2021届全国新高考数学专题复习 解析几何
2021年高考数学(理)解析几何突 专题10圆锥曲线综合应用(2)-最值、范围、证明问题(解析版)

2021年高考数学(理)解析几何突破性讲练10圆锥曲线综合问题(2)-最值、范围、证明问题一、考点传真:1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.二、知识点梳理:1.圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是几何方法,即通过利用圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是代数方法,即把要求最值的几何量或代数表达式表示为某个(些)变量的函数(解析式),然后利用函数方法、不等式方法等进行求解.2.解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.3.圆锥曲线中的证明问题常见的有:(1)位置关系方面的:如证明直线与曲线相切,直线间的平行、垂直,直线过定点等.(2)数量关系方面的:如存在定值、恒成立、相等等.在熟悉圆锥曲线的定义与性质的前提下,一般采用直接法,通过相关的代数运算证明,但有时也会用反证法证明. 三、例题:例1.(2020年江苏卷,18)在平面直角坐标系xOy 中,若椭圆22:143x y E +=的左、右焦点分别为1F ,2F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,直线1AF 与椭圆E 相交于另一点B .(1)求12AF F 的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB 与MAB 的面积分别是1S ,2S ,若213S S =,求M 的坐标.【解析】(1)设椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F 的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 在2x =时取等号.所以OP QP ⋅的最小值为-4.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),1,2F F A ⎛⎫- ⎪⎝⎭,所以直线:343AB x y -+. 设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120143x x x y -+=⎧⎪⎨+=⎪⎩,得2724320x x ++=,此方程无解; 由223460143x y x y --=⎧⎪⎨+=⎪⎩,得271240x x --=,所以2x =或27x =-. 代入直线3460l x y --=:,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212,77⎛⎫--⎪⎝⎭.例2.(2020年上海卷,20)双曲线22122:14x y C b-=,圆2222:4(0)C x y b b +=+>在第一象限交点为A ,(,)A A A x y ,曲线2222221,44,A A x y x x b x y b x x⎧-=>⎪Γ⎨⎪+=+>⎩.(1)若A x =b ;(2)若b =2C 与x 轴交点记为12F F 、,P 是曲线Γ上一点,且在第一象限,并满足18PF =,求∠12F PF ;(3)过点2(0,2)2b S +且斜率为2b-的直线l 交曲线Γ于.M N 两点,用b 的代数式表示OM ON ⋅,并求出OM ON ⋅的取值范围.【解析】(1)若A x =A 为曲线1C 与曲线2C 的交点, 222222144A A x y bx y b⎧-=⎪⎨⎪+=+⎩,解得2y b ⎧=⎪⎨=⎪⎩ 2b =(2)方法一:由题意易得12F F 、为曲线的两焦点, 由双曲线定义知:212PF PF a =-,18,24PF a ==,24PF ∴=又5b =,126F F ∴=在12PF F △中由余弦定理可得:2221212121211cos 216PF PF F F F PF PF PF +-∠==⋅⋅ 方法二:5b =,可得2222145(3)64x y x y ⎧-=⎪⎨⎪++=⎩,解得P ,12(7,15),(1,PF PF ∴=--=-,12121211cos(,)16||PF PF PF PF PF PF ⋅∴==⋅ (3)设直线24:22b b l y x +=-+可得原点O 到直线l 的距离d ==所以直线l 是圆的切线,切点为M ,所以2OM k b =,并设2:OM l y x b =,与圆2224x y b +=+联立可得222244x x b b+=+, 所以得,2x b y ==,即(,2)M b ,注意到直线l 与双曲线得斜率为负得渐近线平行, 所以只有当2A y >时,直线l 才能与曲线Γ有两个交点, 由222222144Ax y b x y b ⎧-=⎪⎨⎪+=+⎩,得422A b y a b =+, 所以有4244b b<+,解得22b >+22b <-(舍) 又因为OMON ⋅由ON OM 在上的投影可知:24OM ON b ⋅=+ 所以246OM ON b ⋅=+>+(625,)OM ON ⋅∈++∞.例3. (2019浙江卷)如图,已知点为抛物线的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记的面积为.(1)求p 的值及抛物线的准线方程;(2)求的最小值及此时点G 的坐标. 【解析】 (I )由题意得,即p =2. 所以,抛物线的准线方程为x =−1.(Ⅱ)设,重心.令,则.由于直线AB 过F ,故直线AB 方程为,代入,得 ,故,即,所以.又由于及重心G 在x 轴上,故,得. 所以,直线AC 方程为,得.(10)F ,22(0)y px p =>ABC △,AFG CQG △△12,S S 12S S 12p=()()(),,,,,A A B B c c A x y B x y C x y (),G G G x y 2,0A y t t =≠2A x t =2112t x y t-=+24y x =()222140t y y t---=24B ty =-2B y t =-212,B tt ⎛⎫- ⎪⎝⎭()()11,33G A B c G A B c x x x x y y y y =++=++220c t y t-+=242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()222y t t x t-=-()21,0Q t-由于Q 在焦点F 的右侧,故.从而. 令,则m >0,.当时,取得最小值,此时G (2,0).例4.(2018·浙江卷)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.【解析】(1)证明 设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.22t >4224221244242222211|2|||322221222211|||1||2|23A c t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-22m t =-1221222134342S m S mm m m m =-=--=++++m =12S S 12+所以y 1+y 2=2y 0,因此,PM 垂直于y 轴.(2)解 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22(y 20-4x 0).因此,△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 20+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 因此,△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104.例5. (2018·全国Ⅲ卷)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.【解析】(1)证明 设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.① 由于点M (1,m )(m >0)在椭圆x 24+y 23=1内,∴14+m 23<1,解得0<m <32,故k <-12. (2)解 由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32. 于是|FA →|=(x 1-1)2+y 21=(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|, 即|FA →|,|FP →|,|FB →|成等差数列. 设该数列的公差为d ,则2|d |=||FB →|-|FA →||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.②将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.例6. (2018·天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为53,|AB |=13.(1)求椭圆的方程;(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.【解析】 (1)设椭圆的焦距为2c ,由已知有c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .由|AB |=a 2+b 2=13,从而a =3,b =2.所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点M 的坐标为(x 2,y 2), 由题意,x 2>x 1>0,点Q 的坐标为(-x 1,-y 1).由△BPM 的面积是△BPQ 面积的2倍,可得|PM |=2|PQ |, 从而x 2-x 1=2[x 1-(-x 1)],即x 2=5x 1. 易知直线AB 的方程为2x +3y =6,由方程组⎩⎪⎨⎪⎧2x +3y =6,y =kx ,消去y ,可得x 2=63k +2.由方程组⎩⎪⎨⎪⎧x 29+y 24=1,y =kx ,消去y ,可得x 1=69k 2+4. 由x 2=5x 1,可得9k 2+4=5(3k +2), 两边平方,整理得18k 2+25k +8=0,解得k =-89,或k =-12.当k =-89时,x 2=-9<0,不合题意,舍去;当k =-12时,x 2=12,x 1=125,符合题意.所以,k 的值为-12.四、巩固练习:1.平面直角坐标系xOy 中,过椭圆M:x 2a2+y 2b2=1(a>b>0)右焦点的直线x+y-√3=0交M 于A,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB,求四边形ACBD 面积的最大值.【解析】(1)设A(x 1,y 1),B(x 2,y 2),则x 12a2+y 12b2=1,x 22a2+y 22b2=1,两式相减,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.因为y 1-y2x 1-x 2=-1,设P(x 0,y 0),又P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2),解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2.又因为c=√3,所以a 2=6.所以M 的方程为x 26+y 23=1.(2)因为CD ⊥AB,直线AB 的方程为x+y-√3=0,设直线CD 的方程为y=x+m,将x+y-√3=0代入x 26+y 23=1,得2x 2-4√3x=0,解得x=0或x=4√33. 不妨令A(0,√3),B (4√33,-√33),可得|AB|=4√63.将y=x+m 代入x 26+y 23=1,得3x 2+4mx+2m 2-6=0,设C(x 3,y 3),D(x 4,y 4),则|CD|=√2·√(x 3+x 4)2-4x 3x 4=2√23√18−2m 2. 又因为Δ=16m 2-12(2m 2-6)>0,即-3<m<3,所以当m=0时,CD 取得最大值4,所以四边形ACBD 面积的最大值为12|AB|·|CD|=8√63.2.设椭圆C 1:x 2a2+y 2b2=1(a>b>0)的离心率为√32,F 1,F 2是椭圆的两个焦点,P 是椭圆上任意一点,且△PF 1F 2的周长是4+2√3.(1)求椭圆C 1的方程.(2)设椭圆C 1的左、右顶点分别为A 、B,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E,若点C 满足AB ⊥BC,AD ∥OC,连接AC 交DE 于点P,求证:PD=PE.【解析】(1)由e=√32知,c a =√32,所以c=√32a.因为△PF 1F 2的周长是4+2√3, 所以2a+2c=4+2√3,所以a=2,c=√3, 所以b 2=a 2-c 2=1,所以椭圆C 1的方程为x 24+y 2=1.(2)由(1)得A(-2,0),B(2,0), 设D(x 0,y 0),所以E(x 0,0). 因为AB ⊥BC,设C(2,y 1),所以AD⃗⃗⃗⃗⃗ =(x 0+2,y 0),OC ⃗⃗⃗⃗⃗ =(2,y 1).由AD ∥OC,得(x 0+2)y 1=2y 0,即y 1=2y 0x0+2,所以直线AC 的方程为y 2y 0x 0+2=x+24,整理得y=y 02(x 0+2)(x+2).又点P 在直线DE 上,将x=x 0代入直线AC 的方程,可得y=y 02,即点P 的坐标为(x 0,y02),所以P 为DE 的中点,所以PD=PE.3.已知椭圆C:x 2a+y 2b=1(a>b>0),圆Q:(x-2)2+(y-√2)2=2的圆心Q 在椭圆C 上,点P(0,√2)到椭圆C 的右焦点的距离为√6.(1)求椭圆C 的方程;(2)过点P 作互相垂直的两条直线l 1,l 2,且l 1交椭圆C 于A,B 两点,直线l 2交圆Q 于C,D 两点,且M 为CD 的中点,求△MAB 面积的取值范围.【解析】(1)∵椭圆C 的右焦点F(c,0),|PF |=√6,∴c=2.∵点(2,√2)在椭圆C 上,∴4a2+2b2=1.由a 2-b 2=4得a 2=8,b 2=4,∴椭圆C 的方程为x 28+y 24=1.(2)由题意可得l 1的斜率不为零,当l 1垂直x 轴时,△MAB 的面积为12×4×2=4,当l 1不垂直x 轴时,设直线l 1的方程为y=kx+√2,则直线l 2的方程为y=-1k x+√2,A(x 1,y 1),B(x 2,y 2),由{x 28+y 24=1,y =kx +√2,消去y 得(1+2k 2)x 2+4√2kx-4=0, ∴x 1+x 2=-4√2k1+2k 2,x 1x 2=-41+2k 2, 则|AB |=√1+k 2|x 1-x 2|=4√(1+k 2)(4k 2+1)2k 2+1.由圆心Q(2,√2)到l 2的距离d 1=√1+k 2<√2得k 2>1, 又MP ⊥AB,QM ⊥CD,∴GM ∥AB,∴点M 到AB 的距离等于点Q 到AB 的距离,设为d 2,即d 2=√2+√2|√1+k 2=√1+k 2,∴△MAB 面积S=12|AB |d 2=4|k |√4k 2+12k 2+1=4√k 2(4k 2+1)(2k 2+1)2.