,用于引导学生学习和掌握通信原理的基本概念、基本原理和基本方法;2.参考书:通信原理相关参考书,用于丰富学生的知识体系;3.多媒体资料:通信原理相关视频、动画等多媒体资料,用于辅助学生理解和掌握通信原理;4.实验设备:通信原理实验设备,用于进行通信系统的模拟和分析,提高学生的实践能力。

通信原理相关课程设计

通信原理相关课程设计

通信原理相关课程设计一、课程目标知识目标:1. 理解并掌握通信原理的基本概念,包括信号、信道、调制与解调等;2. 学习并掌握通信系统中常用的数学模型和公式,能够运用相关理论知识分析通信过程;3. 了解现代通信技术的发展趋势,认识通信技术在生活中的应用。

技能目标:1. 能够运用通信原理分析并解决实际问题,具备一定的通信系统设计能力;2. 能够运用所学知识进行通信设备的调试与维护,具备实际操作能力;3. 能够通过查阅资料、开展讨论等方式,自主学习和拓展通信领域的相关知识。

情感态度价值观目标:1. 培养学生对通信原理的兴趣,激发学习热情,养成主动探究和积极思考的习惯;2. 增强学生的团队合作意识,培养在团队中沟通与协作的能力;3. 提高学生的信息素养,使他们对通信技术在我国社会经济发展中的重要作用有深刻认识。

本课程针对高中年级学生,结合通信原理相关知识,注重理论联系实际,提高学生的知识水平和实践能力。

在教学过程中,教师需关注学生的个体差异,因材施教,使学生在掌握基本通信原理的基础上,能够灵活运用所学知识解决实际问题。

通过本课程的学习,旨在培养学生具备通信领域的基本素养和创新能力,为我国通信事业的发展储备人才。

二、教学内容本章节教学内容围绕以下三个方面展开:1. 通信原理基础知识:- 信号与系统:信号的概念、分类及特性;系统的概念、线性时不变系统及其性质;- 信道:信道的概念、分类、特性及信道模型;- 调制与解调:调制原理、分类及性能指标;解调原理及方法。

2. 通信系统分析与设计:- 通信系统的数学模型:信号的数学表示、系统方程的建立;- 通信系统性能分析:误码率、带宽、功率等性能指标的计算与优化;- 通信系统设计:根据实际需求,选择合适的调制解调方式、信道编码等技术。

3. 现代通信技术应用:- 数字通信技术:数字信号传输、数字调制解调、多路复用技术;- 移动通信技术:移动通信系统的组成、多址技术、蜂窝技术;- 互联网通信技术:网络结构、协议、路由算法等。

通信原理课程设计

通信原理课程设计

通信原理课程设计引言通信原理是计算机通信领域中的一门重要课程,它涵盖了通信系统的基本原理与技术,包括信号与系统、调制与解调、编码与解码、传输介质与传输线路等内容。

