能量原理及其变分法

合集下载

能量原理与变分法

能量原理与变分法

1 M e 2
Ml M Me , EI z
土木工程与力学学院 · 罗文波
7
弹塑性力学
组合变形情况下杆件的变形能: 在所截取的微段内,可 以认为内力为常量。轴 力、剪力、弯矩、扭矩 对微段来说是处于外力 位置。所以
d U dW
整个杆的变形能
1 1 1 1 FN d( l ) M d T d kFQ d 2 2 2 2 2 2 FN d x M 2 d x T 2 d x kFQ d x 2 EA 2 EI z 2GI p 2GA
土木工程与力学学院 · 罗文波
3
弹塑性力学
变形能的计算:
F1、F2 Fn 如果弹性体上作用几个广义力(包括力偶), 1、 2 n ,那么 产生相应的广义位移(包括角位移)
非线性弹性体的变形能:
U W 0 Fi d i
i 1 n i
线性弹性体的变形能:
1 1 1 U W F1 1 F2 2 Fn n 2 2 2
弹塑性力学
能量原理与变分法
土木工程与力学学院 · 罗文波
弹塑性力学
§12-1 外力功 变形能
外力功:弹性体在外力作用下发生变形,于是外力的作用 点将沿外力的作用方向产生位移(相应位移)。外力在相 应位移上所作的功称为外力功。 变形能:在外力作功的同时,弹性体因变形而具有了作功 的能力,即弹性体因变形而储存了能量。这种能量称为变 形能。 外力功和变形能的关系:若外力从零平缓地增加到最终值, 则变形中的弹性体每一瞬时都处于平衡状态,故其动能和 其它能量损失不计,于是认为全部外力共都转变成变形能。 即: W U 能量法:利用外力功和变形能的概念,建立分析变形、位 移、内力的原理和方法,称为能量法。

第11章 能量原理与变分法

第11章 能量原理与变分法

将(11-4)及式(c)代入,得
U x u y v z w yz w v y z z x y (d) zx u w xy v u dxdydz x y z x 对每一项进行分部积分,并应用奥斯特洛格拉斯公式,可得 x u d x d y d z u d x d y d z x x x x x udxdydz x l x udS udxdydz x
U1 U1 U1 x, y, z x y z 11 2 U1 U1 U1 yz, zx, xy yz zx xy 弹性体的比能对于任一应力分量的改变率,等于相应的形变分量。
第十一章 能量原理与变分法 来自
§11.1 §11.2 §11.3 §11.4 §11.5 §11.6 §11.7 §11.8 §11.9 §11.10
弹性体的形变势能 位移变分方程 位移变分法 位移变分法应用于平面问题 应力变分方程 应力变分法 应力变分法应用于平面问题 应力变分法应用于扭转问题 解答的唯一性 功的互等定理
x x y y z z yz yz zx zx xy xy dxdydz
代入位移变分方程(11-6)式
X u Y v Z w dxdydz X u Y v Z w dS dxdydz
实际存在的位移,满足位移边界条件、用位移分量表示的平衡微 分方程和应力边界条件、位移变分方程。位移变分方程可以代替平 衡微分方程和应力边界条件。
4. 伽辽金变分方程 根据几何方程,形变分量的变分为

能量原理及其变分法

能量原理及其变分法
U Xu Yv Zw ds Xu Yv Zw dV ]
S V


于是
进一步证明可知, 2P 2U 2W 0
对于稳定平衡状态,总势能为极小值。
P 0
第四章 能量原理及其变分法
于是得出最小势能原理:
第四章 能量原理及其变分法
在整个变形体内,各微元体满足
x xy X 0 x y yx y Y 0 x y
y dy __ Y
xy
xy dy y 2
x
在变形体边界处,各微元体满足
xl xy m X 0 xy l y m Y 0
o
x dx y dy ds __ x 2 dx X y y 2 xy dx xy x 2 yx y dy dy yx y dy y y x x dx x Y x xy X
xy yx
xy
dx
§ 4-3 最小势能原理
按照能量守恒定律,应变能的增加,即总虚应变能或应变
能的变分δ U,应等于外力的总虚功δ W,即 U W 其中,外力总虚功为实际的体积力和表面力在相应的虚位移 上所做的功,即 W X u Y v Z w ds X u Y v Z w dV
X u Y v ds X u Y v dV
x
x
y y xy xy dV
S
V
V
第四章 能量原理及其变分法
所以
x xy xy y X u Y v dV x y y x V

