第五章 假设检验(1)

合集下载

教育与心理统计学 第五章 假设检验考研笔记-精品

教育与心理统计学  第五章 假设检验考研笔记-精品
把出现小概率的随机事件称为小概率事件。
假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\

第5章 假设检验

第5章  假设检验
著,这里表现为长白后备种猪的背膘厚度极显著地低于蓝塘后备种猪 的背膘厚度。
9
假设检验的基本步骤
(1) 对样本所属总体提出统计假设,包括无效假 设和备择假设. (2) 测验计算,即在无效假设正确的假定下,依 据统计数的抽样分布,计算因随机抽样而获得实 际差数的概率. (3) 统计推断,即将确定的值与算得的概率相比 较,依据“小概率事件实际不可能性”原理作出 接受或否定无效假设的推断
1.2021.817 13.226** 0.0465
df (n1 1) (n2 1)
=(12-1)+(11-1)=21
3、查临界t值,作出统计推断 当df=21时,查临界值得:t0.01(21)=2.831, |t|>2.831,P<0.01,否定 H 0:1 , 接 2 受 H A:1 ,表明长白后备种猪与蓝塘后备种猪 2 90kg背膘厚度差异极显著,这里表现为长白后备 种猪的背膘厚度极显著地低于蓝塘后备种猪的背 膘厚度。
3、查临界t值,作出统计推断 因为单侧
t 0.10(= 双侧 11)
t 0.05 = 1.796 ,t=2.281 (11 )
> 单侧t0.05(11), P < 0.05 , 否定H0 : =246,
>246,可以认为该批饲料维生素C含量 接受HA :
符合规定要求。
第三节 两个样本平均数的差异 显著性检验
克服假设检验中可能犯的两类错误的方法: ① 适当增加样本容量 ② 精细做好试验以控制试验误差
17
两类错误
影响 II 型错误概率大小的因素 - 显著性水平 - 样本含量 n - 假设分布与真实分布总体平均数之差 - 两个分布的总体方差
检验功效 一个错误的原假设能够被否定的概率 检验功效 = 1 - II 型错误概率 =1-β

假设检验与方差分析

假设检验与方差分析
这是不合理的,应拒绝原假设。
三、假设检验的步骤
1、提出原假设(null hypothesis)和备择假设 (alternative hypothesis)
原假设为正待检验的假设:H0; 备择假设为可供选择的假设:H1 一般地,假设有三种形式:
(1)双侧检验:
H0 : 0; H1 :0 (2)左侧检验:
这两个例子中都是要对某种“陈述”做出判
断:
例1要判明工艺改革后零件平均 长度是否仍为4cm;
进行这种判断 的信息来自
例2要判明该批产品的次品率是 所抽取的样本
否低于3%。
所谓假设检验,就是事先对总体参数或总体分 布形式作出一个假设,然后利用样本信息来判断 原假设是否合理,即判断样本信息与原假设是否 有显著差异,从而决定是否接受或否定原假设
对比来构造检验统计量。
可以证明,若H0为真,则
2
(n 1)S 2
2 0
~
2 (n 1)
因此,可构造2 统计量进行总体方差
的假设检验。
当H0成立时,S2/02 接近于1,2的 值在一个适当的范围内,
当H0不成立时,S2/02远离1,2的值 相当大或相当小。
在例2中,由于所抽样本只为10,为小样本,因 此无法构造Z统 计量进行总体比例的假设检验。
如果总体X~N(,2),在方差已知的情况下,对总体均 值进行假设检验。
由于
因此,可通过构造Z统计量来进行假设检验:
注意: 如果总体方差未知,且总体分布未知,但如果是大样
本(n>=30),仍可通过 Z 统计量进行检验,只不过总体 方差需用样本方差 s 替代。
例3:根据以往的资料,某厂生产的产品的使用寿命服从正 态分布N(1020, 1002)。现从最近生产的一批产品中随机抽取16 件,测得样本平均寿命为1080小时。问这批产品的使用寿命 是否有显著提高(显著性水平:5%)?

