a-淀粉酶的简介
α-淀粉酶分类

α-淀粉酶分类
α-淀粉酶可根据它们的基本结构和催化机制分类。
1. 胰高血糖素α-淀粉酶(Pancreatic α-amylase):由胰腺分泌,催化淀粉分子中α-1,4-糖苷键的水解,形成糊精、麦芽糊精、麦芽三糖等,使淀粉溶解为葡萄糖。
2. 细胞外α-淀粉酶(Extracellular α-amylase):广泛存在于
真菌、细菌、植物和动物中,催化与胰高血糖素α-淀粉酶相同的反应,
但在环境条件上具有更高的适应性,如耐低温、耐高盐、耐低pH等。
3. γ-淀粉酶(Glucoamylase):主要由真菌和细菌产生,专门水解
淀粉分子的糖端α-1,4-糖苷键,产生单一的葡萄糖分子。
4. α-糖基转移酶(Transglycosidase):在α-淀粉酶酶解淀粉的
过程中,通过α-1,4-糖苷键的转移反应,产生多糖和寡糖,如淀粉胶和
麦芽糖醇寡糖。
5. 改性α-淀粉酶(Modified α-amylase):通过化学修饰或基因
工程技术改变本身的性质,如增加稳定性、减少不良反应、增加催化效率等,应用于食品、制药和环境等领域。
α-淀粉酶

α-淀粉酶在结构上的相似性使人们相信它们具有相似的 催化机制。McCarter、Davies均提出α-淀粉酶的催化过 程包括三步,共发生2次置换反应。第一步,底物某个 糖残基要先结合在酶活性部位的-1亚结合位点,该糖基 氧原子被充当质子供体的酸性氨基酸(如Glu)所质子化;第 二步,-1亚结合位点的另一亲核氨基酸(如Asp)对糖残基 的Cl碳原子进行亲核攻击,与底物形成共价中间物,同 C 时裂解Cl-OR键,置换出底物的糖基配基部分;第三步, 糖基配基离去之后,水分子被激活(可能正是被刚去质 子化的Glu所激活),这个水分子再将Asp的亲核氧与糖残 基的C1之间的共价键Cl-Asp水解掉,置换出酶分子的Asp 残基,水解反应完成。在第二次置换反应中,如果进攻 基团不是水分子,而是一个带有游离羟基的糖(寡 糖)ROH,那么酶分子的Asp残基被置换出后,就发生了 糖基转移反应而非水解反应。
在米曲霉的Taka-淀粉酶A(TAA)中,在活性部 位发现有三个酸性氨基酸残基,Asp206, Glu230,Asp 297,定点突变研究发现它们 是催化所必需的氨基酸。研究发现TAA中这 三个催化所必需的氨基酸在其它的α-淀粉酶 以至于α-淀粉酶家族中也是共有的。
Tonozaka(1993)通过对不同来源的37个α-淀粉酶基因分支酶基因,异 淀粉酶基因等进行同源序列的比较,微生物与动物和植物产生的α-淀 粉酶的氨基酸序列之间的同源性不超过10%,但发现这些淀粉酶有 ABCD四个区域有高度的保守性,推测这些保守区域与其底物的结合 或催化中心有关。 尽管不同来源的α-淀粉酶在氨基酸序列上是不同的,但它们却共同拥 有相同的基本次级结构,如(β/α)8结构(亦称之为TIM-桶)——由8个螺 旋包围8个β-折叠组成的筒状结构。该结构被认为具有催化能力的结 构。 YJanec k,S.通过对α-淀粉酶家族研究发现大部分α-淀粉酶除了含有 八个(β/α)桶状结构的催化中心(domain A)外,还包括domains B、C和 D。其中domain B具有三个β折叠和三个α螺旋,长度和结构随来源的 不同而变化。Domain C区是催化区域后面的区域,主要由β折叠组成, 该区被认为有保护催化中心疏水氨基酸的稳定性的作用。 另外,有一些α-淀粉酶包含一个没有催化功能的淀粉结合位点(starchbinding domain)。 此外,几乎所有α-淀粉酶都是金属酶,每个酶分子至少含有一个钙离 子,钙离子使酶分子保持适当的构象,从而维持其最大的活性和稳定 性。