科普大百科解读自然界的能量转换

科普大百科解读自然界的能量转换

科普大百科解读自然界的能量转换能量是自然界中一种基本的物理量,贯穿于宇宙的各个角落。

自然界中的能量转换是一个复杂而有趣的过程,涉及到各种物体和现象的相互作用。

本文将为大家解读自然界中的能量转换过程,从宏观到微观,逐步揭示其中的奥秘。

一、能量的分类能量按照形式和来源的不同,可以分为多种类型。

常见的能量形式包括动能、势能、热能、电能、光能等。

这些能量形式之间可以相互转换,而能量的转换又遵循着能量守恒定律,即能量不会被创造也不会被毁灭,只会转换成其他形式存在。

二、能量转换的例子1. 动能转换动能是物体由于运动而具有的能量。

当一个物体运动速度改变时,其动能也会相应改变。

例如,一个从高处下落的物体,在下落的过程中会逐渐转化为动能,当它触地时,动能达到最大值。

同样地,一个静止的物体在被施加外力后,开始运动并获得动能。

2. 势能转换势能是物体由于位置或状态而具有的能量。

常见的势能包括重力势能、弹性势能、化学势能等。

这些势能可以相互转换。

例如,一个被抛向空中的球,当它达到最高点时,其具有的势能最大,当球下落时,势能逐渐转化为动能。

3. 热能转换热能是物体由于分子振动引起的能量。

当物体受热时,其分子振动增强,热能增加。

而当物体散热时,热能被转化为其他形式的能量。

例如,电热水壶加热水时,电能被转化为热能,使水升温;而当热水冷却时,热能则会转化为周围环境的热能。

4. 电能转换电能是由电子流动而产生的能量。

电能可以转化为其他形式的能量,同时也可以通过各种方式转化为电能。

例如,发电厂通过燃煤或核能等方式产生电能,然后将电能输送到家庭、工厂等地方供人们使用。

5. 光能转换光能是由电磁辐射而产生的能量。

光能可以直接提供光能源,也可以转换为电能、化学能等其他形式。

例如,太阳能光伏发电就是利用光能转换为电能的一种方式。

三、能量转换的宏观和微观层面能量转换既存在于宏观的物体运动和现象中,也存在于微观的微粒之间的相互作用中。

在宏观层面上,能量转换涉及到机械系统、电力系统、热能系统等。

能量原理与变分法

能量原理与变分法

最小势能原理
• 内力虚功
物体是弹性的,则单位体积内的内力虚功
对于整个弹性体
内力虚功=应变能因虚位移而引起的改变
• 外力虚功
如果作用的外力是保守力,大小和方向都不变,只是作用点的位置改变
外力虚功=外力势能因虚位移而引起的改变
将上述结果代入虚功原理,得位移变分原理
称为弹性体的总势能,它是应变能与外力势能之和
变形可能态
➢ 在物体内位移与应变满足几何方程
➢ 在位移边界Su上,满足位移边界条件
ud=
vd=
wd=
变形协调
静力可能状态(s)和变形可能状态(d)是同一物体的两种不同的 受力状态和变形状态,两者可以彼此完全独立而没有任何关系
静力可能状态的应力所给出的变形一般不满足变形协调 变形可能状态给出的应力一般不满足平衡微分方程
使用位移法求解,应力、应变等都通过几何方程和物理方程看作是 位移的函数。
若位移及与之相应的应力与应变满足: (1)单值连续(由它给出的应变满足变形协调条件), (2)位移边界条件, (3)平衡微分方程, (4)静力边界条件, 则该位移就是问题的解,即为真实位移。
仅满足前两个条件的位移场是变形可能的位移场,而后两个条件等价于虚位移 原理。 故 求解弹性力学问题又可叙述为: (1)在所有变形可能的位移场中,寻找所给出的应力能满足虚位移原理的位移场 。 或者 (2) 真实的位移场除必须是变形可能的位移外,它所给出的应力还应满足虚位 移原理。
➢ 从弹性体的真实状态出发产生虚位移,所引起的总势能变分应为零, 即在真实状态总势能取极值。
➢ 对于处于稳定平衡的真实状态,应是取最小值, ➢ 最小势能原理:在所有变形可能的位移中,使总势能达到最小值的位
移,就是真实的位移。