第五章 假设检验

第五章  假设检验

Di
4.1 3.8
1.0
4.2
5 15.3 12.0
3.3
6 13.9 14.7 -0.8
7 20.0 18.1 1.9
8 16.2 13.8 2.4
9 15.3 10.9 4.4
作业(以下任选一道)
1、查阅近两年的心理学和教育学权威杂志各一套(例 如,可查阅这几个年度的《心理学报》和《教育研究》 各一套),对其论文中使用的统计方法进行一项描述
(两个样本的“t”检验) 五、相关系数的显著性检验 六、方差差异的显著性检验
假设检验的一般步骤
(1)建立虚无假设和备择假设
双侧检验为:H0:µ=µ0
H1:µ‡µ0
单侧检验为:H0:µ<=µ0 或 H0:µ>=µ0
H1:µ>µ0 或 H1:µ<µ0
(2)寻找合适的统计量及其抽样分布,并计算统计量
T’=-1.929;SE2=3.468;t’ a/2=2.049
练习题5
对9个被试进行两种夹角(15o,30o)的缪 勒—莱依尔错觉实验结果如下,问两种夹角的 情况下错觉量是否有 显著差异?
被试 1
2
3
4
15o 14.7 18.9
17.2 15.4
30o 10.6 15.1
16.2 11.2
Z1.84;SE1.793
两类错误
H0为真
接受H0 拒绝H0
正确 α错误
前提 H0为假 β错误 正确
总体平均数的假设检验例题1
全区统一考试物理平均分μo=50,标准差σo=10.某 校的一个班(n=41)平均成绩 X =52.5.问该班成 绩与全区平均成绩差异是否显著.
(总体正态,总体方差已知)

第五章假设检验

第五章假设检验
31
Hypothesis test
(二)P值假设检验的步骤 值假设检验的步骤
14
Hypothesis test
(一)假设检验中的两类错误 实际情况
决策结果 不拒绝H0 拒绝H0
H0为真 √ type I error
H0为伪 type II error √
•第Ⅰ类错误:指原假设为真,却拒绝原假设而犯的 类错误:指原假设为真,
错误, 错误,即弃真错误 发生概率为α 发生概率为α •第Ⅱ类错误:原假设为假时,未拒绝原假设而犯 第 类错误:原假设为假时, 的错误, 的错误,即取伪错误 发生概率为β 发生概率为β 15
27
Hypothesis test
3、利用P值决策的优点: 利用P 决策的优点: 直接给出了拒绝原假设犯第一类错误的真实概率; 直接给出了拒绝原假设犯第一类错误的真实概率; 避免了不同检验问题用同一个显著性水平; 避免了不同检验问题用同一个显著性水平; 当前计算机软件通常可以直接输出检验统计量的P值, 当前计算机软件通常可以直接输出检验统计量的P 免于查表, 免于查表,可直接判定
例如,针对特效药治愈率假定 例如,针对特效药治愈率假定H0 :θ≥97% 医疗周期假定H0 :t≤2个月 个月 服药后病情稳定情况H0 :d=2人 人
7
Hypothesis test
(2)备择假设(alternative hypothesis) 备择假设(alternative
★研究者收集证据想予以支持的假设 研究者收集证据想予以支持 予以支持的假设 ★表示为H1 ★表示形式:≠, >或<某一假定数值 表示形式:
Hypothesis test
4、决策规则 给定显著性水平α 给定显著性水平α,查统计量的对应分布表得出相 应的临界值。 应的临界值。 临界值通常取正值, 临界值通常取正值,应结合假设形式准确确定分布 中的临界值和拒绝域。 中的临界值和拒绝域。 将检验统计量的值与临界值进行比较 给出决策结果。 给出决策结果。 双侧检验: 统计量的值| 临界值, 双侧检验:|统计量的值|>临界值,则拒绝H0 左侧检验:统计量的值<临界值, 左侧检验:统计量的值<临界值,则拒绝H0 右侧检验:统计量的值>临界值, 右侧检验:统计量的值>临界值,则拒绝H0

统计学导论 科学出版社 第五章 假设检验

统计学导论  科学出版社 第五章 假设检验

右侧检验

H1 : µ > µ0
H1 : µ > µ0
确定适当的检验统计量
什么检验统计量? 什么检验统计量?
用于假设检验问题的统计量 选择统计量的方法与参数估计相同, 选择统计量的方法与参数估计相同,需考虑
是大样本还是小样本 总体方差已知还是未知
检验统计量的基本形式为
z= x − µ0
σ
n
选择显著性水平α,确定临界值

☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺
抽取随机样本
均值 ☺ ☺ X = 20
假设检验的基本思想
抽样分布
这个值不像我 们应该得到的 样本均值 ... ... 因此我们拒 绝假设 µ = 50
... 如果这是总 体的真实均值 20
µ = 50 H0
样本均值
假设检验应用举例
例1:抽样检验食品包装机工作是否正常 : 例2:由样本推断产品次品率是否超标 : 例3:研究黑人儿童是否有民族意识 : 例4:检验电池寿命波动性是否有显著变化 : 5: 例5:判断男女职工看电视时间是否有显著差异 例6:检验新工艺是否比旧工艺更好 : 例7:研究生活习惯是否影响血压 : 例8:检验两次地震间的天数是否服从指数分布 : 例9:比较两公司进货次品率,作出进货决策 :比较两公司进货次品率,
3、特点 、
采用逻辑上的反证法 依据统计上的小概率原理
第一节 假设检验的基本原理
一. 假设检验的一般思想 二. 假设检验的步骤 三. 假设检验的两类错误
假设检验的过程
(提出假设→抽取样本→作出决策) 提出假设→抽取样本→作出决策)
提出假设 作出决策
拒绝假设! 拒绝假设 别无选择. 别无选择
总体

《统计学》第5章 假设检验

《统计学》第5章 假设检验
假设。原假设通常用H0 表示,也称为“零假设”;备择假设指的是当原
假设不成立时,即拒绝原假设时备以选择的假设,通常用H1 表示。备择
假设和原假设互斥,如在例5.1中,原假设是“2022 年全国城市平均
PM2.5 浓度与2018 年相比没有显著差异”,那么备择假设就是“2022
年全国城市平均PM2.5 浓度与2018 年相比存在显著差异”。相应的统计
小越好。但是,在一定的样本容量下,减少犯第I类错误的概率,就会
使犯第II类错误的概率增大;减少犯第II类错误的概率,会使犯第I类
错误的概率增大。增加样本容量可以使犯第I类错误的概率和犯第II类
错误的概率同时减小,然而现实中资源总是有限的,样本量不可能没有
限制。因此,在给定的样本容量下,必须考虑两类可能的错误之间的权
易被否定,若检验结果否定了原假设,则说明否定的理由是充分的。
第四章 参数估计
《统计学》
16
5.1 假设检验的基本原理
(四) P值法
假设检验的另一种常用方法是利用P值(P-value) 来确定检验决策。P值
指在原假设0 为真时,得到等于样本观测结果或更极端结果的检验统计
量的概率,也被称为实测显著性水平。P值法的决策规则为:如果P值大
1.96) 中。这里−1.96和1.96 称为临界值,区间(−1.96, 1.96) 两侧的
区域则被称为拒绝域。基于样本信息,可以计算得到相应的z检验统计量
值,已知ҧ = 46,0 = 53, = 14 , n = 100 = −5
14/10
第四章 参数估计
《统计学》
14
5.1 假设检验的基本原理
犯第I 类(弃真) 错误的概率 也称为显著性水平(Significance level),

医学统计学-假设检验概述

医学统计学-假设检验概述

二、假设检验应注意的问题
假设检验利用小概率反证法思想,从问题对立面 (H0)出发间接判断要解决的问题(H1)是否成立。在H0 成立的条件下计算检验统计量,获得P值来判断。当P ≤,就是小概率事件。
小概率事件原理:小概率事件在一次抽样中发生 的可能性很小,如果它发生了,则有理由怀疑H0,认 为H1成立,该结论可能犯的错误。
当不拒绝H0时,没有拒绝实际上不成立的H0,这 类错误称为Ⅱ类错误(“存伪”),其概率大小用β 表示。
假设检验中的两类错误
客观实际
拒绝H0
不拒绝H0
H0成立 第Ⅰ类错误(α) 推断正确(1- α)
H0不成立 推断正确(1- β) 第Ⅱ类错误(β)
α与β的关系: 当样本量一定时, α愈小, 则β愈大,反之α愈大,
距法
理论上:
• 总体偏度系数1=0为对称,1>0为正偏态,1<0为负偏态; • 总体峰度系数2=0为正态峰,2>0为尖峭峰,2<0为平阔峰。 • 只有同时满足对称和正态峰两个条件时,才能认为资料服从
假设检验概述
第五章 假设检验概述
第一节 假设检验的分类、论证方法与步骤 一、假设检验的分类 二、假设检验的论证方法 三、假设检验的步骤
第二节 假设检验的两类错误和注意事项 一、Ⅰ型错误和Ⅱ型错误 二、应用假设检验的注意事项
第三节 正态性检验与数据转换 一、正态性检验 二、数据转换
第四节 例题和SPSS电脑实验
P>:不拒绝H0 ,还不能认为差异有统计学意义… P:拒绝H0,接受H1 ,差异有统计学意义…
第二节 假设检验的两类错 误和注意事项
一、Ⅰ型错误和Ⅱ型错误
1. Ⅰ型错误: 当拒绝H0时,可能拒绝了实际上成立的H0,这
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
被试 a b c d e f g h 前测 26 23 28 26 27 28 27 28 后测 27 25 29 27 29 28 26 29
课堂练习3
从高二年级随机抽取两个小组(人数不等),在化学教学 中,实验组采用启发探究法,而对照组则采用传统讲授法, 后期统一测验结果如下表。
问:启发探究法的效果是否显著优于传统讲授法?