通信原理课程设计是对所学知识进行实践运用的重要环节,通过设计一个具体的通信系统,可以巩固理论知识,并加深对通信原理的理解。

本文将介绍一个通信原理课程设计的示例项目,通过这个项目,学生可以全面掌握通信原理相关知识,并将其应用于实践中。

该课程设计将涉及到信号的生成与解调、调制与解调技术的应用、信道编码与纠错等内容。

设计目标设计目标是指在通信原理课程设计中需要达到的主要目标。

根据通信原理的教学要求,本次课程设计的目标主要包括以下几点:1.理解信号与系统的基本原理,能够生成不同类型的信号。

2.掌握调制与解调的原理与方法,能够对信号进行调制与解调。

3.熟悉信道编码与纠错技术,能够对传输信号进行编码与纠错。

4.了解常见的传输介质与传输线路,能够选择合适的传输介质与传输线路。

设计内容本次通信原理课程设计的主要内容包括信号的生成与解调、调制与解调技术的应用、信道编码与纠错等。

具体的设计内容如下:1. 信号的生成与解调在这一部分中,学生需要选择一种信号生成方式,并对该信号进行解调。

对于信号的生成,可以选择使用函数发生器、数字信号发生器等实验设备来生成特定的信号。

而信号的解调则可以通过相应的解调电路来实现。

学生需要掌握生成不同类型信号的方法,并能够准确地将信号进行解调。

2. 调制与解调技术的应用调制与解调是通信原理中的重要内容,它涉及到将信号调制到载波上进行传输,并在接收端进行解调。

学生需要选择一种调制方式,并对调制后的信号进行解调。

常见的调制方式有频移键控调制(FSK)、相移键控调制(PSK)等。

学生需要理解调制与解调的原理,并能够熟练应用于实践中。

3. 信道编码与纠错在信道传输中,由于信道的干扰和噪声等原因,传输信号往往会出现错误。

为了提高传输的可靠性,常常需要对传输信号进行编码与纠错。

通信原理课程设计

通信原理课程设计

通信原理课程设计一、任务背景通信原理是现代通信工程中的核心课程之一,通过该课程的学习,可以了解通信系统的基本原理和技术,掌握通信系统的设计和分析方法。

本次课程设计旨在通过实践操作,加深学生对通信原理知识的理解和应用能力的提升。

二、任务目标1. 理解通信原理的基本概念和原理;2. 掌握通信系统的设计流程和方法;3. 运用所学知识,设计一个简单的通信系统;4. 分析和解决通信系统中可能遇到的问题。

三、任务要求1. 设计一个基于频分多址(FDMA)的通信系统;2. 选择适当的载波频率和带宽,实现多用户之间的通信;3. 设计合适的调制解调器,实现信号的调制和解调;4. 设计合适的信道编码和解码方案,提高系统的抗干扰性能;5. 进行性能测试和分析,评估系统的可靠性和性能。

四、设计流程1. 确定系统需求和参数:- 确定通信系统的覆盖范围和用户数量;- 确定通信系统的传输速率和带宽需求;- 确定通信系统的信道特性和传输距离。

2. 频率规划和分配:- 根据用户数量和带宽需求,进行频率规划和分配;- 确定每个用户的频率资源。

3. 调制和解调设计:- 选择合适的调制方式,如调幅(AM)、调频(FM)或调相(PM);- 设计调制解调器电路,实现信号的调制和解调。

4. 信道编码和解码设计:- 选择合适的信道编码方案,如卷积码、纠错码等;- 设计编码和解码器电路,提高系统的抗干扰性能。

5. 系统集成和测试:- 将各个模块进行集成,搭建完整的通信系统;- 进行性能测试和分析,评估系统的可靠性和性能。

五、数据和内容1. 系统需求和参数:- 通信系统覆盖范围:10km²- 用户数量:100- 传输速率:10Mbps- 带宽需求:20MHz- 信道特性:高频率衰减,传输距离为5km2. 频率规划和分配:- 频率范围:2GHz - 2.1GHz- 用户频率资源分配:每个用户占用200kHz的频率资源3. 调制和解调设计:- 调制方式:调幅(AM)- 调制解调器设计:采用集成电路实现AM调制和解调功能4. 信道编码和解码设计:- 信道编码方案:卷积码- 编码和解码器设计:采用FPGA实现卷积码编码和解码功能5. 系统集成和测试:- 搭建通信系统的硬件平台,包括调制解调器、编码解码器等;- 进行性能测试,如误码率、传输距离等的测量和分析。

通信原理课程设计专业

通信原理课程设计专业

通信原理课程设计专业一、教学目标通过本章节的学习,学生应掌握通信原理的基本概念、原理和应用;能够运用通信原理解决实际问题;了解通信原理在现代通信技术中的应用和发展趋势。

具体目标如下:1.知识目标:•了解通信系统的组成和基本原理;•掌握调制、解调、编码和解码等基本技术;•理解信号传输、信道编码、信号检测等基本概念;•熟悉通信系统性能评估方法。

2.技能目标:•能够运用通信原理分析和解决实际问题;•能够使用通信系统仿真软件进行系统设计和性能分析;•具备通信系统故障诊断和维修能力。

3.情感态度价值观目标:•培养对通信技术的兴趣和热情,认识到通信原理在现代社会中的重要性;•培养创新意识和团队合作精神,提高解决实际问题的能力;•增强工程伦理观念,关注通信技术对社会和环境的影响。