令t=2k 2+1∈(3,+∞),则1t ∈(0,13),S=4√2t 2-3t+12t 2=4√12(1t -32)2-18∈(4√53,4),综上,△MAB 面积的取值范围为(4√53,4]. 4.如图,点M (√3,√22)在椭圆x 2a 2+y 2b 2=1(a>b>0)上,且点M 到两焦点的距离之和为4.(1)求椭圆的方程;(2)设与MO(O 为坐标原点)垂直的直线交椭圆于A,B(A,B 不重合)两点,求OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ 的取值范围. 【解析】(1)由已知得,2a=4,∴a=2.又点M (√3,√22)在椭圆x 2a 2+y 2b 2=1(a>b>0)上, ∴34+12b 2=1,解得b 2=2,∴所求椭圆的方程为x 24+y 22=1.(2)∵k O M=√66,∴k A B=-√6. 设直线AB 的方程为y=-√6x+m,联立方程{x 24+y 22=1,y =−√6x +m,消去y 得13x 2-4√6mx+2m 2-4=0.∵Δ=(4√6m)2-4×13(2m 2-4)=8(12m 2-13m 2+26)>0, ∴m 2<26.设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=4√6m 13,x 1x 2=2m 2-413.OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=7x 1x 2-√6m(x 1+x 2)+m 2=3m 2-2813. 结合0≤m 2<26,可得OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ 的取值范围是[-2813,5013). 5.(1)求点M 的轨迹C 的方程.(2)设C 与x 轴交于E,F 两点,P 是直线l 上一点,且点P 不在C 上,直线PE,PF 分别与C 交于另一点S,T,证明:A,S,T 三点共线.【解析】(1)设点M(x,y),依题意,|MA||MB|=√(x+4)2+y 222=2,化简得x 2+y 2=4,即轨迹C 的方程为x 2+y 2=4. (2)由(1)知曲线C 的方程为x 2+y 2=4,令y=0,得x=±2,不妨设E(-2,0),F(2,0),如图.设P(-1,y 0),S(x 1,y 1),T(x 2,y 2),则直线PE 的方程为y=y 0(x+2). 由{y =y 0(x+2),x 2+y 2=4,得(y 02+1)x 2+4y 02x+4y 02-4=0, 所以-2x 1=4y 02-4y 02+1,即x 1=2−2y 02y 02+1,y 1=4y 0y 02+1.直线PF 的方程为y=-y03(x-2).由{y =−y03(x -2),x 2+y 2=4,得(y 02+9)x 2-4y 02x+4y 02-36=0, 所以2x 2=4y 02-36y 02+9,即x 2=2y 02-18y 02+9,y 2=12y 0y 02+9.所以k A S=y 1x1+4=4y 0y 02+12−2y 02y 02+1+4=2yy 02+3, k A T=y 2x2+4=12y 0y 02+92y 02-18y 02+9+4=2yy 02+3, 所以k A S=k A T,所以A,S,T 三点共线.6.已知椭圆C 1:x 2a 2+y 2b 2=1(a>b>0)的焦距为4,左、右焦点分别为F 1、F 2,且C 1与抛物线C 2:y 2=x 的交点所在的直线经过F 2.(1)求椭圆C 1的方程.(2)分别过点F 1、F 2作平行直线m 、n,若直线m 与C 1交于A,B 两点,与抛物线C 2无公共点,直线n 与C 1交于C,D 两点,其中点A,D 在x 轴上方,求四边形AF 1F 2D 的面积的取值范围. 【解析】(1)依题意得2c=4,则左、右焦点分别为F(-2,0)、F 2(2,0).所以椭圆C 1与抛物线C 2的一个交点为P(2,√2), 于是2a=|PF 1|+|PF 2|=4√2,从而a=2√2. 又a 2=b 2+c 2,解得b=2,所以椭圆C 1的方程为x 28+y 24=1.(2)依题意,直线m 的斜率不为0,设直线m:x=ty-2, 由{x =ty -2,y 2=x,消去x 并整理,得y 2-ty+2=0, 由Δ=(-t)2-8<0,得t 2<8.由{x =ty -2,x 2+2y 2=8,消去x 并整理,得(t 2+2)y 2-4ty-4=0. 设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4tt 2+2,y 1y 2=-4t 2+2,所以|AB|=√1+t 2|y 1-y 2| =√1+t 2√(y 1+y 2)2-4y 1y 2=4√2(t 2+1)t 2+2. 因为直线m 与n 之间的距离d=√t 2+1(即点F 2到m 的距离),由椭圆的对称性知,四边形ABCD 为平行四边形,故S 四边形AF 1F 2D=12S 四边形ABCD=12·4√2(t 2+1)t 2+2·√t 2+1=8√2√t 2+1t 2+2. 令√t 2+1=s ∈[1,3),则S 四边形AF 1F 2D=8√2√t 2+1t 2+2=8√2s s 2+1=8√2s+1s∈(12√25,4√2], 所以四边形AF 1F 2D 的面积的取值范围为(12√25,4√2]. 7.已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)过点M(2,1),且离心率为√32.(1)求椭圆C 的方程.(2)设A(0,-1),直线l 与椭圆C 交于P,Q 两点,且|AP|=|AQ|,当△OPQ(O 为坐标原点)的面积S 最大时,求直线l 的方程.【解析】(1)依题意得4a 2+1b 2=1,e=c a =√32,又a 2=b 2+c 2,解得a 2=8,b 2=2,所以椭圆C 的方程为x 28+y 22=1. (2)显然,直线l 的斜率k 存在.①当k=0时,可设直线l 的方程为y=y 0,P(-x 0,y 0),Q(x 0,y 0),则x 028+y 022=1. 所以S=12|2x 0|·|y 0|=|x 0|·|y 0|=2√y 02·(2-y 02)≤2·y 02+(2−y 02)2=2.当且仅当y 02=2-y 02,即|y 0|=1时取等号,此时直线l 的方程为y=±1.②当k ≠0时,可设直线l 的方程为y=kx+m,P(x 1,y 1),Q(x 2,y 2), 联立{y =kx +m,x 28+y 22=1,消去y 整理得(1+4k 2)x 2+8kmx+4(m 2-2)=0.由Δ=(8km)2-4(1+4k 2)·4(m 2-2)>0,得8k 2+2>m 2, (*)则有x 1+x 2=-8km1+4k2,x 1x 2=4(m 2-2)1+4k2,于是可得PQ 的中点坐标为(-4km 1+4k2,m 1+4k 2).因为|AP|=|AQ|,所以m1+4k 2+1-4km 1+4k 2-0=-1k ,化简得1+4k 2=3m,结合(*)可得0<m<6.又点O 到直线l 的距离d=√k 2+1,|PQ|=√1+k 2·|x 1-x 2|=4√1+k 2·√8k 2+2−m 21+4k 2,所以S=12|PQ|·d=12·√1+k2·4√1+k 2·√8k 2+2−m 21+4k 2.即S=23√6m -m 2=23√-(m -3)2+9, 所以当m=3时,S 取得最大值,此时k=±√2,直线l 的方程为y=±√2x+3. 综上所述,直线l 的方程为y=±1或y=±√2x+3.8.已知抛物线C:y 2=2px(p>0)过点M(m,2),其焦点为F,且|MF|=2.(1)求抛物线C 的方程.(2)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆F:(x-1)2+y 2=1相切,切点分别为A,B,求证:A,B,F 三点共线.【解析】(1)抛物线C 的准线方程为x=-p 2,∴|MF|=m+p2=2.又∵抛物线C:y 2=2px(p>0)过点M(m,2), ∴4=2pm,即4=2p (2−p2), ∴p 2-4p+4=0,∴p=2, ∴抛物线C 的方程为y 2=4x.(2)设点E(0,t)(t ≠0),已知切线不为y 轴.设直线EA:y=kx+t,联立{y =kx +t,y 2=4x,消去y,可得k 2x 2+(2kt-4)x+t 2=0.∵直线EA 与抛物线C 相切, ∴Δ=(2kt-4)2-4k 2t 2=0,即kt=1,代入k 2x 2+(2kt-4)x+t 2=0,得1t 2x 2-2x+t 2=0,∴x=t 2,即A(t 2,2t).设切点B(x 0,y 0),则点O,B 关于直线EF:y=-tx+t 对称,则{y 0x 0×t -00−1=−1,y2=−t ·x 02+t,解得{x 0=2t 2t 2+1,y 0=2t t 2+1, 即B (2t 2t 2+1,2tt 2+1).当t ≠±1时,直线AF 的斜率k A F=2tt 2-1,直线BF 的斜率k B F=2tt 2+1-02t2t 2+1-1=2tt 2-1,∴k A F=k B F,即A,B,F 三点共线.当t=±1时,A(1,±2),B(1,±1),此时A,B,F 三点共线. 综上可知,A,B,F 三点共线.9.以边长为4的等边△ABC 的顶点A 以及BC 边的中点D 为左、右焦点的椭圆过B,C 两点. (1)求该椭圆的标准方程.(2)过点D 且与x 轴不垂直的直线l 交椭圆于M,N 两点,求证:直线BM 与CN 的交点在一条直线上.【解析】(1)由题意可知两个焦点为(-√3,0)与(√3,0),且2a=6,因此椭圆的标准方程为x 29+y 26=1. (2)当MN 不与x 轴重合时,设MN 的方程为x=my+√3,且B(√3,2),C(√3,-2), 联立{2x 2+3y 2-18=0,x =my +√3,消去x,得(2m 2+3)y 2+4√3my-12=0,即y 1+y 2=-4√3m 2m 2+3,y 1y 2=-122m 2+3.设M(x 1,y 1),N(x 2,y 2),则直线BM:y-2=1x -√3(x-√3), ① 直线CN:y+2=2x -√3(x-√3). ②由②-①得4=(x-√3)(2x-√31x-√3)=(x-√3)·my 1(y 2+2)−my 2(y 1-2)m 2y 1y 2=(x-√3)2y 1+2y 2my 1y 2=(x-√3)·-8√3m2m 2+3-12m 2m 2+3=2√33(x-√3),则x-√3=2√3,即x=3√3.当MN 与x 轴重合时,即MN 的方程为x=0,即M(3,0),N(-3,0).则直线BM:y-2=3−√3(x-√3), ③直线CN:y+2=-3-3(x-√3). ④ 联立③④消去y,得x=3√3.综上可知,直线BM 与CN 的交点在直线x=3√3上.10.设直线l 与抛物线x 2=2y 交于A,B 两点,与椭圆x 24+y 23=1交于C,D 两点,直线OA,OB,OC,OD(O 为坐标原点)的斜率分别为k 1,k 2,k 3,k 4,若OA ⊥OB.(1)是否存在实数t,满足k 1+k 2=t(k 3+k 4)?并说明理由.(2)求△OCD 面积的最大值.【解析】设直线l 的方程为y=kx+b(b ≠0),A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).联立y=kx+b 和x 2=2y,得x 2-2kx-2b=0,则x 1+x 2=2k,x 1x 2=-2b,Δ=4k 2+8b>0.y 1y 2=(kx 1+b)(kx 2+b)=k 2x 1x 2+kb(x 1+x 2)+b 2=b 2.因为OA ⊥OB,所以x 1x 2+y 1y 2=-2b+b 2=0,得b=2.联立y=kx+2和3x 2+4y 2=12,得(3+4k 2)x 2+16kx+4=0,所以x 3+x 4=-16k 3+4k 2,x 3x 4=43+4k 2.由Δ2=192k 2-48>0,得k 2>14.(1)因为k 1+k 2=y 1x 1+y 2x 2=k,k 3+k 4=y 3x 3+y4x 4=-6k, 所以k 1+k 2k 3+k 4=-16,故存在实数t=-1b ,使得k 1+k 2=t(k 3+k 4). (2)根据弦长公式|CD|=√1+k 2|x 3-x 4|,得|CD|=4√3·√1+k 2·√4k 2-13+4k 2,根据点O 到直线CD 的距离公式,得d=√1+k 2,所以S △OCD=12|CD|·d=4√3·√4k 2-13+4k 2. 设√4k 2-1=t>0,则S △OCD=4√3t t 2+4≤√3,所以当t=2,即k=±√52时,S △OCD 有最大值,最大值为√3.11.如图,设抛物线C 1:y 2=-4mx(m>0)的准线l 与x 轴交于椭圆C 2:x 2a +y 2b =1(a>b>0)的右焦点F 2,F 1为C 2的左焦点.椭圆C 2的离心率为e=12,抛物线C 1与椭圆C 2交于x 轴上方一点P,连接PF 1并延长其交C 1于点Q,M 为C 1上一动点,且在P,Q 两点之间移动.(1)当a 2+√3b取最小值时,求C 1和C 2的方程; (2)若△PF 1F 2的边长恰好是三个连续的自然数,求△MPQ 面积的最大值以及此时直线MP 的方程.【解析】(1)因为c=m,e=c a =12,则a=2m,b=√3m,所以a 2+√3b 取最小值时m=1,所以抛物线C 1的方程为y 2=-4x.此时a=2,b 2=3,所以椭圆C 2的方程为x 24+y 23=1.(2)因为c=m,e=c a =12,所以a=2m,b=√3m,设椭圆的标准方程为x 24m 2+y 23m 2=1,点P(x 0,y 0),Q(x 1,y 1), 由{x 24m 2+y 23m 2=1,y 2=−4mx,得3x 2-16mx-12m 2=0, 所以x 0=-23m 或x 0=6m(舍去).代入抛物线方程得y 0=2√63m,即P (-2m 3,2√6m 3), 所以|PF 1|=5m 3,|PF 2|=2a-|PF 1|=7m 3,|F 1F 2|=2m=6m 3.又△PF 1F 2的边长恰好是三个连续的自然数,所以m=3. 此时抛物线的方程为y 2=-12x,F 1(-3,0),P(-2,2√6), 则直线PQ 的方程为y=2√6(x+3).联立{y =2√6(x+3),y 2=−12x,得x 1=-92或x 1=-2(舍去), 于是Q (-92,-3√6). 所以|PQ|=√(-2+92)2+(2√6+3√6)2=252. 设M (-t 212,t)(t ∈(-3√6,2√6))到直线PQ 的距离为d,则d=√630×|(t +√62)2-752|,当t=-√62时,d m ax=√630×752=5√64, 所以△MPQ 面积的最大值为12×252×5√64=125√616. 此时直线MP:y=-4√63x-2√63.。
2021年最新高考数学复习-解析几何问题的题型与方法

解析几何问题的题型与方法一、知识整合高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。
其命题一般紧扣课本,突出重点,全面考查。
选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法...............,这一点值得强化。