07能量原理与变分法

07能量原理与变分法
由于虚位移是微小的,因此在虚位移的过程中,外力的大小和方向 可以视为保持不变,只是作用点有了改变。利用变分的性质,位移变分 方程可改写为:
δVe δ f xu δ f y v δ f z w dxdydz dS δ f u δ f v δ f w x y z
11. 能量原理与变分法
在复杂应力状态下,设弹性体受有全部六个应力分量 sx 、sy 、sz 、
tyz 、tzx、txy。根据能量守恒定理,形变势能的多少与弹性体受力的次序
无关,而完全确定于应力及变形的最终大小。弹性体的应变能密度
1 ve s xe x s ye y s ze z t yz yz t zx zx t xy xy 2
将几何方程代入,应变能用位移分量表示为
u v w u v w E Ve 2(1 ) 1 2 x y z x y z 1 w v 1 u w 1 v u 2 y z 2 z x 2 x y
—— 虚功方程。 即:如果在虚位移发生之前,弹性体是处于平衡状态,那么,在
虚位移过程中,外力在虚位移上所做的虚功就等于应力在相应的虚应
变上所做的虚功。
弹性力学
ELASTICITY
3. 最小势能原理
11. 能量原理与变分法
δVe f x δu f y δv f z δw dxdydz f x δu f y δv f z δw dS
11. 能量原理与变分法
δVe f x δu f y δv f z δw dxdydz f x δu f y δv f z δw dS

弹塑性力学能量原理与变分法

弹塑性力学能量原理与变分法

U = U ( y ( x) ) = y1 − y = δy
U max
δU = 0
1
函数 y 也有一增量: Δy 泛函 U 也有一增量:
(2)球下落问题 球从位置1下 落至位置2,所需 时间为T,
ΔU = U [ y1 ( x)] − U [ y ( x)] = δU
f ( x)
函数的增量δy 、泛函的增量 δU 等 称为变分。 研究自变函数的增量与泛函的增量 间关 系称为变分问题。 当
[
]
(e)
Vε = ∫∫∫ vε dxdydz
2 2 = 1 ∫∫∫ (σ x +σ y + σ z2 ) − 2 μ (σ xσ y + σ yσ z + σ zσ x ) 2E 2 2 2 + 2(1 + μ )(τ yz + τ zx + τ xy ) dxdydz
[
]
(11-1) 将式(e)分别对6 个应力分量求导,并将其结果与物理方程比较,得:
(a)以位移为基本未知量, 得到最小势(位)能原理等。—— 位移法 (b)以应力为基本未知量,得到最小余能原理等。 —— 力法
(c)同时以位移、应力、应变为未知量, 得到 广义(约束)变分原理。 求解方法: —— 混合法 里兹(Ritz)法,伽辽金(Galerkin )法, 加权残值( 余量)法等。 —— 有限单元法、边界元法、离散元法 等数值解法的理论基础。
§11-1 弹性体的形变势能
1. 形变势能的一般表达式
单向拉伸: 外力所做的功: P P l0
W = 1 PΔl 2
O
由于在静载(缓慢加载)条件下, 其它能量损失很小,所外力功全部转化 杆件的形变势能(变形能) Vε :

变分法(能量原理)