α淀粉酶

6制药和临床化学分析
已有报道,基于α一淀粉酶的液体稳定试剂已应用于全自动生化分析仪(CibaComingExpress)临床化学系统。
二α—淀粉酶的研究现状
1国内α一淀粉酶研究现状
1965年,我国开始应用淀粉芽孢杆菌BF一7658生产一淀粉酶,当时只有无锡酶制剂厂独家生产。1967年杭州怡糖厂实现了应用α一淀粉酶生产饴糖的新工艺,可以节约麦芽7%~10%,提高出糖率10%左右。1964年我国开始了酶法水解淀粉生产葡萄糖工艺的研究。l979年9月通过了酶法注射葡萄糖新工艺的鉴定,并先后在华北制药厂、河北东风制药厂、郑州嵩山制药厂等单位得到应用,取得了良好的经济效益。
2淀粉的液化作用和糖化作用
α一淀粉酶的主要市场是淀粉水解的产物,如葡萄糖和果糖。淀粉被转化为高果糖玉米糖浆(HFCS)。由于他们的高甜度,被用于饮料工业中软饮料的甜味剂。这个液化过程就用到在高温下热稳定性好的α一淀粉酶。α一淀粉酶在淀粉液化上的应用工艺已经相当成熟,而且有很多相关报道。
3纤维脱浆
由于α一淀粉酶是具有重要应用价值的工业酶,周内外很多课题组对它进行了研究。国内有代表性的研究单位有:四川大学,主要研究α一淀粉酶的生产菌株及其培养条件;江南大学,主要研究α一淀粉酶的结构以及应用性能,如耐热性、耐酸性;西北大学,主要研究α一淀粉酶的变性机理以及环境对α一淀粉酶的影响;华南理工大学,主要研究α一淀粉酶的固定化和动力性质;还有华中农业大学,中国科学院沈阳应用生态研究所,天津科技大学,南开大学生命科学学院,中国农业科学院,中国科学院微生物研究所等多家研究机构对多种α一淀粉酶生产菌的一淀粉酶基因进行了克隆以及表达研究。国外有代表性的研究单位有:加拿大的UniversityofBritishColumbia,他们对人胰腺的一淀粉酶结构和作用机理进行了深入的研究;丹麦的Carlsberg实验室主要研究大麦α一淀粉酶结构域与结合位点;美国的WesternRegionalResearchCenter主要研究大麦的α一淀粉酶与抗菌素的作用以及大麦α一淀粉酶的活性位点。
淀粉酶的种类

淀粉酶的种类一、引言淀粉酶是一类可以将淀粉分解成糖类的酶,广泛存在于动植物体内。
在生物学领域中,淀粉酶的种类非常丰富,不同种类的淀粉酶具有不同的特点和应用价值。
本文将对淀粉酶的种类进行详细介绍。
二、α-淀粉酶α-淀粉酶是一种能够将α-1,4-糖苷键水解的酶,主要作用于淀粉分子内部连接α-1,4-糖苷键的部分。
它能够将多糖链断裂成小分子糖,并且还能进一步水解出葡萄糖单元。
α-淀粉酶广泛存在于生物体内,包括动物、植物和微生物等。
三、β-淀粉酶β-淀粉酶是另一种重要的淀粉水解酶,它能够将β-1,4-糖苷键水解。
与α-淀粉酶不同的是,β-淀粉酶主要作用于支链上连接α-1,6-糖苷键的部分。
它能够将支链上的小分子糖水解出来,同时也能将主链上的糖分解成较小的分子。
四、γ-淀粉酶γ-淀粉酶是一种能够水解淀粉和糊精的酶,它主要作用于α-1,4-糖苷键和α-1,6-糖苷键。
与α-淀粉酶和β-淀粉酶不同的是,γ-淀粉酶具有较高的耐热性和碱性。
因此,它在工业上被广泛应用于制备糊化淀粉、葡萄糖浆等产品。
五、其他淀粉酶除了上述三种常见的淀粉酶外,还存在着许多其他类型的淀粉酶。
例如:α-amylase、β-amylase、glucosidase等。
这些淀粉酶在生物体内发挥着重要的作用,并且也被广泛应用于食品加工、医药制造等领域。