1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3.理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.二、近几年高考试题知识点分析2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.1.选择、填空题1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主(1)对直线、圆的基本概念及性质的考查例1 (04江苏)以点(1,2)为圆心,与直线4x +3y -35=0相切的圆的方程是_________.(2)对圆锥曲线的定义、性质的考查例2(04辽宁)已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是(A )26(B )23 (C )3 (D )21.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查例3(04天津文)若过定点(1,0)M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是(A )0k << (B )0k <<(C )0k << (D )05k <<2.解答题解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.例4(04江苏)已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M.若=,求直线l 的斜率. 本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高.解:(I )设所求椭圆方程是).0(12222>>=+b a b y a x 由已知,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x(II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+= 当),,0(),0,(,2km M m F -=由于由定比分点坐标公式,得 ,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m km m Q km km y m m x Q Q 解得所以在椭圆上又点0(2)()2,2,1212Q Q m km MQ QF x m y km +-⨯-=-==-==---当时.于是.0,134422222==+k m m k m m 解得 故直线l 的斜率是0,62±. 例5(04全国文科Ⅰ)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且5.12PA PB =求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① .120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,(2,).e a a e e e ==<<≠∴>≠+∞即离心率的取值范围为 (II )设)1,0(),,(),,(12211P y x B y x A .125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1,x 2都是方程①的根,且1-a 2≠0,2222222222172522289,.,,121121160170,.13a a a x x x a a a a a =-=--=--->=所以消去得由所以例6(04全国文科Ⅱ)给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求与夹角的大小; (Ⅱ)设]9,4[,∈=λλ若,求l 在y 轴上截距的变化范围. 解:(Ⅰ)C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为.1-=x y将1-=x y 代入方程x y 42=,并整理得 .0162=+-x x设),,(),,(2211y x B y x A 则有 .1,62121==+x x x x.31)(2),(),(212121212211-=++-=+=⋅=⋅x x x x y y x x y x y x.41]16)(4[||||21212122222121=+++=+⋅+=x x x x x x y x y x OB OA.41143||||),cos(-=⋅=OB OA 所以与夹角的大小为.41143arccos -π (Ⅱ)由题设λ= 得 ),,1(),1(1122y x y x --=-λ即⎩⎨⎧-=-=-.1212),1(1y y x x λλ 由②得21222y y λ=, ∵ ,4,4222121x y x y == ∴.122x x λ=③联立①、③解得λ=2x ,依题意有.0>λ ∴),2,(),2,(λλλλ-B B 或又F (1,0),得直线l 方程为),1(2)1()1(2)1(--=--=-x y x y λλλλ或当]9,4[∈λ时,l 在方程y 轴上的截距为,1212---λλλλ或由 ,121212-++=-λλλλλ可知12-λλ在[4,9]上是递减的, ∴ ,431234,341243-≤--≤-≤-≤λλλλ直线l 在y 轴上截距的变化范围为].34,43[]43,34[⋃--①②从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高考试题中往往是交替出现的,以江苏为例,01年考的是抛物线,02年考的是双曲线,03年考的是求轨迹方程(椭圆),04年考的是椭圆.三、热点分析与2005年高考预测1.重视与向量的综合在04年高考文科12个省市新课程卷中,有6个省市的解析几何大题与向量综合,主要涉及到向量的点乘积(以及用向量的点乘积求夹角)和定比分点等,因此,与向量综合,仍是解析几何的热点问题,预计在05年的高考试题中,这一现状依然会持续下去.例7(02年新课程卷)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OB OA OC βα+=,其中α、β∈R,且α+β=1,则点C 的轨迹方程为(A )(x -1)2+(y -2)2=5(B )3x +2y -11=0 (C )2x -y =0(D )x +2y -5=0 例8(04辽宁)已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 2.考查直线与圆锥曲线的位置关系几率较高在04年的15个省市文科试题(含新、旧课程卷)中,全都“不约而同”地考查了直线和圆锥曲线的位置关系,因此,可以断言,在05年高考试题中,解析几何的解答题考查直线与圆锥曲线的位置关系的概率依然会很大.3.与数列相综合 在04年的高考试题中,上海、湖北、浙江解析几何大题与数列相综合,此外,03年的江苏卷也曾出现过此类试题,所以,在05年的试题中依然会出现类似的问题.例9(04年浙江卷)如图,ΔOBC 的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的坐标为(x n,y n ), .2121++++=n n n n y y y a (Ⅰ)求321,,a a a 及n a ; (Ⅱ)证明;,414*+∈-=N n y y n n (Ⅲ)若记,,444*+∈-=N n y y b nn n 证明{}n b 是等比数列. 解:(Ⅰ)因为43,21,153421=====y y y y y ,所以2321===a a a ,又由题意可知213+++=n n n y y y , ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++ ∴{}n a 为常数列.∴.,21*∈==N n a a n (Ⅱ)将等式22121=++++n n n y y y 两边除以2,得,124121=++++n n n y y y又∵2214++++=n n n y y y ,∴.414n n y y -=+ (Ⅲ)∵)41()41(44444841n n n n n y y y y b ---=-=+++-)(41444n n y y --=+,41n b -= 又∵,041431≠-=-=y y b ∴{}n b 是公比为41-的等比数列. 4.与导数相综合近几年的新课程卷也十分注意与导数的综合,如03年的天津文科试题、04年的湖南文理科试题,都分别与向量综合. 例10(04年湖南文理科试题)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A,B 两点,点Q 是点P 关于原点的对称点。
2021年高考数学分类汇解析几何 及答案详解

2021年高考数学分类汇解析几何及答案详解2021年高考数学分类汇解析几何及答案详解2022高考数学分类的解析几何1、(2021年高考全国卷1文科)4.(5分)已知椭圆c:则c的离心率为()+=1的一个焦点为(2,0),a、不列颠哥伦比亚省。
【解答】解:椭圆c:∵c=2,+=1的一个焦点为(2,0),可得a24=4,解得a=2,∴e==故选:c.=.2、(2021年高考全国卷1文科)20.(12分)设抛物线c:y2=2x,点a(2,0),b(2,0),过点a的直线l与c交于m,n两点.(1)当l与x轴垂直时,求直线bm的方程;(2)证明:∠abm=∠abn.【解】解:(1)当l垂直于x轴,x=2时,将其代入抛物线解,得到y=±2,所以m (2,2)或m(2,2),直线bm的方程:y=x+1,或:y=x1.(2)证明了直线l的方程为l:x=ty+2,m(x1,Y1),n(X2,Y2),联立直线l与抛物线方程得即y1+y2=2t,y1y2=4,,消去X,得到y22ty4=0,则有kbn+kbm=+===0,因此,直线BN和BM的倾角是互补的∠ ABM=∠ 荷兰银行3、(2021年高考全国卷1理科)8.(5分)设抛物线c:y2=4x的焦点为f,过点(2,0)且斜率为的直线与c交于m,n两点,则=()a、 5b.6c.7d.8【解答】解:抛物线c:y2=4x的焦点为f(1,0),过点(2,0)且斜率为的直线为:3y=2x+4,同时直线和抛物线C:y2=4x,消去x得到:y26y+8=0,解为Y1=2,y2=4,m(1,2),n(4,4),然后=(0,2)? (3,4)=8.,.故选:d.4.(2022年全国高考第一卷科学)11。
(5点)已知双曲线C:y2=1,o为坐标原点,f为C的右焦点、通过F的直线的交点和C的两条渐近线是m,N△ omn是一个直角三角形,然后|Mn |=()a.b.3c.2d、四,y2=1的渐近线方程为:y=,,渐近线的夹角为:60°,不解决方案:双曲线C:妨设过f(2,0)的直线为:y=那么:解是m(,),解得:n(),那么| Mn |=因此:B=3.5.(2022年全国高考第一卷科学)19。
2021高考数学热点题型专题03解析几何理

2021高考数学热点题型专题03解析几何理热点一 圆锥曲线中的最值问题圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上要紧有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解. 题型一 利用几何性质求最值【例1】设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( ) A .9,12 B .8,11C .8,12D .10,12答案 C【类题通法】利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解,也叫做几何法. 【对点训练】如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA +OB=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.解析 (1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 因为OA +OB =(x 1+x 2,y 1+y 2)=(-2pk ,-2pk2-4)=(-4,-12),因此⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.因此直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,因此-x 0=2,故x 0=-2,y 0=-12x 20=-2,因此P (-2,-2).现在点P 到直线l 的距离d =|2×-2--2-2|22+-12=45=455. 由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4,因此|AB |=1+k 2×x 1+x 22-4x 1x 2=1+22×-42-4×-4=410.因此△ABP 面积的最大值为410×4552=8 2.题型二 建立目标函数求最值【例2】已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF =3FM .(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.(2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0), 由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0.因此Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 因此AB 中点M 的坐标为(2k,2k 2+m ).由PF =3FM ,得(-x 0,1-y 0)=3(2k,2k 2+m -1),因此⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415,由Δ>0,k 2≥0,得-13<m ≤43.记f (m )=3m 3-5m 2+m +1⎝ ⎛⎭⎪⎫-13<m ≤43,令f ′(m )=9m 2-10m +1=0, 解得m 1=19,m 2=1,可得f (m )在⎝ ⎛⎭⎪⎫-13,19上是增函数,在⎝ ⎛⎭⎪⎫19,1上是减函数,在⎝ ⎛⎭⎪⎫1,43上是增函数, 又f ⎝ ⎛⎭⎪⎫19=256243>f ⎝ ⎛⎭⎪⎫43=59.因此当m =19时,f (m )取到最大值256243,现在k =±5515.因此△ABP 面积的最大值为2565135.【类题通法】(1)当题目中给出的条件有明显的几何特点,考虑用图象性质来求解.(2)当题目中给出的条件和结论的几何特点不明显,则能够建立目标函数,再求那个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等. 【对点训练】平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值;②求△ABQ 面积的最大值.解析 (1)由题意知2a =4,则a =2. 又c a =32,a 2-c 2=b 2,可得b =1, 因此椭圆C 的方程为x 24+y 2=1.