二、教学内容本章节的教学内容主要包括通信系统的组成、基本原理、调制解调技术、编码解码技术、信号传输、信道编码、信号检测以及通信系统性能评估。

具体安排如下:1.通信系统的组成和基本原理:介绍通信系统的组成部分,包括发送端、传输介质、接收端等,理解通信系统的工作原理和信号传输过程。

2.调制解调技术:学习调制和解调的基本概念,掌握不同调制方式的原理和应用,了解调制解调在通信系统中的作用。

3.编码解码技术:学习信源编码、信道编码的基本原理,掌握常见编码解码算法的实现和应用。

4.信号传输:了解信号传输的基本原理,学习信号波形、传输速率、传输距离等参数的影响因素。

5.信道编码:学习信道编码的原理和目的,掌握常见信道编码技术的特点和应用。

6.信号检测:了解信号检测的基本原理,学习不同信号检测方法的原理和应用。

7.通信系统性能评估:学习通信系统性能评估的方法和指标,掌握系统性能分析的基本方法。

三、教学方法为了激发学生的学习兴趣和主动性,本章节将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。

1.讲授法:通过教师的讲解,系统地传授通信原理的基本概念、原理和应用,帮助学生建立通信原理的知识框架。

通信原理毕业课程设计

通信原理毕业课程设计

通信原理毕业课程设计一、教学目标通过本章的学习,学生应掌握通信原理的基本概念、技术和方法,能够分析通信系统的基本组成、工作原理和性能指标,了解通信系统的应用和发展趋势。

具体目标如下:1.知识目标:(1)了解通信系统的定义、分类和基本组成;(2)掌握信号与系统的基本概念,如信号、系统、变换等;(3)学习模拟通信系统和数字通信系统的基本原理;(4)熟悉通信系统的性能评价指标,如误码率、信噪比等;(5)掌握通信系统的应用领域和发展趋势。

2.技能目标:(1)能够分析通信系统的基本组成和工作原理;(2)具备通信系统性能分析的能力;(3)学会使用通信系统相关软件和实验设备进行仿真和实验;(4)具备通信系统设计和优化的一般方法。

3.情感态度价值观目标:(1)培养对通信技术的兴趣和好奇心,提高学习的积极性;(2)树立正确的科学态度,勇于探索和创新;(3)认识通信技术在现代社会中的重要性和地位,关注其对社会发展的影响。

二、教学内容本章主要讲解通信原理的基本概念、技术和方法。

教学内容安排如下:1.通信系统概述:介绍通信系统的定义、分类和基本组成;2.信号与系统:学习信号与系统的基本概念,如信号、系统、变换等;3.模拟通信系统:讲解模拟通信系统的基本原理,包括调制、解调、编码等;4.数字通信系统:学习数字通信系统的基本原理,如数字调制、信道编码等;5.通信系统性能评价:熟悉通信系统的性能评价指标,如误码率、信噪比等;6.通信系统应用与发展趋势:介绍通信系统的应用领域和发展趋势。

三、教学方法本章采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:讲解通信原理的基本概念、技术和方法;2.案例分析法:分析实际通信系统案例,加深对通信原理的理解;3.实验法:利用实验设备进行通信原理的验证和实践;4.讨论法:学生进行分组讨论,促进学生思考和交流。

四、教学资源为支持本章教学内容和教学方法的实施,准备以下教学资源:1.教材:《通信原理》,用于引导学生系统学习通信原理的基本知识;2.参考书:《信号与系统》、《数字通信》,提供丰富的理论支持和案例分析;3.多媒体资料:制作课件和教学视频,生动展示通信原理的相关概念和实例;4.实验设备:通信原理实验装置,用于学生动手实践和验证通信原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:通信原理设计班级:电1005-2班学号:20102484姓名:张涛一、实验目的在本实验中使用的软件工具是MATLAB。