某数学教育家随机抽取49名高一学生进行 ****教学法的教学改革实验研究。已知这些 学生原来所在的总体数学的平均水平为80分, 标准差为10分。经过一学期的教学改革实验 之后,这49名学生在统考中的数学平均成绩 为83分。问:教学改革是否改变了学生的数 学水平。
第五章 假设检验
Exercise
一、假设检验的一般步骤 二、单侧检验与双侧检验 三、两类错误 四、关于样本平均数差异的显著性检验
Xi : 12.3 12.5 12.8 13.0 13.5
fi : 1
2
4
2
1
Yi : 12.2 12.3 13.0
fi : 6
8
2
现已知变量X与Y的总体都呈正态分布。请问:
在0.05的显著性水平下,可否认为这两个样本所来自的两个总体平均数 有显著差异?
课堂练习2
对随机抽取的8名学生代表,在观看体育教学录像片之前后, 两次测试他们掌握有关动作技能的情况,测试结果(得分) 如下表。能否认为该部体育录像片的教学效果(学生前后 两次得分的差异)显著?
Sp2=283;SE=3.16;T=2.22
练习题4
为了比较独生子女与非独生子女在社会性方面 的差异,随机抽取独生子女25人,非独生子女 31人,进行社会认知测验,结果独生子女平均 数为25.3,标准差为6;非独生子女 平均数为 29.9,标准差为10.2。试问独生子女与非独 生子女的社会认知能力是否存在显著差异?
(两个样本的“t”检验) 五、相关系数的显著性检验 六、方差差异的显著性检验
假设检验的一般步骤
(1)建立虚无假设和备择假设
双侧检验为:H0:µ=µ0
H1:µ‡µ0
单侧检验为:H0:µ<=µ0 或 H0:µ>=µ0
H1:µ>µ0 或 H1:µ<µ0
(2)寻找合适的统计量及其抽样分布,并计算统计量
Z1.84;SE1.793
两类错误
H0为真
接受H0 拒绝H0
正确 α错误
前提 H0为假 β错误 正确
总体平均数的假设检验例题1
全区统一考试物理平均分μo=50,标准差σo=10.某 校的一个班(n=41)平均成绩 X =52.5.问该班成 绩与全区平均成绩差异是否显著.
(总体正态,总体方差已知)
性统计,并制作统计表或图。特别注意“ t 检验”被
使用的频率。
2、设计一项心理学或教育学研究,要求能够使用“t
检验”分析研究结果。写作提纲包括:一、研究的理 论基础或引起你研究兴趣的原因;二、研究目标;三、 研究方法和步骤;四、数据的整理和分析(计划)。
课堂练习1
1、由容量分别为n1=10 和 n2=16 的独立随机样本得到下述观测结 果(Xi、Yi为观测值,fi为频数):
实验组(X1) 64 58 65 56 58 45 55 63 66 69 对照组(X2) 60 59 57 41 38 52 46 51 49
课堂练习4
医学上测定,正常人的血色素应该是每100毫升13克, 某学校进行抽查,37名学生血色素平均值为12.1克/ 毫升,标准差是1.5克/毫升,试问该校学生的血色素 是否显著低于正常值 ?
练习题1
从某地区的六岁儿童中随机抽取男生30 人,测量身高,平均为114厘米;抽取女生 27人,平均身高为112.5厘米,根据以往积 累资料,该地区六岁男童身高的标准差为 5厘米,女童身高标准差为6.5厘米,能否 根据这一次抽样测量的结果下结论:该地 区六岁男女儿童身高有显著差异?
Z0.96
练习题2
Di
4.1 3.8
1.0
4.2
5 15.3 12.0
3.3
6 13.9 14.7 -0.8
7 20.0 18.1 1.9
8 16.2 13.8 2.4
9 15.3 10.9 4.4
作业(以下任选一道)
1、查阅近两年的心理学和教育学权威杂志各一套(例 如,可查阅这几个年度的《心理学报》和《教育研究》 各一套),对其论文中使用的统计方法进行一项描述
T’=-1.929;SE2=3.468;t’ a/2=2.049