②设A (x 1,y 1),B (x 2, y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.(*) 则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2.因此|x 1-x 2|=416k 2+4-m21+4k2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 因此△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=216k 2+4-m2m 21+4k2=2 ⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k2=t .将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)(**)可知0<t ≤1, 因此S =24-t t =2-t 2+4t ,故S ≤2 3.当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S , 因此△ABQ 面积的最大值为6 3. 题型三 利用差不多不等式求最值【例3】已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A ,B .通过点F 的直线l与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值.(2)当直线l 的斜率不存在时,直线方程为x =-1, 现在△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0),联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k x +1,消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k2,现在|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k 2,因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,因此|S 1-S 2|的最大值为 3. 【类题通法】(1)求最值问题时,一定要注意对专门情形的讨论.如直线斜率不存在的情形,二次三项式最高次项的系数的讨论等.(2)利用差不多不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用差不多不等式求出最值. 【对点训练】定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E . (1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC |=|BC |,当△ABC 的面积最小时,求直线AB 的方程.(2)①当AB 为长轴(或短轴)时,S △ABC =12|OC |·|AB |=2.②当直线AB 的斜率存在且不为0时,设直线AB 的方程为y =kx ,A (x A ,y A ),由题意,C 在线段AB 的中垂线上,则OC 的方程为y =-1kx .联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx得,x 2A =41+4k 2,y 2A =4k 21+4k2,∴|OA |2=x 2A +y 2A =41+k21+4k2. 将上式中的k 替换为-1k,可得|OC |2=41+k 2k 2+4. ∴S △ABC =2S △AOC =|OA |·|OC |=41+k21+4k2·41+k 2k 2+4=41+k21+4k 2k 2+4.∵1+4k2k 2+4≤1+4k2+k 2+42=51+k 22,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,现在△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,现在直线AB 的方程为y =x 或y =-x .热点二 圆锥曲线中的范畴问题圆锥曲线中的范畴问题是高考中的热点问题,常涉及不等式的恒成立问题、函数的值域问题,综合性比较强.解决此类问题常用几何法和判别式法. 题型一 利用判别式构造不等关系求范畴【例4】已知A ,B ,C 是椭圆M :x 2a 2+y 2b2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的中心,且AC ·BC =0,|BC |=2|AC |. (1)求椭圆M 的方程;(2)过点(0,t )的直线l (斜率存在时)与椭圆M 交于两点P ,Q ,设D 为椭圆M 与y 轴负半轴的交点,且|DP |=|DQ |,求实数t 的取值范畴.(2)由条件D (0,-2),当k =0时,明显-2<t <2; 当k ≠0时,设l :y =kx +t ,⎩⎪⎨⎪⎧x 212+y 24=1,y =kx +t ,消去y 得(1+3k 2)x 2+6ktx +3t 2-12=0由Δ>0可得t 2<4+12k 2,①设P (x 1,y 1),Q (x 2,y 2),PQ 中点H (x 0,y 0), 则x 0=x 1+x 22=-3kt1+3k2, y 0=kx 0+t =t1+3k2,因此H ⎝ ⎛⎭⎪⎫-3kt 1+3k 2,t 1+3k 2,由|DP |=|DQ |, 因此DH ⊥PQ ,即k DH =-1k,因此t1+3k 2+2-3kt 1+3k2-0=-1k ,化简得t =1+3k 2,②因此t >1,将②代入①得,1<t <4. 因此t 的范畴是(1,4).综上可得t ∈(1,2).【类题通法】圆锥曲线中取值范畴问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范畴.(2)利用已知参数的范畴,求新参数的范畴,解决这类问题的核心是建立两个参数之间的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范畴. (4)利用已知的不等关系构造不等式,从而求出参数的取值范畴.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范畴. 【对点训练】设F 1,F 2分别是椭圆E :x 24+y 2b2=1(b >0)的左、右焦点,若P 是该椭圆上的一个动点,且1PF ·2PF 的最大值为1.(1)求椭圆E 的方程;(2)设直线l :x =ky -1与椭圆E 交于不同的两点A ,B ,且∠AOB 为锐角(O 为坐标原点),求k 的取值范畴.即1=⎝ ⎛⎭⎪⎫1-b 24×4+2b 2-4,解得b 2=1.故所求椭圆E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ky -1x 24+y 2=1得(k 2+4)y 2-2ky -3=0,Δ=(-2k )2+12(4+k 2)=16k 2+48>0, 故y 1+y 2=2k k 2+4,y 1·y 2=-3k 2+4. 又∠AOB 为锐角,故OA ·OB =x 1x 2+y 1y 2>0, 又x 1x 2=(ky 1-1)(ky 2-1)=k 2y 1y 2-k (y 1+y 2)+1,因此x 1x 2+y 1y 2=(1+k 2)y 1y 2-k (y 1+y 2)+1=(1+k 2)·-34+k 2-2k24+k2+1=-3-3k 2-2k 2+4+k 24+k 2=1-4k 24+k 2>0,因此k 2<14,解得-12<k <12,故k 的取值范畴是⎝ ⎛⎭⎪⎫-12,12.题型二 利用函数性质求范畴【例5】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过点M (1,0)的直线l 交椭圆C 于A ,B 两点,|MA |=λ|MB |,且当直线l 垂直于x 轴时,|AB |= 2. (1)求椭圆C 的方程;(2)若λ∈⎣⎢⎡⎦⎥⎤12,2,求弦长|AB |的取值范畴.(2)当过点M 的直线斜率为0时,点A ,B 分别为椭圆长轴的端点,λ=|MA ||MB |=2+12-1=3+22>2或λ=|MA ||MB |=2-12+1=3-22<12,不符合题意. ∴直线的斜率不能为0.设直线方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 将直线方程代入椭圆方程得:(m 2+2)y 2+2my -1=0, 由根与系数的关系可得,⎩⎪⎨⎪⎧y 1+y 2=-2mm 2+2①,y 1y 2=-1m 2+2②,将①式平方除以②式可得:y 1y 2+y 2y 1+2=-4m2m 2+2,由已知|MA |=λ|MB |可知,y 1y 2=-λ,∴-λ-1λ+2=-4m2m 2+2,又知λ∈⎣⎢⎡⎦⎥⎤12,2, ∴-λ-1λ+2∈⎣⎢⎡⎦⎥⎤-12,0, ∴-12≤-4m2m 2+2≤0,解得m 2∈⎣⎢⎡⎦⎥⎤0,27.|AB |2=(1+m 2)|y 1-y 2|2=(1+m 2)[(y 1+y 2)2-4y 1y 2]=8⎝ ⎛⎭⎪⎫m 2+1m 2+22=8⎝ ⎛⎭⎪⎫1-1m 2+22,∵m 2∈⎣⎢⎡⎦⎥⎤0,27,∴1m 2+2∈⎣⎢⎡⎦⎥⎤716,12, ∴|AB |∈⎣⎢⎡⎦⎥⎤2,928. 【类题通法】利用函数性质解决圆锥曲线中求范畴问题的关键是建立求解关于某个变量的函数,通过求那个函数的值域确定目标的取值范畴.在建立函数的过程中要依照题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算方便,在建立函数的过程中也能够采纳多个变量,只要在最后结果中把多个变量化为单个变量即可,同时要专门注意变量的取值范畴. 【对点训练】已知圆心为H 的圆x 2+y 2+2x -15=0和定点A (1,0),B 是圆上任意一点,线段AB 的中垂线l 和直线BH 相交于点M ,当点B 在圆上运动时,点M 的轨迹记为曲线C . (1)求C 的方程;(2)过点A 作两条相互垂直的直线分别与曲线C 相交于P ,Q 和E ,F ,求PE ·QF 的取值范畴.依照椭圆的定义可知,点M 的轨迹是以A ,H 为焦点,4为长轴长的椭圆,因此a 2=4,c 2=1,b 2=3,所求曲线C 的方程为x 24+y 23=1.(2)由直线EF 与直线PQ 垂直,可得AP ·AE =AQ ·AF =0,因此PE ·QF =(AE -AP )·(AF -AQ )=AE ·AF +AP ·AQ .①当直线PQ 的斜率不存在时,直线EF 的斜率为零,现在可不妨取P ⎝ ⎛⎭⎪⎫1,32,Q ⎝ ⎛⎭⎪⎫1,-32,E (2,0),F (-2,0),因此PE ·QF =⎝⎛⎭⎪⎫1,-32·⎝ ⎛⎭⎪⎫-3,32=-3-94=-214.②当直线PQ 的斜率为零时,直线EF 的斜率不存在,同理可得PE ·QF =-214.③当直线PQ 的斜率存在且不为零时,直线EF 的斜率也存在,因此可设直线PQ 的方程为y =k (x -1),P (x P ,y P ),Q (x Q ,y Q ),AP =(x P -1,y P ),AQ =(x Q -1,y Q ),则直线EF 的方程为y =-1k(x -1).将上面的k 换成-1k,可得AE ·AF =-91+k24+3k2, 因此PE ·QF =AE ·AF +AP ·AQ =-9(1+k 2)⎝ ⎛⎭⎪⎫13+4k 2+14+3k 2.令1+k 2=t ,则t >1,因此上式化简整理可得,PE ·QF =-9t ⎝ ⎛⎭⎪⎫14t -1+13t +1=-63t 212t 2+t -1=-63494-⎝ ⎛⎭⎪⎫1t -122.由t >1,得0<1t <1,因此-214<PE ·QF ≤-367.综合①②③可知,PE ·QF 的取值范畴为⎣⎢⎡⎦⎥⎤-214,-367.热点三 圆锥曲线中的几何证明问题圆锥曲线中的几何证明问题多显现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等. 【例6】如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM .(2)证明:把x =0代入方程(x -2)2+⎝ ⎛⎭⎪⎫y -522=254,解得y =1或y =4,即点M (0,1),N (0,4).①当AB ⊥x 轴时,可知∠ANM =∠BNM =0.②当AB 与x 轴不垂直时,可设直线AB 的方程为y =kx +1.联立方程 ⎩⎪⎨⎪⎧y =kx +1,x 28+y24=1,消去y 得,(1+2k 2)x 2+4kx -6=0.设直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2.∴k AN +k BN =y 1-4x 1+y 2-4x 2=kx 1-3x 1+kx 2-3x 2=2kx 1x 2-3x 1+x 2x 1x 2. 若k AN +k BN =0,则∠ANM =∠BNM .∵2kx 1x 2-3(x 1+x 2)=-12k 1+2k 2+12k1+2k 2=0,∴∠ANM =∠BNM . 【类题通法】解决圆锥曲线证明问题,注意依据直线,圆锥曲线,直线与圆锥曲线的位置关系等,通过代数恒等变形和化简运算进行证明,常见的证明方法有:(1)证明三点共线,能够证明其中两段线段的斜率相等,也能够证明其中两个向量互相平行(共线); (2)证明两直线垂直,能够证明这两条直线的斜率之积等于1-,也能够证明这两直线所在的平面向量的数量积等于零;(3)证明两共点点段相等,能够利用弦长公式证明这两线段长度相等,也能够证明公共点在线段的垂直平分线上. 【对点训练】设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,M 是椭圆上任意一点,且△MF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若点C 满足AB ⊥BC ,AD ∥OC ,连接AC 交DE 于点P ,求证:PD =PE .(2)证明:由(1)得A (-2,0),B (2,0), 设D (x 0,y 0),因此E (x 0,0), 因为AB ⊥BC , 因此可设C (2,y 1),因此AD =(x 0+2,y 0),OC =(2,y 1), 由AD ∥OC 可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2. 因此直线AC 的方程为:y 2y 0x 0+2=x +24. 整理得:y =y 02x 0+2(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝ ⎛⎭⎪⎫x 0,y 02,因此P 为DE 的中点,因此PD =PE .。
高三数学(文科2021届含答案)主干知识五:解析几何