设计本实验的目的是希望在以下几方面有所收获:1.会MATLAB软件的最基本运用。

MATLAB是一种很实用的数学软件,它易学易用。

MATLAB对于许多的通信仿真类问题来说是比较合适的。

2.了解计算机仿真的基本原理及方法,知道怎样通过仿真的方法去研究通信问题。

3.加深对信号与系统和通信原理及其相关课程内容的理解。

二、实验特点与硬件实验相比,软件实验具如下一些特点:1.软件实验具有广泛的实用性和极好的灵活性。

在硬件实验中改变系统参数也许意味着要重做硬件,而在软件实验中这只是该一两个数据,或者只是在屏幕上按几下鼠标。

2.软件实验更有助于我们较为全面地研究通信系统。

有许多问题,通过硬件试验来研究可能非常困难,但在软件实验中却易于解决。

3.硬件实验的精确度取决于元器件及工艺水平,软件实现的精确度取决于CPU的运算速度或者说是程序的运算量。

4.软件实验开发周期短,成本低。

三、上机实验要求1掌握matlab的基本操作及了解基本的仿真方法,分析运行范例程序。

2按以下要求编制仿真程序并调试运行(1)基本信号的仿真(2)模拟调制与解调的仿真(3)数字基带传输码型的仿真(4)数字基带系统的仿真(5)数字调制与解调的仿真(6)脉冲编码调制仿真四、实验内容1、编程实现基本信号的仿真(1)产生并绘出以下信号:a单位脉冲序列b单位阶跃序列c正弦信号及其频谱d周期锯齿波sawtooth()e周期方波square()f实指数序列y(n)=2ng sin2πf1t*cos2πf2t f1=50Hz f2=2000Hz(2)产生一条-2到2之间的Sa(200t)曲线。

(3)产生下面信号,并绘出频谱t 0<t<t0/4s(t)= -t+ t0/4 t0/4<t< 3t0/4 假设t0=0.5st-t0 3t0/4<t< t02、编程实现模拟调制与解调的仿真(DSB必做,SSB\AM\FM选择其中一种)设消息信号m(t)的表达式为: 1 0≤t ≤t0/3m(t)= -2 t0/3≤t ≤2t0/3 (注:m(t)也可自己选用其它的信号) 0 其他(1)DSB 中,已调信号的时域表达式:u(t)=m(t)c(t)=Ac*m(t)cos(2πfct) 假设用信号m(t)以DSB 方式调制载波c(t)=cos(2πfct),所得到的已调信号记为u(t);并假设t0=0.15s 和fc=250Hz 。

绘制调制信号、已调信号和解调信号等各相关点处的时域波形和频谱。

(2)以上例中提供的信号进行SSB 调制,试绘制调制信号、已调信号和解调信号等各相关处的时域波形和频谱。

(提示:上边带调制信号:ussb=m.*c-imag(hilbert(m)).*b ;下边带下边带调制信号:lssb=m.*c+imag(hilbert(m)).*b 。

)(3)以上例中提供的信号进行AM 调制,给定的调制指数a=0.8,试绘制调制信号、已调信号和解调信号等各相关处点的时域波形和频谱。

AM 调制信号的时域表达式为:u(t)= A C [1+am n (t)]cos(2πf c t)这里a 是调制指数,m n (t)是经过归一化处理的消息信号,式中m n (t)=m/max(abs(m))。

(4)以上例中提供的信号进行频率调制,采用载波:c(t)=cos(2πf c t)进行调频,f c =200Hz, t 0=0.15s ,偏移常数K F =50。

试绘制调制信号、已调信号和解调信号等各相关点处的时域波形和频谱。

调频信号的时域表达式为:M(t)=A c cos ⎪⎪⎭⎫ ⎝⎛+⎰∞-tF c d S K t f ττππ)(22(5)高斯噪声的产生设高斯噪声限带为(-Bs,Bs ),双边带功率谱密度为2on ,则总功率为s o B n ,设高斯噪声幅度为x ,则有:2x =s o B n ,s o B n x =所以高斯噪声可表示成x=sqrt(B s *n o )*randn(1,M) M 为随机码元个数 在模拟调制中加上噪声后波形作对比。

3、编程实现数字基带信号的码型的仿真(1)试做单极性归零码、双极性非归零码、单极性非归零码、双极性归零码,占空比50%(选择其中2种);(2)双相码、AMI 码、HDB3码等的仿真(选其中2种)。

4、数字基带通信系统的仿真(1)一个升余弦频谱的滤波器,已知222sin cos ()14s ss s t T t T h t t T t T παππα=-,画出α等于0.1,0.5,1时()h t 的波形。