六、总结综上所述,淀粉酶是一类重要的生物催化剂,在生物学和工业领域都具有广泛的应用价值。
不同种类的淀粉酶具有不同的特点和应用场景,深入了解淀粉酶的种类和作用机理,对于提高淀粉加工效率、改善食品质量等方面都具有重要意义。
低温α-淀粉酶

低温α-淀粉酶
低温α-淀粉酶(Low-temperature α-amylase)是一种能在较低温度下活性的α-淀粉酶。
这类酶通常能够在相对较低的温度范围内(一般在10°C到40°C之间)保持其催化活性,因此对于一些需要在低温条件下进行生产或处理的工业应用具有重要意义。
以下是低温α-淀粉酶的一些特点和应用领域:
1.活性温度:低温α-淀粉酶的活性温度一般在较低的范围内,
适合在低温环境下进行工业生产。
2.来源:这类酶可以从一些适应低温环境的微生物中提取,例如
一些生活在寒冷环境的细菌或真菌。
3.食品工业:低温α-淀粉酶在食品工业中有一些应用,例如在
低温条件下制备一些涉及到淀粉降解的食品制品,如糖浆和面粉的加工。
4.酿酒工业:在啤酒酿造等过程中,低温α-淀粉酶可以用于麦
芽中淀粉的降解,有助于发酵过程的进行。
5.生物燃料生产:在生物质降解和生物燃料生产的过程中,低温
α-淀粉酶的活性温度范围可能更适合在低温条件下操作。
6.洗涤剂生产:低温α-淀粉酶也可能用于洗涤剂的生产,尤其
是那些需要在低温下进行的洗涤工艺。
这些特性使得低温α-淀粉酶在一些需要低温工艺的工业领域中具有潜在的应用前景。
不同的酶可能有不同的特性,因此在具体应用中需要选择适合特定条件的酶。
α-淀粉酶

根据淀粉酶对淀粉的水解方式不同,可将其分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶等。
其中,α-淀粉酶(α-1,4-葡聚糖-4-葡聚糖苷酶)多是胞外酶,其作用于淀粉时可从分子内部随机地切开淀粉链的α-1,4糖苷键,而生成糊精和还原糖,产物的末端残基碳原子构型为α-构型,故称α-淀粉酶。
α-淀粉酶来源广泛,主要存在发芽谷物的糊粉细胞中,当然,从微生物到高等动、植物均可分离到,是一种重要的淀粉水解酶,也是工业生产中应用最为广泛的酶制剂之一。
它可以由微生物发酵制备,也可以从动植物中提取。
不同来源的α-淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α-淀粉酶。
目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。
如在淀粉加工业中,微生物α-淀粉酶已成功取代了化学降解法;在酒精工业中能显著提高出酒率。
其应用于各种工业中对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。
相对地,关于α-淀粉酶抑制剂国内外也有很多研究报道,α-淀粉酶抑制剂是糖苷水解酶的一种。
它能有效地抑制肠道内唾液及胰淀粉酶的活性,阻碍食物中碳水化合物的水解和消化,降低人体糖份吸收、降低血糖和血脂的含量,减少脂肪合成,减轻体重。
有报道表明,α-淀粉酶可以帮助改善糖尿病患者的耐糖量。
α-淀粉酶是淀粉及以淀粉为材料的工业生产中最重要的一种水解酶,其最早的商业化应用在1984年,作为治疗消化紊乱的药物辅助剂。
现在,α-淀粉酶已广泛应用于食品、清洁剂、啤酒酿造、酒精工业和造纸工业。