高三数学(文科)主干知识五:解析几何考试要求(1)直线与方程理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.能根据两条直线的斜率判定这两条直线平行或垂直.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式).能用解方程组的方法求两直线的交点坐标.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程掌握确定圆的几何要素,掌握圆的标准方程与一般方程.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.能用直线和圆的方程解决一些简单的问题.(3)圆锥曲线与方程掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质(范围、对称性、顶点、离心率、渐近线).了解抛物线的定义、几何图形和标准方程,知道它们的简单几何性质(范围、对称性、顶点、准线、离心率).理解直线与圆锥曲线的位置关系.复习关注关注解题方向的选择及计算方法的合理性(如“设而不求”、“整体代换”等),同时适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般的思想,关注对整体处理问题的策略以及待定系数法、换元法等强化训练一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意要求的.1. 双曲线221102x y -=的焦距为( ) A. B. C. D.2.已知点A (3,2),B (-2,7),若直线y=ax-3与线段AB 的交点P 分有向线段AB 的比为4:1,则a 的值为( )A .3B .-3C .9D .-93.由直线1y x =+上的点向圆22(3)(2)1x y -++= 引切线,则切线长的最小值为( )AB..4.双曲线x 2-y 2=4的两条渐近线和直线x =2围成一个三角形区域(含边界),则该区域可表示为( )A .⎪⎩⎪⎨⎧≥≤-≥+200x y x y xB .⎪⎩⎪⎨⎧≤≥-≥+200x y x y xC .⎪⎩⎪⎨⎧≤≥-≤+200x y x y x D .⎪⎩⎪⎨⎧≤≤-≤+200x y x y x 5.若直线:10 (0,0)l ax by a b ++=>>始终平分圆M :228210x y x y ++++=的周长,则14a b+的最小值为( ) A .8B .12C .16D .20 6.直线经过点A (2,1),B (1,m 2)两点(m ∈R ),那么直线l 的倾斜角取值范围是( )A .),0[πB .),2(]4,0[πππ⋃C .]4,0[πD .),2()2,4[ππππ⋃ 7.已知直线420mx y +-=与250x y n -+=互相垂直,垂足为),1(p P ,则m n p -+的值是( )A .24B .20C .0D .-48.圆心在抛物线22x y =()0x >上,并且与抛物线的准线及y 轴都相切的圆的方程是( )A .041222=+--+y x y x B .01222=+--+y x y x C .041222=+--+y x y x D .041222=+--+y x y x9.以椭圆22221(0)x y a b a b+=>>的右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于( )A .23 B C .49D 10.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b 2,4b 2],则这一椭圆离心率e 的取值范围是( )A .]23,35[B .]22,33[C .]22,35[D .]23,33[ 11.已知椭圆15922=+y x ,过右焦点F 做不垂直于x 轴的弦交椭圆于A 、B 两点,AB 的垂直平分线交x 轴于N ,则=AB NF :( )A .12B .13C .23D .1412.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:191622=+y x ,点A 、B 是它的两个焦点,当静止的小球放在点A 处,从点A 沿直线出发,经椭圆壁(非椭圆长轴端点)反弹后,再回到点A 时,小球经过的最短路程是( )A .20B .18C .16D .以上均有可能二、填空题:本大题共4小题,每小题4分,共16分.13.直线1-=x y 上的点到圆042422=+-++y x y x 上的点的最近距离是 .14.已知P 是椭圆192522=+y x 上的点,F 1、F 2分别是椭圆的左、右焦点,若121212||||PF PF PF PF ⋅=⋅,则△F 1PF 2的面积为. 15.已知抛物线214y x =,过焦点且垂直于对称轴的直线与抛物线交于A,B 两个点, 则坐标原点O 与A ,B 两点构成的三角形的面积为 .。
专题08 解析几何-2021年高考数学(理)二轮专项复习

专题0本资料分享自千人教师QQ 群323031380 期待你的加入与分享8 解析几何平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题.在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题.§8-1 直角坐标系【知识要点】1.数轴上的基本公式设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是d (A ,B )=|AB |=|x 2-x 1|.2.平面直角坐标系中的基本公式设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-==A ,B 两点的中点M (x ,y )的坐标公式是⋅+=+=2,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是.)()()(||),(212212212z z y y x x AB B A d -+-+-==【复习要求】1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题.2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式.【例题分析】例1 解下列方程或不等式:(1)|x-3|=1;(2)|x-3|≤4;(3)1<|x-3|≤4.略解:(1)设直线坐标系上点A,B的坐标分别为x,3,则|x-3|=1表示点A到点B的距离等于1,如图8-1-1所示,图8-1-1所以,原方程的解为x=4或x=2.(2)与(1)类似,如图8-1-2,图8-1-2则|x-3|≤4表示直线坐标系上点A到点B的距离小于或等于4,所以,原不等式的解集为{x|-1≤x≤7}.(3)与(2)类似,解不等式1<|x-3|,得解集{x|x>4,或x<2},将此与不等式|x-3|≤4的解集{x|-1≤x≤7}取交集,得不等式1<|x-3|≤4的解集为{x|-1≤x<2,或4<x≤7}.【评析】解绝对值方程或不等式时,如果未知数x的次数和系数都为1,那么可以利用绝对值的几何意义来解绝对值方程或不等式.|x-a|的几何意义:表示数轴(直线坐标系)上点A(x)到点B(a)的距离.例2 已知矩形ABCD及同一平面上一点P,求证:P A2+PC2=PB2+PD2.解:如图8-1-3,以点A为原点,以AB为x轴,向右为正方向,以AD为y轴,向上为正方向,建立平面直角坐标系.图8-1-3设AB =a ,AD =b ,则 A (0,0),B (a ,0),C (a ,b ),D (0,b ),设P (x ,y ), 则22222222))()(()(b y a x y x PC PA -+-++=+=x 2+y 2+(x -a )2+(y -b )2,22222222))(())((b y x y a x PD PB -+++-=+=x 2+y 2+(x -a )2+(y -b )2,所以P A 2+PC 2=PB 2+PD 2.【评析】坐标法是解析几何的一个基本方法,非常重要.坐标法中要注意坐标系的建立,理论上,可以任意建立坐标系,但是坐标系的位置会影响问题解决的复杂程度,适当的坐标系可以使解题过程较为简便.例3 已知空间直角坐标系中有两点A (1,2,-1),B (2,0,2).(1)求A ,B 两点的距离;(2)在x 轴上求一点P ,使|P A |=|PB |;(3)设M 为xOy 平面内的一点,若|MA |=|MB |,求M 点的轨迹方程.解:(1)由两点间的距离公式,得.14)21()02()21(||222=--+-+-=AB(2)设P (a ,0,0)为x 轴上任一点,由题意得222)10()20()1(++-+-a,即a 2-2a +6=a 2-4a +8,解得a =1,所以P (1,0,0).40)2(2++-=a(3)设M (x ,y ,0),则有整理可得x -2y -1=0.所以,M 点的轨迹方程为x -2y -1=0. 【评析】由两点间的距离公式建立等量关系,体现了方程思想的应用.练习8-1一、选择题1.数轴上三点A ,B ,C 的坐标分别为3,-1,-5,则AC +CB 等于( )A .-4B .4C .-12D .122.若数轴上有两点A (x ),B (x 2)(其中x ∈R ),则向量的数量的最小值为( )A .B .0C .D . 3.在空间直角坐标系中,点(1,-2,3)关于yOz 平面的对称点是( )A .(1,-2,-3)B .(1,2,3)C .(-1,-2,3)D .(-1,2,3)4.已知平面直角坐标内有三点A (-2,5),B (1,-4),P (x ,y ),且|AP |=|BP |,则实数x ,y 满足的方程为( )A .x +3y -2=0B .x -3y +2=0C .x +3y +2=0D .x -3y -2=0二、填空题5.方程|x +2|=3的解是______;不等式|x +3|≥2的解为______.6.点A (2,3)关于点B (-4,1)的对称点为______.7.方程|x +2|-|x -3|=4的解为______.8.如图8-1-4,在长方体ABCD -A 1B 1C 1D 1中,|DA |=3,|DC |=4,|DD 1|=2,A 1C 的中点为M ,则点B 1的坐标是______,点M 的坐标是______,M 关于点B 1的对称点为______. ,4)0()2()10()2()1(22222+-+-=++-+-y x y x AB 214141-图8-1-4三、解答题9.求证:平行四边形ABCD满足AB2+BC2+CD2+DA2=AC2+BD2.10.求证:以A(4,3,1),B(7,1,2),C(5,2,3)三点为顶点的三角形是一个等腰三角形.11.在平面直角坐标系中,设A(1,3),B(4,5),点P在x轴上,求|P A|+|PB|的最小值.§8-2 直线的方程【知识要点】1.直线方程的概念如果以一个方程的解为坐标的点都在某条直线上,且这条直线上点的坐标都是这个方程的解,那么这个方程叫做这条直线的方程...........,这条直线叫做这个方程的直线2.直线的倾斜角和斜率x轴正向与直线向上的方向所成的角叫做这条直线的倾斜角....并规定,与x轴平行或重合的直线的倾斜角为零度角.因此,倾斜角α 的取值范围是0°≤α <180°.我们把直线y =kx +b 中的系数k 叫做这条直线的斜率...设A (x 1,y 1),B (x 2,y 2)为直线y =kx +b 上任意两点,其中x 1≠x 2,则斜率 倾斜角为90°的直线的斜率不存在,倾斜角为α 的直线的斜率k =tan α (α ≠90°).3.直线方程的几种形式点斜式:y -y 1=k (x -x 1);斜截式:y =kx +b ;两点式:一般式:Ax +By +C =0(A 2+B 2≠0).4.两条直线相交、平行与重合的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则(1)l 1与l 2相交A 1B 2-A 2B 1≠0或 (2)l 1与l 2平行(3)l 1与l 2重合 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,截距分别为b 1,b 2,则l 1与l 2相交k 1≠k 2;l 1∥l 2k 1=k 2,b 1≠b 2;l 1与l 2重合k 1=k 2,b 1=b 2.5.两条直线垂直的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2A 1A 2+B 1 B 2=0. 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,则l 1⊥l 2k 1k 2=-1.⋅--=1212x x yy k );,(2121121121y y x x x x x x y y y y =/=/--=--⇔)0(222121=/=/B A B B A A ⇔⎪⎪⎩⎪⎪⎨⎧=/=/=≠-≠-=-).0(;00,0222212121211221211221C B A C C B B A A C A C A B C C B B A B A 或或而⇔⎪⎩⎪⎨⎧=/==≠===).0();0(,,222212*********C B A C C B B A A C C B B A A 或λλλλ⇔⇔⇔⇔⇔6.点到直线的距离点P (x 1,y 1)到直线l :Ax +By +C =0的距离d 的计算公式【复习要求】1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式:点斜式、两点式及一般式,体会斜截式与一次函数的关系.2.掌握两条直线平行与垂直的条件,点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系,能用解方程组的方法求两直线的交点坐标.【例题分析】例1(1)直线的斜率是______,倾斜角为______;(2)设A (2,3),B (-3,2),C (-1,-1),过点C 且斜率为k 的直线l 与线段AB 相交,则斜率k 的取值范围为______.略解:(1)直线可以化简为 所以此直线的斜率为,倾斜角 (2)如图8-2-1,设直线AC 的倾斜角为α ,图8-2-1因为此直线的斜率为,所以 设直线BC 的倾斜角为β ,因为此直线的斜率为 ⋅+++=2211||B A C By Ax d 082=-+y x 082=-+y x ,22822+-=x y 22-;22tan arc π-=α341213=++=AC k ;34tan =α,231312-=+-+=BC k所以 因为直线l 与线段AB 相交,所以直线l 的倾斜角θ 满足α ≤θ ≤β ,由正切函数图象,得tan θ ≥tan α 或tan θ≤tan β,故l 斜率k 的取值范围为.【评析】(1)求直线的斜率常用方法有三种:①已知直线的倾斜角α,当α≠90°时,k =tan α; ②已知直线上两点的坐标(x 1,y 1),(x 2,y 2),当x 1≠x 2时,k =; ③已知直线的方程Ax +By +C =0,当B ≠0时,k =. (2)已知直线的斜率k 求倾斜角α 时,要注意当k >0时,α =arctan k ;当k <0时,α =π-arctan |k |.例2 根据下列条件求直线方程:(1)过点A (2,3),且在两坐标轴上截距相等;(2)过点P (-2,1),且点Q (-1,-2)到直线的距离为1.解:(1)设所求直线方程为y -3=k (x -2),或x =2(舍),令y =0,得x =2-(k ≠0);令x =0,得y =3-2k , 由题意,得2-=3-2k ,解得k =或k =-1, 所以,所求直线方程为3x -2y =0或x +y -5=0;(2)设所求直线方程为y -1=k (x +2)或x =-2,当直线为y -1=k (x +2),即kx —y +(2k +1)=0时,由点Q (-1,-2)到直线的距离为1,得=1,解得, ⋅-=23tan β]23,[],34[-∞+∞∈ k 1212x x y y --BA -k3k 3231|122|2++++-k k k 34-=k所以,直线,即4x +3y +5=0符合题意; 当直线为x =-2时,检验知其符合题意.