参数要求:1s T ms =,在1s T ms =内仿真10个点,仿真区间为-10ms ~10ms 。

(2) 利用matlab 的SIMULINK 功能建立一个基带传输模型,采用单极性, 或双极性码作为基带信号,发送滤波器为上述升余弦滤波器,发送数据率为1000bps ,分别观察输出信号在无噪声干扰及有噪声干扰下波形及眼图。

注意:必须首先运行实验步骤1 中的程序得出h(t)后,才能运行该模型。

(3)建立基带接收机模型,观察判决输出,与发送数码进行比较。

(选做) 5、数字调制与解调的仿真(选择两种调制与解调方式)根据2FSK 、2PSK 、2DPSK 等的调制和解调的原理框图,绘出的各点波形及其频谱或功率谱。

加上噪声作对比。

(发送的二进制信息序列可自己设定,例如假设发送的二进制信息序列为100110000101,一个码元周期内含有两个载波周期。

)6、脉冲编码调制仿真(选作)若输入A律PCM编码器的正弦信号为x(t)=sin(1600πt),抽样序列为x(n)=sin(0.2πn),n=0,1,2…,10,将其进行PCM编码,给出编码器的输出码组序列。

绘出译码后的波形(选作)。

二.程序及运行结果a单位脉冲序列程序:n=1:50; %定义序列的长度是50x=zeros(1,50); %注意:MATLAB 中数组下标从1 开始x(1)=1;subplot(3,1,1);stem(x);title('单位冲击信号序列');b单位阶跃序列程序如下:ns=0;nf=10;n0=2;n=[ns:nf];x=[(n-n0)>=0]c正弦信号及其频谱t=-1:0.01:1;x=5*sin(2*pi*10*t);N=length(x);fx=fft(x);df=100/N;n=0:N/2;f=n*df;subplot(211);plot(t,x);grid;subplot(212);plot(f,abs(fx(n+1))*2/N); grid;d周期锯齿波sawtooth()Fs=10000;t=0:1/Fs:1;x1=sawtooth(2*pi*50*t,0);x2=sawtooth(2*pi*50*t,1);subplot(2,1,1),plot(t,x1),axis([0,0.2,-1,1]);title('锯齿波1'); subplot(2,1,2),plot(t,x2),axis([0,0.2,-1,1]);title('锯齿波2')f实指数序列y(n)=2na=2;x=a.^n;stem(n,x);title('实指数序列')e周期方波square()Fs=10000;t=0:1/Fs:1;x1=square(2*pi*50*t,20);subplot(211),plot(t,x1),title('周期方波'); axis([0,0.2,-1.5,1.5]);g sin2πf1t*cos2πf2t f1=50Hz f2=2000Hz f1=50;f2=2000;t=0:0.02:10;a=sin(2*pi*f1*t);b=cos(2*pi*f2*t); y=a.*b;plot(t,y);title('sin2pif1t*cos2pif2t')(2)产生一条-2到2之间的Sa(200t)曲线。