在焙烤工业中的应用:α-淀粉酶用于面包加工中可以使面包体积增大,纹理疏松;提高面团的发酵速度;改善面包心的组织结构,增加内部组织的柔软度;产生良好而稳定的面包外表色泽;提高入炉的急胀性;抗老化,改善面包心的弹性和口感;延长面包心储存过程中的保鲜期在啤酒酿造中的应用:啤洒是最早用酶的酿造产品之一,在啤洒酿造中添加α-淀粉酶使其较快液化以取代一部分麦芽,使辅料增加,成本降低,特别在麦芽糖化力低,辅助原料使用比例较大的场合,使用α-淀粉酶和β-淀粉酶协同麦芽糖化,可以弥补麦芽酶系不足,增加可发酵糖含量,提高麦汁率,麦汁色泽降低,过滤速度加快,提高了浸出物得率,同时又缩短了整体糊化时间。
α淀粉酶

α-淀粉酶是一种内切酶, 其相对分子量约50000左 右,
作用于淀粉时,可从淀粉 分子内部随机切开α-1,4 糖苷键,不能切开α-1,6 糖苷键以及与α-1,6糖苷 键相连的α-1,4糖苷键, 但能越过支点切开内部的 α-1,4糖苷键。其水解产 物中除含葡萄糖、麦芽糖 外还含有具有α-1,6糖苷 键的极限糊精和含α-1,6 糖苷键的具葡萄糖残基的 低聚糖。
温度对酶活性有很大影响,温度升高,酶的 反应速度就增加,一般每升高十摄氏度,反 应速度可增加2~3倍,但是大多数酶都是蛋白 质,温度过高则可导致蛋白质变质,从而使 酶失活。在一定条件下,在某一温度时酶的 反应速度最大。这使得反应速度是最适反应 温度。
α-淀粉酶是一种金属酶,每分子酶含有一个 Ca² ﹢,Ca² ﹢可使酶分子保持相当稳定的构 象,从而可以维持酶的最大活性及热稳定性。 Ca² ﹢对酶的结合度,按产生菌而言依次是 霉菌>细菌>动物>植物。除了Ca² ﹢其他金 属离子也可以提高酶的热稳定性。
α-淀粉酶广泛分布于动物(唾液、胰脏等)、植 物(麦芽、山萮菜)及微生物。微生物的酶几乎 都是分泌性的。此酶以Ca2+为必需因子并作为 稳定因子,既作用于直链淀粉,亦作用于支链淀 粉,无差别地切断α-1,4-链。因此,其特征是 引起底物溶液粘度的急剧下降和碘反应的消失, 最终产物在分解直链淀粉时以麦芽糖为主,此外, 还有麦芽三糖及少量葡萄糖。另一方面在分解支 链淀粉时,除麦芽糖、葡萄糖外,还生成分支部 分具有α-1,6-键的α-极限糊精。一般分解限度 以葡萄糖为准是35-50%,但在细菌的淀粉酶中, 亦有呈现高达70%分解限度的(最终游离出葡萄 糖);
1.PH值对酶活性的影响
2.温度对酶活性的影响
3.金属离子对酶活性的影响
α-淀粉酶

保藏菌种
斜面活化
摇瓶种子 培养
厚层通风 发酵
种子罐扩 大培养
粗制品 沉淀 收集滤液 过滤
烘干 抽提 麸曲
离心
洗涤沉淀
风干
粉碎
精制品
α淀粉酶的发酵生产及应用
22
固体发酵缺点
限于低湿状态下生长的微生物,故可能的流程及产物较 受限,一般较适合于真菌。 在较致密的环境下发酵,其代谢热的移除常造成问题, 尤其是大量生产时,常限制其大规模的产能。 固态下各项参数不易侦测,尤其是液体发酵的各种探针
α淀粉酶的发酵生产及应用 20
深层发酵法生产α-淀粉酶 • 停止补料后6~8小时罐温不再上升,菌体衰老, 80%形成空泡,每2~3小时取样分析一次,当酶 活不再升高,可结束发酵。而后向发酵液中添加 2%CaCl2,0.8%Na2HPO4,50~55℃加热处理 30分钟,以破坏共存的蛋白酶,促使胶体凝聚而 易于过滤。冷却到35℃,加入硅藻土为助滤剂过 滤。滤液加2.5倍水洗涤,洗涤同发酵液混合,真 空浓缩数倍后,加(NH4)2SO4盐析,盐析物加 硅藻土后压滤,滤饼于40℃烘干,磨粉而成。按 此工艺,由酶液到粉状酶制剂的收率为70%。
α淀粉酶的发酵生产及应用
10