所以,所求直线方程为4x +3y +5=0或x =-2.【评析】求直线方程,应从条件出发,合理选择直线方程的形式,并注意每种形式的适应条件.特别地,在解题过程中要注意“无斜率”,“零截距”的情况.例3 已知直线l 1:(m -2)x +(m +2)y +1=0,l 2:(m 2-4)x —my -3=0,(1)若l 1∥l 2,求实数m 的值;(2)若l 1⊥l 2,求实数m 的值.解法一:(1)因为l 1∥l 2,所以(m -2)(-m )=(m +2)(m 2-4),解得m =2或m =-1或m =-4,验证知两直线不重合,所以m =2或m =-1或m =-4时,l 1∥l 2;(2)因为l 1⊥l 2,所以(m -2)(m 2-4)+(-m )(m +2)=0,解得m =-2或m =1或m =4.解法二:当l 1斜率不存在,即m =-2时,代入直线方程,知l 1⊥l 2;当l 2斜率不存在,即m =0时,代入直线方程,知l 1与l 2既不平行又不垂直;当l 1,l 2斜率存在,即m ≠0,m ≠-2时,可求l 1,l 2,如的斜率分别为k 1=-,k 2=,截距b 1=-,b 2=, 若l 1∥l 2,由k 1=k 2,b 1≠b 2,解得m =2或m =-1或m =-4,若l 1⊥l 2,由k 1k 2=-1,解得m =1或m =4综上,(1)当m =2或m =-1或m =-4时,l 1∥l 2;(2)当m =-2或m =1或m =4时,l 1⊥l 2.【评析】两条直线平行与垂直的充要条件有几个,但各有利弊.简洁的(如解法一)相互之间易混淆,好记的要注意使用条件(如解法二,易丢“无斜率”的情况),解题过程中要注03534=---y x 22-+m m m m 42-21+m m3-意正确使用.例4 已知直线l 过两直线l 1:3x -y -1=0与l 2:x +y -3=0的交点,且点A (3,3)和B (5,2)到l 的距离相等,求直线l 的方程.【分析】所求直线l 有两种情况:一是l 与AB 平行;二是点A ,B 在l 的两侧,此时l 过线段AB 的中点.解:解方程组得交点(1,2),由题意,当①l 与AB 平行;或②l 过A ,B 的中点时.可以使得点A ,B 到l 的距离相等. ①当l ∥AB 时,因为,此时,即x +2y -5=0; ②当l 过AB 的中点时,因为AB 的中点坐标为所以 即l :x -6y +11=0.综上,所求的直线l 的方程为x +2y -5=0或l :x -6y +11=0.例5 已知直线l 1:y =kx +2k 与l 2:x +y =5的交点在第一象限,求实数k 的取值范围. 解法一:解方程组,得交点 由题意,得,解得 解法二:如图8-2-2,由l 1:y =k (x +2),知l 1过定点P (-2,0),⎩⎨⎧=-+=--03013y x y x 215323-=--=AB k )1(212:--=-x y l ),25,4(M ,1412252:--=--x y l ⎩⎨⎧=++=52y x k kx y ),1255,125(+--+-k k k k ⎪⎪⎩⎪⎪⎨⎧>+-->+-012550125k k k k ⋅<<250k图8-2-2由l 2:x +y =5,知l 2坐标轴相交于点A (0,5),B (5,0),因为 由题意,得 【评析】在例4,例5中,要充分利用平面几何知识解决问题,体会数形结合的思想与方法;要会联立两个曲线(直线)的方程,解方程得到曲线的交点,体会方程思想.例6 如图8-2-3,过点P (4,4)的直线l 与直线l 1:y =4x 相交于点A (在第一象限),与x 轴正半轴相交于点B ,求△ABO 面积的最小值.图8-2-3解:设B (a ,0),则 将y =4x 代入直线l 的方程,得点A 的坐标为 则△ABO 的面积 所以当a =6时,△ABO 的面积S 取到最小值24.练习8-2一、选择题1.若直线l 的倾斜角的正弦为,则l 的斜率k 是( ) ,0,252005==+-=BP AP k k ⋅<<250k ),4(4044:---=-x a y l ),3)(34,3(>--a a a a a ,121)611(3234212+--=-⨯⨯=a a a a S 53A .B .C .或D .或 2.点P (a +b ,ab )在第二象限内,则bx +ay -ab =0直线不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.“”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 4.若直线与直线2x +3y -6=0的交点位于第一象限,则l 的倾角的取值范围( )A .B .C .D . 二、填空题5.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1∥l 2,则a =_______.6.已知点A (3,0),B (0,4),则过点B 且与A 的距离为3的直线方程为_______.7.若点P (3,4),Q (a ,b )关于直线x -y -1=0对称,则a +2b =_______.8.若三点A (2,2),B (a ,0),C (0,b ),(ab ≠0)共线,则的值等于_______. 三、解答题9.已知点P 在直线2x +3y -2=0上,点A (1,3),B (-1,-5).(1)求|P A |的最小值;(2)若|P A |=|PB |,求点P 坐标.10.若直线l 夹在两条直线l 1:x -3y +10=0与l 2:2x +y -8=0之间的线段恰好被点P (0,1)平分,求直线l 的方程.43-4343-433434-21=m 3:-=kx y l )3π,6π[)2π,3π()2π,6π(]2π,6π[ba 11+211.已知点P到两个定点M(-1,0)、N(1,0)距离的比为,点N到直线PM的距离为1.求直线PN的方程.§8-3 简单的线性规划问题【知识要点】1.二元一次不等式(组)所表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面区域中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(开半平面),且不含边界线.不等式Ax+By+C≥0所表示的平面区域包括边界线(闭半平面).(2)由几个不等式组成的不等式组所表示的平面区域,是指各个不等式组所表示的平面区域的公共部分.(3)可在直线Ax+By+C=0的某一侧任取一点,一般地取特殊点(x0,y0),从Ax0+By0+C的正(或负)来判断Ax+By+C>0(或Ax+By+C<0)所表示的区域.当C≠0时,常把原点(0,0)作为特殊点.(4)也可以利用如下结论判断区域在直线哪一侧:①y>kx+b表示直线上方的半平面区域;y<kx+b表示直线下方的半平面区域.②当B>0时,Ax+By+C>0表示直线上方区域,Ax+By+C<0表示直线下方区域.2.简单线性规划(1)基本概念目标函数:关于x,y的要求最大值或最小值的函数,如z=x+y,z=x2+y2等.约束条件:目标函数中的变量所满足的不等式组.线性目标函数:目标函数是关于变量的一次函数.线性约束条件:约束条件是关于变量的一次不等式(或等式).线性规划问题:在线性约束条件下,求线性目标函数的最大值或最小值问题.最优解:使目标函数达到最大值或最小值的点的坐标,称为问题的最优解.可行解:满足线性约束条件的解(x ,y )叫可行解.可行域:由所有可行解组成的集合叫可行域.(2)用图解法解决线性规划问题的一般步骤:①分析并将已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数,求出最优解;⑥实际问题需要整数解时,应适当调整确定最优解.【复习要求】1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【例题分析】例1 (1)若点(3,1)在直线3x -2y +a =0的上方,则实数a 的取值范围是______;(2)若点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则实数a 的取值范围是______. 解:(1)将直线化为 由题意,得,解得a <-7. (2)由题意,将两点代入直线方程的左侧所得符号相反,则(3×3-2+a )[3×(-4)-12+a ]<0,即(a +7)(a -24)<0,所以,实数a 的取值范围是(-7,24).例2 (1)如图8-3-1,写出能表示图中阴影部分的不等式组;,223a x y +=23231a +⨯>图8-3-1(2)如果函数y =ax 2+bx +a 的图象与x 轴有两个交点,试在aOb 坐标平面内画出点(a ,b )表示的平面区域.略解:(1) (2)由题意,得b 2-4a 2>0,即(2a +b )(2a -b )<0,所以或,点(a ,b )表示的平面区域如图8-3-2.图8-3-2【评析】除了掌握二元一次不等式表示平面区域外,还应关注给定平面区域如何用不等式表示这个逆问题.例3 已知x ,y 满足求:(1)z 1=x +y 的最大值;(2)z 2=x -y 的最大值;(3)z 3=x 2+y 2的最小值;,02210⎪⎩⎪⎨⎧≥+-->≤y x y x ⎩⎨⎧<->+0202b a b a ⎩⎨⎧>-<+0202b a ba ⎪⎩⎪⎨⎧≤--≥+-≥-+.033,042,022y x y x y x(4)的取值范围(x ≠1). 略解:如图8-3-3,作出已知不等式组表示的平面区域.图8-3-3易求得M (2,3),A (1,0),B (0,2).(1)作直线x +y =0,通过平移,知在M 点,z 1有最大值5;(2)作直线x -y =0,通过平移,知在A 点,z 2有最大值1;(3)作圆x 2+y 2=r 2,显然当圆与直线2x +y -2=0相切时,r 2有最小值,即z 3有最小值 (4)可看作(1,0)与(x ,y )两点连线的斜率,所以z 4的取值范围是(-∞,-2]∪[3,+∞).【评析】对于非线性目标函数在线性约束条件下的最值问题,要充分挖掘其目标函数z 的几何意义.z 的几何意义常见的有:直线的截距、斜率、圆的半径等.例4 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件则z =10x +10y 的最大值是( )(A)80 (B)85 (C)90 (D)95略解:由题意,根据已知不等式组及可得到点(x ,y )的可行域.14-=x yz 2)52(;541-x y ⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x ⎩⎨⎧≥≥00y x如图8-3-4.图8-3-4作直线x +y =0,通过平移,知在M 点,z =10x +10y 有最大值,易得 又由题意,知x ,y ∈N ,作适当调整,知可行域内点(5,4)可使z 取最大值,所以,z max =10×5+10×4=90,选C .【评析】实际问题中,要关注是否需要整数解.例5 某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?解:设此工厂每日需甲种原料x 吨,乙种原料y 吨,则可得产品z =90x +100y (千克).由题意,得上述不等式组表示的平面区域如图8-3-5所示,阴影部分(含边界)即为可行域.图8-3-5作直线l :90x +100y =0,并作平行于直线l的一组直线与可行域相交,其中有一条直),29,211(M ⎪⎩⎪⎨⎧≥≥≤+≤+⇒⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,2045,1232.0,0,2000400500,600015001000y x y x y x y x y x yx线经过可行域上的M 点,且与直线l 的距离最大,此时目标函数达到最大值.这里M 点是直线2x +3y =12和5x +4y =20的交点,容易解得M ,此时z 取到最大值 答:当每天提供甲原料吨,乙原料吨时,每日最多可生产440千克产品. 例6 设函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.(1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域;(2)试利用(1)所得的区域,求f (-2)的取值范围.解:(1)∵f (-1)=a -b ,f (1)=a +b ,∴即如图8-3-6,在平面直角坐标系aOb 中,作出满足上述不等式组的区域,阴影部分(含边界)即为可行域.图8-3-6(2)目标函数f (-2)=4a -2b .在平面直角坐标系aOb 中,作直线l :4a -2b =0,并作平行于直线l 的一组直线与可行域相交,其中有一条直线经过可行域上的B 点,且与直线l 的距离最大,此时目标函数达到最大值.这里B 点是直线a -b =2和a +b =4的交点,容易解得B (3,1),此时f (-2)取到最大值4×3-2×1=10.)720,712(71290⨯.440720100=⨯+712720⎩⎨⎧≤+≤≤-≤.42,21b a b a ⎪⎪⎩⎪⎪⎨⎧<+≥+≤-≥-.4,2,2,1b a b a b a ba同理,其中有一条直线经过可行域上的C 点,此时目标函数达到最小值.这里C 点是直线a -b =1和a +b =2的交点,容易解得 此时f (-2)取到最小值 所以5≤f (-2)≤10. 【评析】线性规划知识是解决“与二元一次不等式组有关的最值(或范围)问题”的常见方法之一.练习8-3一、选择题1.原点(0,0)和点(1,1)在直线x +y -a =0的两侧,则a 的取值范围是 ( )A .a <0或a >2B .a =0或a =2C .0<a <2D .0≤a ≤22.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值是( )A .-1B .1C .2D .-23.已知x 和y 是正整数,且满足约束条件则z =2x +3y 的最小值是( )A .24B .14C .13D .11.54.根据程序设定,机器人在平面上能完成下列动作:先从原点O 沿正东偏北α 方向行走-段时间后,再向正北方向行走一段时间,但α 的大小以及何时改变方向不定.如图8-3-7.假定机器人行走速度为10米/分钟,设机器人行走2分钟时的可能落点区域为S ,则S 可以用不等式组表示为( )图8-3-7),21,23(C .5212234=⨯-⨯⎪⎩⎪⎨⎧≥≤-≤+.72,2,10x y x y x )2π0(≤≤αA .B .C .D .二、填空题 5.在平面直角坐标系中,不等式组表示的平面区域的面积是______.6.若实数x 、y 满足,则的取值范围是______. 7.点P (x ,y )在直线4x +3y =0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是______.8.若当实数x ,y 满足时,z =x +3y 的最小值为-6,则实数a 等于______.三、解答题9.如果点P 在平面区域内,点Q (2,2),求|PQ |的最小值.10.