变分法(能量原理)
x

y
y

yz
z
) v ( zx
x

zy
y

z
z
)
w

dV

( xl xym xzn) u ( yxl ym yzn) v ( zxl zym zn) w dS
S
(Px u Py v Pz w) dS
S

V
(
x x

xy y

xz z

X ) u ( yx x

y y

yz z
Y ) v ( zx x

zy y

z z

Z
)
w

A1

B1

B1

0
A1

0


0
B1
Eab
2(1
2
)
(
A1

B1
)

q1ab

Eab
2(1
2
)
(
B1

A1
)

q2
ab

A1


q1

E
q2

B1Βιβλιοθήκη q2E
q1

u


q1
q2
E
x
v
V
S
( X u Y v Z w)dV (Px u Py v Pz w)dS
V
S
由于虚位移而产生的虚变形能为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o
x dx y dy ds __ x 2 dx X y y 2 xy dx xy x 2 yx y dy dy yx y dy y y x x dx x Y x xy X
xy yx
xy
dx
第四章 能量原理及其变分法
在整个变形体内,各微元体满足
x xy X 0 x y yx y Y 0 x y
y dy __ Y
xy
xy dy y 2
x
在变形体边界处,各微元体满足
xl xy m X 0 xy l y m Y 0
X xl xy m u Y xy l y m v ds x x y y xy xy dV
V S
与 W总=W面 X u Y v ds X u Y v dV 是恒等的。 S V 前提条件是
第四章 能量原理及其变分法
§ 4-1 应变能的概念及其表达式
变分法是研究泛函求极值的方法。弹性力学问题的变分
法,也称为能量法,是和弹性体的应变能或应变余能密切相 关的,是有限元法的基础。 单位体积中具有的应变能,称为应变能密度或比能。 1 弹性体在单向应力状态下,单位体积的应变能为 , 2 其中 是受力方向的正应力, 是该方向的线应变。 对于平面应力状态下单位体积的应变能,根据能量守恒定 律,应变能的大小与加力次序无关,只取决于应力和应变的 最终值,所以 U 0 1 x x y y xy xy
成立,同时
xl xy m X 0, xyl y m Y 0
成立。
第四章 能量原理及其变分法
虚功原理(实际是虚位移原理)与平衡条件和力的边界 条件是等价的,是以功的形式表达变形体的平衡条件。 对于空间应力状态,可以进行同样的推导,得到变形体 在空间应力状态下的虚功方程式
S V
W面 = 0 总虚功表达式写成 W总= W外 X u Y v ds X u Y v dV
X u Y v ds X u Y v dV
x
最后,得出
S
V
x
y y xy xy dV
§ 4-3 最小势能原理
按照能量守恒定律,应变能的增加,即总虚应变能或应变
能的变分δ U,应等于外力的总虚功δ W,即 U W 其中,外力总虚功为实际的体积力和表面力在相应的虚位移 上所做的功,即 W X u Y v Z w ds X u Y v Z w dV
xy 1 xy u 1 u 1 xy dy mds.1 u dy xy u u xy dy mds y 2 y 2 y 2 y
斜边上表面力所作的虚功为 X u Y v ds
U Xu Yv Zw ds Xu Yv Zw dV ]
S V


于是
进一步证明可知, 2P 2U 2W 0
对于稳定平衡状态,总势能为极小值。
P 0
第四章 能量原理及其变分法
于是得出最小势能原理:
第四章 能量原理及其变分法
体积力所作的虚功为
X u Y v dV2
同样地求出其它力所作的虚功,叠加,则得到变形体边界
处微元体上所有力所作的虚功之和为
x xy dW2 X y x xy y u Y v dV2 y x
X x l xy m u Y xy l y m v ds
X xl xy m u Y xy l y m v ds x x y y xy xy dV
X u Y v Z w dA X u Y v Z wdV
x x y y z z xy xy yz yz zx zx dV
V A V
第四章 能量原理及其变分法