• 作用温度范围60~90℃,最适宜作用温度60~70, 作用pH值范围为5.5~7.0,最适pH值为6.0。 Ca2+具有一定的激活、提高淀粉酶活力的能力, 并且对其稳定性的提高也有一定效果。可催化水 解a-1,4糖苷键,但只能催化水解直链淀粉,生成 a-麦芽糖和少量葡萄糖。 • 主要存在于人的唾液和胰脏中,也存在于麦芽、 芽孢杆菌、枯草杆菌、黑曲霉和米曲霉中。可由 米曲霉、嗜酸性普鲁士蓝杆菌、淀粉液化杆菌、 地衣芽孢杆菌和枯草杆菌分别经发酵、精制、干 燥而得。 α淀粉酶的发酵生产及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淀粉酶【拼音:diàn-fěn méi;英文:Amylase】是一种水解酶,是目前发酵工业上应用最广泛的一类酶。
淀粉酶一般作用于可溶性淀粉、直链淀粉、糖原等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶。
根据作用的方式可分为α-淀粉酶(EC3.2.1.1.)与β-淀粉酶(EC3.2.1.2.)。
α-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。
微生物的酶几乎都是分泌性的。
此酶以Ca2+为必需因子并作为稳定因子,既作用于直链淀粉,亦作用于支链淀粉,无差别地切断α-1,4-链。
因此,其特征是引起底物溶液粘度的急剧下降和碘反应的消失,最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖。
另一方面在分解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。
一般分解限度以葡萄糖为准是35-50%,但在细菌的淀粉酶中,亦有呈现高达70%分解限度的(最终游离出葡萄糖)。
β-淀粉酶与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。
主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。
对于象直链淀粉那样没有分支的底物能完全分解得到麦芽糖和少量的葡萄糖。
作用于支链淀粉或葡聚糖的时候,切断至α-1,6-键的前面反应就停止了,因此生成分子量比较大的极限糊精。
从上述的α-淀粉酶和β-淀粉酶的作用方式,分别提出α-1,4-葡聚糖-4-葡萄糖水解酶(α-1,4-glucan 4-glucanohydrolase)和α-1,4-葡聚糖-麦芽糖水解酶(α
-1,4-glucan maltohydrolase)的名称等而被使用。
α-淀粉酶是一种内切葡萄糖苷酶,属于淀粉酶α-淀粉酶催化水解淀粉会使淀粉黏度迅速下降,所以又称为液化淀粉酶。
理化性质:米黄色、灰褐色粉末。
能水解淀粉中的α-1,4,葡萄糖苷键。
能将淀粉切断成长短不一的短链糊精和少量的低分子糖类,从而使淀粉糊的黏度迅速下降,即起到降低稠度和“液化”的作用,所以此类淀粉酶又称为液化酶。
作用温度范围60~90℃,最适宜作用温度为60~70℃,作用pH值范围5.5~7.0,最适pH值为6.0。
Ca2+具有一定的激活、提高淀粉酶活力的能力,并且对其稳定性的提高也有一定效果。
可催化水解α-1,4-糖苷键,但只能催化水解直链淀粉,生成α-麦芽糖和少量葡萄糖。
主要存在于人的唾液和胰脏中,也存在于麦芽、蟑螂涎腺、芽胞杆菌、枯草杆菌、黑曲霉和米曲霉中。
可由米曲霉、嗜酸性普鲁士蓝杆菌、淀粉液化杆菌、地衣芽孢杆菌和枯草杆菌分别经发酵、精制、干燥而得。