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%(),可能的最大亏损率分别为30%和10%( ⎩⎨⎧≤≤≤≤200200y x ⎩⎨⎧≥+≤+2040022y x y x ⎪⎩⎪⎨⎧≥≥≤+0040022y x y x ⎪⎩⎪⎨⎧≤≤≥+202020y x y x ⎪⎩⎪⎨⎧≤≥+-≥-+20202x y x y x ⎪⎩⎪⎨⎧≤>≤+-2001x x y x x y ⎪⎩⎪⎨⎧≤≥+≥+-a x y x y x 005⎪⎩⎪⎨⎧≥-+≤-+≥+-0102022y x y x y x %100⨯=投资额盈利额盈利率投资额亏损额亏损率=),投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投多少万元,才能使可能的盈利最大?11.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0.(1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域; (2)试利用(1)所得的区域,指出a 的取值范围.§8-4 圆的方程【知识要点】1.圆的方程(1)标准方程:(x -a )2+(y -b )2=r 2(r >0),其中点(a ,b )为圆心,r 为半径. (2)一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),其中圆心为,半径为2.点和圆的位置关系设圆的半径为r ,点到圆的圆心距离为d ,则 d >r 点在圆外; d =r 点在圆上; d <r 点在圆内. 3.直线与圆的位置关系(1)代数法:联立直线与圆的方程,解方程组,消去字母y ,得关于x 的一元二次方程,则%100⨯)2,2(ED --21.422F E D -+⇔⇔⇔>0方程组有两解直线和圆相交; =0方程组有一解直线和圆相切;<0方程组无解直线和圆相离.(2)几何法(重点):计算圆心到直线的距离d ,设圆的半径为r ,则 d <r 直线和圆相交; d =r 直线和圆相切; d >r 直线和圆相离. 4.圆与圆的位置关系设两圆的半径分别为R ,r (R ≥r ),两圆的圆心距为d (d >0),则 d >R +r 两圆相离; d =R +r 两圆外切; R -r <d <R +r 两圆相交; d =R -r 两圆内切; d <R -r 两圆内含. 【复习要求】1.掌握圆的标准方程与一般方程,能根据条件,求出圆的方程.2.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系,解决一些简单问题. 【例题分析】例1根据下列条件,求圆的方程: (1)一条直径的端点是A (3,2),B (-4,1);(2)经过两点A (1,-1)和B (-1,1),且圆心在直线x +y -2=0上; (3)经过两点A (4,2)和B (-1,3),且在两坐标轴上的四个截距之和为2.【分析】求圆的方程,可以用待定系数法.若已知条件与圆心、半径有关,则设圆的标准方程,如第(2)问.若已知条件与圆心、半径关系不大,则设圆的一般方程,如第(3)问.∆⇔⇔∆⇔⇔∆⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔解:(1)由题意圆心为AB 的中点M ,即, 因为所以圆的半径所以,所求圆的方程为 (2)方法一:设圆的方程为(x -a )2+(y -b )2=r 2(r >0),则,解得所以,所求圆的方程为(x -1)2+(y -1)2=4.方法二:由圆的几何性质可知,圆心一定在弦AB 的垂直平分线上.易得AB 的垂直平分线为y =x .由题意,解方程组,得圆心C 为(1,1),于是,半径r =|AC |=2,所以,所求圆的方程为(x -1)2+(y -1)2=4. (3)设所求圆的方程为x 2+y 2+Dx +Ey +F =0, 因为圆过点A ,B ,所以 4D +2E +F +20=0,① -D +3E +F +10=0,②在圆的方程中,令y =0,得x 2+Dx +F =0, 设圆在x 轴上的截距为x 1,x 2,则x 1+x 2=-D . 在圆的方程中,令x =0,得y 2+Ey +F =0, 设圆在y 轴上的截距为y 1,y 2,则y 1+y 2=-E .)212,243(+-)23,21(-M ,50)12()43(||22=-++=AB ⋅==250||21AB r ⋅=-++225)23()21(22y x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+--=--+-=-+222222)1()1()1()1(02r b a r b a b a ⎪⎩⎪⎨⎧===2,11r b a ⎩⎨⎧=-+=02y x xy由题意,得-D +(-E )=2,③解①②③,得D =-2,E =0,F =-12, 所以,所求圆的方程为x 2+y 2-2x -12=0.【评析】①以A (x 1,y 1),B (x 2,y 2)为一直径端点的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.②求圆的方程时,要注意挖掘题中圆的几何意义(如第(2)问);③待定系数法求圆的方程时,要恰当选择的圆的方程(如第(3)问),这样有时能大大减少运算量.例2 (1)点P (a ,b )在圆C :x 2+y 2=r 2(r >0)上,求过点P 的圆的切线方程;(2)若点P (a ,b )在圆C :x 2+y 2=r 2(r >0)内,判断直线ax +by =r 2与圆C 的位置关系. 解:(1)方法一:因为切线l 与半径OP 垂直,又可求出直线OP 的斜率,所以可得切线l 的斜率,再由点斜式得到切线方程.但要注意斜率是否存在(详细过程略).方法二:设Q (x ,y )为所求切线上任一点,则,即(x -a ,y -b )·(a ,b )=0. 整理得ax +by =a 2+b 2,又因为P 在圆上,所以a 2+b 2=r 2, 故所求的切线方程为ax +by =r 2. (2)由已知,得a 2+b 2<r 2,则圆心O (0,0)到直线ax +by =r 2的距离所以此直线与圆C 相离.【评析】随着点P (a ,b )与圆C :x 2+y 2=r 2的位置关系的变化,直线l :ax +by =r 2与圆C 的位置关系也在变化.①当点P 在圆C 上时,直线l 与圆C 相切;②当点P 在圆C 内时,直线l 与圆C 相离;③当点P 在圆外时,直线l 与圆C 相交.例3 已知点A (a ,3),圆C :(x -1)2+(y -2)2=4. (1)设a =3,求过点A 且与圆C 相切的直线方程;(2)设a =4,直线l 过点A 且被圆C 截得的弦长为2,求直线l 的方程;(3)设a =2,直线l 1过点A ,求l 1被圆C 截得的线段的最短长度,并求此时l 1的方程. 解:(1)如图8-4-1,此时A (3,3),0=⋅.||22222r rr ba r d =>+=3图8-4-1设切线为y -3=k (x -3)或x =3, 验证知x =3符合题意;当切线为y -3=k (x -3),即kx -y -3k +3=0时,圆心(1,2)到切线的距离解得所以,切线方程为3x +4y -21=0或x =3. (2)如图8-4-2,此时A (4,3),图8-4-2设直线l 为y -3=k (x -4)或x =4(舍), 设弦PQ 的中点为M ,则|CP |=r =2,所以,即圆心到直线l 的距离为1,,21|332|2=++--=k k k d ,43-=k ,3||=PM ,1||||||22=-=PM CP CM于是,解得k =0或, 所以,直线l 的方程为或y =3. (3)如图8-4-3,此时A (2,3),设所截得的线段为DE ,圆心到直线l 1的距离为d ,图8-4-3则,即 因为直线l 1过点A ,所以圆心到直线l 1的距离为d ≤|CA|=故当d =时,, 此时AC ⊥l 1,因为 所以=-1,故直线l 1方程为y -3=-(x -2),即x +y -5=0.【评析】(1)用点斜式设直线方程时,要注意斜率是否存在;(2)涉及直线与圆的位置关系问题时,用与圆有关的几何意义解题较为方便,常见的有:①比较圆心到直线的距离与半径的大小;②如图8-4-2,在由弦心距、半径及弦组成的Rt △CMP 中,有|CM |2+|MP |2=|CP |2,CM ⊥MP 等;③如图8-4-1,由切线段、半径组成的Rt △AB C .例4 已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求证:不论m 取何值,直线l 与圆C 恒交于两点.11|342|2=++--=k k k d 43x y 43=222|)|21(r d DE =+,42||2d DE -=,2222||min =DE ,11223=--=AC k 1l k【分析】要证明直线l 与圆C 恒交于两点,可以用圆心到直线的距离小于半径,也可以联立直线和圆的方程,消去y 后用判别式大于零去证明,但此题这两种方法计算量都很大.如果能说明直线l 恒过圆内一定点,那么直线l 与圆C 显然有两个交点.解:因为直线l :mx +y +m =0可化为y =-m (x +1), 所以直线l 恒过点A (-1,0),又圆C :(x -1)2+(y -2)2=25的圆心为(1,2),半径为5, 且点A 到圆C 的圆心的距离等于 所以点A 为圆C 内一点,则直线l 恒过圆内一点A , 所以直线l 与圆C 恒交于两点.例5 四边形ABCD 的顶点A (4,3),B (0,5),C (-3,-4),D O 为坐标原点. (1)此四边形是否有外接圆,若有,求出外接圆的方程,若没有,请说明理由; (2)记△ABC 的外接圆为W ,过W 上的点E (x 0,y 0)(x 0>0,y 0>0)作圆W 的切线l ,设l 与x 轴、y 轴的正半轴分别交于点P 、Q ,求△OPQ 面积的最小值.【分析】判断四点是否共圆,初中的方法是证明一组对角之和为180°,此题此法不易做.如何用所学知识解决问题是此题的关键,如果想到三点共圆,那么可以求出过三点的圆的方程,然后再判断第四点是否在圆上,问题就迎刃而解.解:(1)设△ABC 的外接圆为W ,圆心M (a ,b ),半径为r (r >0). 则W 为:(x -a )2+(y -b )2=r 2.由题意,得,解得,所以W :x 2+y 2=25. 将点D 的坐标代入W 的方程,适合. 所以点D 在△ABC 的外接圆W 上,故四边形ABCD 有外接圆,且外接圆的方程为x 2+y 2=25. (2)设切线l 的斜率为k ,直线ME (即OE )的斜率为k 1,,522)2()11(22<=-+--).1,62(⎪⎪⎪⎩⎪⎪⎪⎨⎧=--+--=-+-=-+-222222222)4()3()5()0()3()4(r b a r b a r b a ⎪⎩⎪⎨⎧===500r b a∵圆的切线l 垂直于过切点的半径,∴∴切线,整理得而,∵点E (x 0,y 0)在圆W 上,即,∴切线l :x 0x +y 0y =25.在l 的方程中,令x =0,得,同理 ∴△OPQ 的面积 ∵,(其中x 0>0,y 0>0)∴当且仅当时,等号成立. 即当时,△OPQ 的面积有最小值25. 练习8-4一、选择题1.以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的方程为( ) A .(x -2)2+(y +1)2=3 B .(x +2)2+(y -1)2=3 C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=92.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于( ) A .B .C .1D .53.若直线与圆x 2+y 2=1有公共点,则( ) ,11k k -= ,,00001y xk x y k -=∴=)(:0000x x y xy y l --=-202000y x y y x x +=+252020=+y x )25,0(,2500y Q y y ∴=).0,25(0x P ,26252525210000y x y x S OPQ ==⋅⋅∆002020225y x y x ≥=+.2525625262500=≥=∆y x S OPQ 22500==y x )225225(,E 62251=+bya xA .a 2+b 2≤1B .a 2+b 2≥1C .D .4.圆(x +2)2+y 2=5关于点(1,2)对称的圆的方程为( ) A .(x +4)2+(y -2)2=5 B .(x -4)2+(y -4)2=5 C .(x +4)2+(y +4)2=5 D .(x +4)2+(y +2)2=5二、填空题5.由点P (-1,4)向圆x 2+y 2-4x -6y +12=0所引的切线长是______. 6.若半径为1的圆分别与y 轴的正半轴和射线相切,则这个圆的方程为______.7.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为的点共有______个. 8.若不等式x 2+2x +a ≥-y 2-2y 对任意的实数x 、y 都成立,则实数a 的取值范围是______. 三、解答题9.已知直线l :x -y +2=0与圆C :(x -a )2+(y -2)2=4相交于A 、B 两点. (1)当a =-2时,求弦AB 的垂直平分线方程; (2)当l 被圆C 截得弦长为时,求a 的值.10.已知圆满足以下三个条件:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为.求该圆的方程.11.已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求直线l 被圆C 截得的线段的最短长度,以及此时l 的方程.11122≤+b a 11122≥+b a )0(33≥=x x y 23255§8-5 曲线与方程【知识要点】1.轨迹方程一般地,一条曲线可以看成动点运动的轨迹,曲线的方程又常称为满足某种条件的点的轨迹方程.2.曲线与方程在平面直角坐标系中,如果曲线C 与方程F (x ,y )=0之间有如下关系: (1)曲线C 上点的坐标都是方程F (x ,y )=0的解; (2)以方程F (x ,y )=0的解为坐标的点都在曲线C 上.那么,曲线C 叫做方程F (x ,y )=0的曲线,方程F (x ,y )=0叫做曲线C 的方程. 3.曲线的交点已知两条曲线C 1和C 2的方程分别是F (x ,y )=0,G (x ,y )=0,那么求两条曲线C 1和C 2的交点坐标,只要求方程组的实数解就可以得到.【复习要求】1.了解曲线与方程的对应关系,体会数形结合的思想、方程思想. 2.会求简单的轨迹方程;能根据方程研究曲线的简单性质. 【例题分析】例1 已知点A (-1,0),B (2,0),动点P 到点A 的距离与它到点B 的距离之比为2,求动点P 的轨迹方程.解:设P (x ,y ),则,即 化简得x 2+y 2-6x +5=0,所以动点P 的轨迹方程为x 2+y 2-6x +5=0.⎩⎨⎧==0),(0),(y x G y x F 2||||=PB PA ,2)2()1(2222=+-++yx y x。
知识05 平面解析几何(含真题)-【新高考】2021年高考数学考前必备知识速记

2.两条直线的交点的求法
直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1与l2的交点坐标就是方程组 的解.