E 1 1 2
如果用应力表示应变的广义虎克定律,则应变能可写成
U0 1 1 2 2 2 2 2 2 xy yz zx x y z x y y z z x 2E E 2G
x u dx u dx u x x x dV1 x u x x u x dV u 1 x x dV1 x x x
第四章 能量原理及其变分法
一般情况下,弹性体受力并不均匀,各个应力分量和 应变分量一般都是位置坐标的函数,因而应变能一般也是 位置坐标的函数。为了得出整个弹性体的应变能U,必须 把比能U0在整个弹性体内进行积分,即
U U 0 dxdydz
第四章 能量原理及其变分法
§ 4-2 虚功理
1 u 1 1 x x dx lds.1 u dx x u x u x x dx lds x 2 x 2 x 2
直角边dx上剪应力xy所作的虚功为
其次,分析边界处的微元体,以ds表示斜边的长度,则直
角边的面积分别为 dy.1 lds.1, dx.1 mds.1
微元体的体积为 dV2 dxdy.1 ldsdx mdsdy
1 2 1 2 1 2
设斜边中点处的虚位移为u、v,应力分量为x、y和xy, 直角边dy上正应力x所作的虚功为
V S
第四章 能量原理及其变分法
由于已经假设变形体在外力与约束条件下处于平衡状态,所以 总虚功 W总 x x y y xy xy dV
V
所有微元体上的力所作的总虚功,可以写成 W总 =W外 + W面 其中 W外 X u Y v ds X u Y v dV
x x y y xy xy dV2 x xy xy y X u Y 变形体的总虚功为 W总 x y v dV y x V
X u Y v ds X u Y v dV
x
x
y y xy xy dV
S
V
V
第四章 能量原理及其变分法
所以
x xy xy y X u Y v dV x y y x V
ds 0 X l m u Y l m v x xy xy y
S
因为虚位移u、v是任意的,所以上式为零的条件必是使上式中
xy y x xy X 0, Y 0 x y x y

U X u Y v Z w ds X u Y v Z w dV 0
S V

S

V
由于虚位移是微小的,可以把上式中的变分符号提到积分 号前面,得到 [U Xu Yv Zw ds Xu Yv Zw dV ] 0
2
第四章 能量原理及其变分法
对于空间应力状态的单位体积的应变能可写成
U0 1 x x y y z z xy xy yz yz zx zx 2
U0
将广义虎克定律代入上式,得 展开为 其中
1 T D 2 2 1 1 2 2 2 2 2 U 0 x y z G x y z2 G xy yz zx 2 2
x xy xy y dW1 X u Y v dV1 x x xy xy y y dV1 x y x y
第四章 能量原理及其变分法
其中 dV1 dxdy 1为微元体的体积。同样,xy所作的虚功为 体积力所作的虚功为
xy u u xy dV1 y y
Xdxdy.1 u X udV1
同样地求出其它力所作的虚功,叠加,则得到变形体内微 元体上所有力所作的虚功之和为
虚位移是结构所允许的任意的微小的假想位移,在发生虚位 移过程中真实力所作的功,称为虚功。
“如果变形体处于平衡状态,则给以任意微小虚位移,外力 所作的总虚功必等于变形体所‘接受’的总虚变形功 —— 变形体的虚功原理
为了简化变形体虚功原理的证明,以平面应力问题为例来说 明。假设单位厚度的变形体在给定的外力(体积力X、Y和表面 力 X , Y )和给定的约束条件下处于平衡状态,用x、y和xy表 示应力分量。这些应力分量满足下列平衡条件:
S
V
V
第四章 能量原理及其变分法
变形体在给定外力作用下,给以虚位移,如果外力所作的
总虚功等于变形体所“接受”的总虚变形功,则变形体各处都
处于平衡状态。
x xy xy y X u Y W总 v dV x y y x V

S

V
第四章 能量原理及其变分法
其中,外力在实际位移上所做的功
W Xu Yv Zw ds Xu Yv Zw dV
S V


取其负号,定义为外力势能(以外力为零的自然状态的势 能为零),将弹性体的应变能和外力势能之和,定义为系 统的总势能,记为 P U W
y
x
dx
其中,l、m表示边界处的外法线的方向余弦。
相关文档
最新文档