t=linspace(-2,2);>> y=sinc(200*t);>> plot(t,y);title('y=sa(200t)')(3)产生下面信号,并绘出频谱t 0<t<t0/4s(t)= -t+ t0/4 t0/4<t< 3t0/4t-t0 3t0/4<t< t0假设t0=0.5s源程序:clear all;close all;clc;t0=0.5;t=0:0.01:0.5;s=t.*(t>0&t<=t0/4)+(-t+t0/4).*(t>=t0/4&t<=3*t0/4)+(t-t0).*(t>=3*t0/4&t<t 0);plot(t,s)1.模拟调制与解调的仿真(1)信号的DSB调制与解调clear all;close all;clc;t0=0.15;dt=0.0001;t=[0:dt:1];fc=250;phi0=0;ct=cos(2*pi*fc*t+phi0); %载波信号fm=10;fun =@(t)1.*(t>=0&t<=t0/3)+(-2).*(t>=t0/3&t<=2*t0/3)+0.*(t>=2*t0/3); mt=fun(t);ut=1.5*mt.*ct;figure(1)subplot(3,1,1),plot(t,mt),title('mt----调制信号')subplot(3,1,2),plot(t,ct),title('ct----载波信号')subplot(3,1,3),plot(t,ut),title('ut----已调信号')[m,n]=size(ut);ni=0.05*randn(m,n);u0=ut+ni;figure(2)subplot(3,1,1),plot(t,ni),title('ni----高斯白噪声')subplot(3,1,2),plot(t,u0),title('u0=ut+ni----已调信号+高斯白噪声')w1=2*dt*(fc-2*fm);w2=2*dt*(fc+2*fm);[b,a]=butter(4,[w1,w2],'bandpass');u1=filter(b,a,u0);subplot(3,1,3),plot(t,u1),title('u1----信号进入带通滤波器')figure(3)u2=u1.*ct;subplot(3,1,1),plot(t,u2),title('u2----与载波相乘后的波形')B=2*fm;wn3=2*dt*B;[b,a]=butter(4,wn3,'low');u3=filter(b,a,u2);subplot(3,1,2),plot(t,-u3),title('u3----解调后的信号')subplot(3,1,3),plot(t,-u3),hold on,title('解调后的信号与原调制信号比较')plot(t,mt,'r');dt=t(2)-t(1); % 采样周期f=1/dt; % 采样频率(Hz)X=fft(ut); % 计算x的快速傅立叶变换XN=1/dt;F=X(1:N/2+1); % F(k)=X(k)(k=1:N/2+1)f=f*(0:N/2)/N; % 使频率轴f从零开始figure(4)subplot(3,1,1),plot(f,abs(F)),title('dsb调制信号频谱图');xlim([0,fc*2]);xlabel('Frequency');ylabel('|F(k)|')调制与解调的波形,频谱(2)SSB方式clear all;close all;clc;t0=0.15;dt=0.0001;t=[0:dt:1];fc=250;phi0=0;ct=cos(2*pi*fc*t+phi0); %载波信号fm=10;fun =@(t)1.*(t>=0&t<=t0/3)+(-2).*(t>=t0/3&t<=2*t0/3)+0.*(t>=2*t0/3); mt=fun(t);mh=imag(hilbert(mt));b=sin(2*pi*fc.*t)ussb=mt.*ct-imag(hilbert(mt)).*b;lssb=mt.*ct+imag(hilbert(mt)).*b;figure(1)subplot(3,1,1),plot(t,mt),title('mt----调制信号')subplot(3,1,2),plot(t,ussb),title('ussb----载波信号')subplot(3,1,3),plot(t,lssb),title('lssb----已调信号')dt=t(2)-t(1); % 采样周期f=1/dt; % 采样频率(Hz)X1=fft(ussb); % 计算x的快速傅立叶变换XX2=fft(lssb);N=1/dt;F1=X1(1:N/2+1); % F(k)=X(k)(k=1:N/2+1)F2=X2(1:N/2+1);f=f*(0:N/2)/N; % 使频率轴f从零开始figure(4)subplot(3,1,1),plot(f,abs(F1)),hold on,title('ussb调制信号频谱图');plot(-f,abs(F1));xlim([-fc*2,fc*2]);subplot(3,1,2),plot(f,abs(F2)),holdon,title('lssb');plot(-f,abs(F2));xlim([-fc*2,fc*2]);xlabel('Frequency');ylabel('|F(k)|')(3)高斯白噪声n0=30;fc=250;t=[0:0.0005:0.15];u=cos(2*pi*fc.*t);M=length(u);x=sqrt(4*n0)*randn(1,M); plot(t,x(1:length(t)));2、数字基带通信系统的仿真(1)一个升余弦频谱的滤波器,t=-1/100+eps:1/10000:1/100;alfa=0.4;ts=1/1000;h_t=sin(pi*t/ts)./(pi*t/ts).*(cos(alfa*pi*t/ts)./(1-4*alfa^2*t.^2 /ts^2));plot(t,h_t);(2) 利用matlab的SIMULINK功能建立一个基带传输模型,采用单极性, 或双极性码作为基带信号,发送滤波器为上述升余弦滤波器,发送数据率为1000bps,分别观察输出信号在无噪声干扰及有噪声干扰下波形及眼图。

相关文档
最新文档