练习题5
对9个被试进行两种夹角(15o,30o)的缪 勒—莱依尔错觉实验结果如下,问两种夹角的 情况下错觉量是否有 显著差异?
被试 1
2
3
4
15o 14.7 18.9
17.2 15.4
30o 10.6 15.1
16.2 11.2
(3)否定域不同。“双”的否定域为| Z |> Z a/2 ,而“单”查 表得Z a 。
单侧检验的例子
有人调查早期教育对儿童智力发展的影响,从 受过良好早期教育的儿童中随机抽取70人进行 韦氏儿童智力测验(µ0=100, Ô 0=15), 结果平均数为103.3,能否认为受过良好早期 教育的儿童智力高于一般水平?
某幼儿园在儿童入园时对49名儿童进行 了比奈智力测验(Ó=16),结果平均智商 为106,一年后再对同组被试施测,结果平 均智商为110,已知两次测验结果的相关 系数为0.74,问能否说随着年龄增长与一 年的教育,儿童的智商有了显著的提高?
SE=1.71;Z=2.34
练习题3
在一项关于反馈对知觉判断的影响的研究中, 将被试随机分成两组,其中一组60人作为实验 组(每一次判断后将结果告诉被试),实验的 平均结果=80,标准差=18;另一组52人做 为控制组(实验过程中每一次判断后不让被试 知道结果),实验的平均结果=73,标准差 =15。试问实验组与控制组的平均结果有否显 著差异?
课堂练习5
12名被试作为实验组,经过训练后测量深度知觉,结 果误差的平均值为4厘米,标准差为2厘米;另外12名 被试作为控制组不加任何训练,测量结果,误差的平 均值为6.5厘米,标准差为2.5厘米,问训练是否明显 减小了深度知觉的误差?
课堂练习6
下表给出了某班12名同学期中和期末两次数学考试的成绩。 请问:期中和期末的成绩有没有显著差异?
被试 1 2 3 4 5 6 7 8 9 1 0 11 12 期中 65 63 67 64 68 62 70 66 68 67 69 71 期末 68 66 68 65 69 66 68 65 71 67 68 70
总体平均数的假设检验例题2
某心理学家认为一般司机的视反应时平均175毫 秒,有人随机抽取36名汽车司机作为研究样本进 行了测定,结果平均值为180毫秒,标准差25毫秒. 能否根据测试结果否定该心理学家的结论.(假定 人的视反应时符合正态分布)
X
总体平均数的假设检验例题3
某省进行数学竞赛,结果分数的分布不是正态, 总平均分43.5.其中某县参加竞赛的学生 168人,平均分45.1,标准差18.7,该县平均分 与全省平均分有否显著差异?
关于平均数差异的显著性检验
一、两个总体都是正态分布,两个总体方差都已知。 (一)两个样本相互独立:(独立样本的Z检验) (二)两个相关样本:(相关样本的Z检验)
二、两个总体都是正态分布,两总体方差都未知。 (一)两个样本相互独立: 1.两个总体方差一致(独立样本的t检验) 2.两个总体方差不等,(柯克兰--柯克斯检验) (二)两个相关样本: 1.相关系数未知(相关样本的t检验) 2.相关系数已知(相关样本的t检验)
单、双侧检验的区别:
(1)问题的提法不同。“双”的提法是:µ和已知常数µ0是否有 显著性差异?“单”的提法是:µ是否显著地高于已知常数µ0
或µ是否显著地低于已知常数µ0?
(2)建立假设的形式不同。双侧检验为:H0:µ=µ0
单侧检验为:H0:µ<=µ0 或 H0:µ&g1:µ<µ0
的值。
(3)选定显著性水平 ,查相应的分布表来确定临界 值,从而确定H0的拒绝区域或接受区域。
(4)对H0作出判断和解释。即把临界值与统计量相 比较,若统计量落在H0拒绝区间中,则拒绝H0 ;反 之,则接受H0 。
单侧检验与双侧检验
只强调差异而不强调方向性的检验称为双侧检验。强调差异的方 向性的检验称为单侧检验。
相关文档
最新文档