3.三种距离公式
(1)P1(x1,y1),P2(x2,y2)两点之间的距离:|P1P2|= .
(2)点P0(x0,y0)到直线l:Ax+By+C=0的距离:d= .
6.点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).
7.点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).
8.点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).
9.点(x,y)关于直线x+y=k的对称点为(k-y,k-x),关于直线x-y=k的对称点为(k+y,x-k).
斜率与倾斜角的关系
(1)当直线不垂直于x轴时,直线的斜率和直线的倾斜角为一一对应关系.
(2)当直线l的倾斜角α∈ 时,α越大,直线l的斜率越大;当α∈ 时,α越大,直线l的斜率越大.
(3)所有的直线都有倾斜角,但不是所有的直线都有斜率.
(4)已知倾斜角α的范围,求斜率k的范围,实质是求k=tanα的值域;已知斜率k的范围,求倾斜角α的范围,实质是在 ∪ 上解关于正切函数的三角不等式问题,可借助正切函数图象来解决此类问题.
三、圆的方程
1.圆的定义及方程
定义
平面内与定点的距离等于定长的点的集合(轨迹)
标准方程
(x-a)2+(y-b)2=r2(r>0)❶
圆心:(a,b),半径:r
一般方程
x2+y2+Dx+Ey+F=0,
(D2+E2-4F>0)❷
专题五解析几何直线与圆教学课件2021届新高考数学二轮复习

故|MA|·|MB|≤225(当且仅当|MA|=|MB|=5 2 2时取“=”).
答案
(1)A
25 (2) 2
探究提高 1.求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参 数的值后,要注意代入检验,排除两条直线重合的可能性. 2.求直线方程时应根据条件选择合适的方程形式利用待定系数法求解,同时要考虑 直线斜率不存在的情况是否符合题意.
【例 2】 (1)(2020·石家庄模拟)古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中
提出“在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且
不等于 1 的常数,则该点轨迹是一个圆”.现在,某电信公司要在甲、乙、丙三地搭
建三座 5G 信号塔来构建一个特定的三角形信号覆盖区域,以实现 5G 商用,已知甲、
解析 (1)由题意知m(1+m)-2×1=0,解得m=1或-2,当m=-2时,两直线重 合,舍去;当m=1时,满足两直线平行,所以m=1.
(2)由题意可知,直线 l1:kx-y+4=0 经过定点 A(0,4),直线 l2:x+ky-3=0 经过 定点 B(3,0),注意到直线 l1:kx-y+4=0 和直线 l2:x+ky-3=0 始终垂直,点 M 又是两条直线的交点,则有 MA⊥MB,所以|MA|2+|MB|2=|AB|2=25.
热点三 直线(圆)与圆的位置关系
角度 1 圆的切线问题
【例 3】 (1)(2020·全国Ⅲ卷)若直线 l 与曲线 y= x和圆 x2+y2=15都相切,则 l 的方程
为( ) A.y=2x+1
B.y=2x+12
C.y=12x+1
D.y=12x+12
(2)(多选题)在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大题 19.直线与抛物线性质的综合 应用 19.直线与椭圆位置关系、证 明角的相等 20.椭圆定值定点问题
20.椭圆面积范围问题
2015 5. 双曲线与向量结合 14.椭圆与圆结合
20.抛物线存在性问题
现象一:每年都是一大两小22分,由题目的位置来看 近两年小题有增加难度而解答题有降低难度的趋势.
年份
2015 5. 双曲线与向量结合 14.椭圆与圆结合
20.抛物线存在性问题
年份
小题
2019 10.椭圆与直线的位置 关系、标准方程
2018 8.抛物线与直线的位置 关系、向量内积
2017 10.直线与抛物线位置 关系、最值
2016 5.双曲线标准方程
小题 16.双曲线及其渐近线 11.双曲线及其渐近线 15.双曲线与圆及离心率 10.抛物线与圆结合
2021届全国新高考数学专题复习 解析几何
一、学习考纲 把握考点
(一)平面解析几何初步 1.直线与方程 (1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。 (2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。 (3)能根据两条直线的斜率判定这两条直线平行或垂直。
考 (4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式 及一般式),了解斜截式与一次函数的关系。
20.椭圆面积范围问题
2015 5. 双曲线与向量结合 14.椭圆与圆结合
20.抛物线存在性问题
现象二:解答题椭圆5年3考,2年考察抛物线
考纲:掌握椭圆、抛物线的定义、几何图形、标准方程
及简单性质.
年份
小题
小题
2019 10.椭圆与直线的位置关 16.双曲线及其渐近线 系、标准方程
2018 8.抛物线与直线的位置 11.双曲线及其渐近线 关系、向量内积
小题
小题
2019 10.椭圆与直线的位置关 16.双曲线及其渐近线 系、标准方程
2018 8.抛物线与直线的位置 11.双曲线及其渐近线 关系、向量内积
2017 10.直线与抛物线位置关 15.双曲线与圆及离心率 系、最值
2016 5.双曲线标准方程
10.抛物线与圆结合
大题 19.直线与抛物线性质的综合 应用 19.直线与椭圆位置关系、证 明角的相等 20.椭圆定值定点问题
纲
曲线. 圆锥曲线部分是利用代数方法研究几何问题的良好载体,试题
研 综合性较强.综合考察数形结合思想、函数与方程思想、特殊与一般
读 思想,突出考察学生的推理论证能力和运算求解能力。
二、分析真题 指导复习
近5年考题涉及的考点分布情况
年份
小题
小题
大题
2019 10.椭圆与直线的位置关 16.双曲线及其渐近线 系、标准方程
19.直线与抛物线性质的综合 应用
2018 8.抛物线与直线的位置 11.双曲线及其渐近线 关系、向量内积
19.直线与椭圆位置关系、证 明角的相等
2017 10.直线与抛物线位置关 15.双曲线与圆及离心率 系、最值
2016 5.双曲线标准方程
10.抛物线与圆结合
20.椭圆定值定点1、圆锥曲线
(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决
考
实际问题中的作用.
纲
(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. (3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.
学 (4)了解圆锥曲线的简单应用.
习
(5)理解数形结合的思想. 2、曲线与方程
纲 (5)能用解方程组的方法求两条相交直线的交点坐标。 (6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
学 2.圆与方程 习 (1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定的两个 圆的方程判断两圆的位置关系。 (3)能用直线和圆的方程解决一些简单的问题。 (4)初步了解用代数方法处理几何问题的思想。 3.空间直角坐标系
了解方程的曲线与曲线的方程的对应关系.
从对考试大纲以及考试说明的学习来看,解析几何考察的重点是
圆锥曲线,而圆锥曲线部分主要考察三种曲线的定义、标准方程、
简单几何性质及直线与三种曲线的位置关系问题.由于双曲线的知识
处于了解层面,所以2020年高考应该和往年类似,侧重于椭圆和
考 抛物线的相关知识,在这两种曲线的考察难度和频率上会略高于双
2017 10.直线与抛物线位置关 15.双曲线与圆及离心率 系、最值
2016 5.双曲线标准方程
10.抛物线与圆结合
大题 19.直线与抛物线性质的综合 应用 19.直线与椭圆位置关系、证 明角的相等 20.椭圆定值定点问题
20.椭圆面积范围问题
2015 5. 双曲线与向量结合 14.椭圆与圆结合
20.抛物线存在性问题
小题
小题
2019 10.椭圆与直线的位置关 16.双曲线及其渐近线 系、标准方程
2018 8.抛物线与直线的位置 11.双曲线及其渐近线 关系、向量内积
2017 10.直线与抛物线位置关 15.双曲线与圆及离心率 系、最值
2016 5.双曲线标准方程
10.抛物线与圆结合
大题 19.直线与抛物线性质的综合 应用 19.直线与椭圆位置关系、证 明角的相等 20.椭圆定值定点问题
2016 5.双曲线标准方程
10.抛物线与圆结合
大题 19.直线与抛物线性质的综合 应用 19.直线与椭圆位置关系、证 明角的相等 20.椭圆定值定点问题
20.椭圆面积范围问题
2015 5. 双曲线与向量结合 14.椭圆与圆结合
20.抛物线存在性问题
现象四:5年都考察了三种曲线.三年都考到了圆.
年份
现象三: 5年解答题都未考察双曲线
考纲:了解双曲线的定义、几何图形和标准方程, 知道它的简单几何性质.
年份
小题
小题
2019 10.椭圆与直线的位置关 16.双曲线及其渐近线 系、标准方程
2018 8.抛物线与直线的位置 11.双曲线及其渐近线 关系、向量内积
2017 10.直线与抛物线位置关 15.双曲线与圆及离心率 系、最值
20.椭圆面积范围问题
2015 5. 双曲线与向量结合 14.椭圆与圆结合
20.抛物线存在性问题
现象五:直线与三种曲线的位置关系考得最多.
选择题、填空题考察方向