华东师大版2020年中考数学模拟试题(1)
2020年中考数学模拟考试卷华师大版

xx 年初三数学期末模拟考试卷一、选择题1.2的相反数是…………………………………………………………………………( ) A .2B .-2C .21D.22.y=(x -1)2+2的对称轴是直线………………………………………………( ) A .x=-1 B .x=1 C .y=-1 D .y=13.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是……………………( ) A .1:1 B .1:2 C .1:3 D .1:44.上图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是……………………………………………………( )A .60°B .80°C .120°D .150°5.函数11+=x y 中自变量x 的取值范围是………………………………………( ) A .x ≠-1B .x>-1C .x ≠1D .x ≠06.抛物线22x y =是由抛物线2)1(22++=x y 经过平移而得到的,则正确的平移是…( )A 、先向右平移1个单位,再向下平移2个单位B 、先向左平移1个单位,再向上平移2个单位C 、先向右平移2个单位,再向下平移1个单位D 、先向左平移2个单位,再向上平移1个单位7.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是……………………( )A B C D8.已知方程x 2+(2k+1)x+k 2-2=0的两实根的平方和等于11,k 的取值是…………………( ) A .-3或1 B .-3 C .1 D .39.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。
三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。
华东师大版2020年吉林省长春市中考数学模拟试卷(一)

2020年吉林省长春市中考数学模拟试卷(一)一、选择题(每小题3分,共24分)1.2019的相反数是()A.2019B.﹣2019C.D.﹣2.据统计,第15中国(长春)国际汽车博览会成交额约为6 058 000 000,6 058 000 000这个数用科学记数法表示为()A.60.58×1010B.6.058×1010C.6.058×109D.6.058×1083.把多项式a3﹣a分解因式,下列结果正确的是()A.a(a2﹣1)B.(a+1)(a﹣1)C.a(a+1)(a﹣1)D.a(a﹣1)24.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.5.不等式组的解集在数轴上表示为()A.B.C.D.6.一元二次方程2x2﹣4x+1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.如图,直线y=x+b与直线y=kx+4交于点(,,则关于x的不等式x+b>kx+4的解集是()A.x>B.x≥C.x<D.x≤8.如图,在平面直角坐标系中,过反比例函数y=(k<0,<0)的图象上一点A作AB⊥x轴于B,连结AO,过点B作BC∥AO交y轴于点C.若点A的纵坐标为4,且tan ∠BCO=,则k的值为()A.﹣6B.﹣12C.﹣24D.24二、填空题(每小题3分,共18分)9.写出一个比5大且比6小的无理数.10.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为.11.如图,AB∥CD.若∠ACD=82°,∠CED=29°,则∠ABD的大小为度.12.如图,海面上B、C两岛分别位于A岛的正东和正北方向,A岛与C岛之间的距离约为36海里,B岛在C岛的南偏东43°,A、B两岛之间的距离约为海里(结果精确到0.1海里)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93】13.如图,在平面直角坐标系中,抛物线y=﹣1的顶点为A,直线l过点P(0,m)且平行于x轴,与抛物线交于点B和点C.若AB=AC,∠BAC=90°,则m=.14.在数学课上,老师提出如下问题老师说:“小华的作法正确”请回答:小华第二步作图的依据是.三、解答题(本大题10小题,共78分)15.(6分)先化简,再求值:(x+1)2+x(x﹣2),其中x=﹣.16.(6分)一个不透明的口袋中装有三个小球,上面分别标有数字3、4、5,这些小球除数字不同外其余均相同.(1)从口袋中随机摸出一个小球,小球上的数字是偶数的概率是.(2)从口袋中随机摸出一个小球,记下数字后放回,再随机摸出一个小球,记下数字,请用画树状图(或列表)的方法,求两次摸出的小球上的数字都是奇数的概率.17.(6分)如图,在⊙O中,点C为OB的中点,点D为弦AB的中点,连结CD并延长,交过点A的切线于点E.求证:AE⊥CE.18.(7分)甲、乙两名同学做中国结.已知甲每小时比乙少做6个中国结,甲做30个中国结所用的时间与乙做45个中国结所用的时间相同,求甲每小时做中国结的个数.19.(7分)如图,E是平行四边形ABCD的边BA延长线上一点,AE=AB,连结AC、DE、CE.(1)求证:四边形ACDE为平行四边形.(2)若AB=AC,AD=4,CE=6,求四边形ACDE的面积.20.(7分)张老师计划通过步行锻炼身体,她用运动手环连续记录了6天的运动情况,并用统计表和统计图记录数据:日期4月1日4月2日4月3日4月4日4月5日4月6日步行数(步)10672492755436648步行距离(公里) 6.8 3.1 3.4 4.3卡路里消耗(千卡)1577991127燃烧脂肪(克)20101216(1)请你将手环记录的4月5日和4月6日的数据(如图①)填入表格(2)请你将条形统计图(如图②)补充完整(3)张老师这6天平均每天步行约公里,张老师分析发现每天步行距离和消耗的卡路里近似成正比例关系,她打算每天消耗的卡路里至少达到100千卡,那么每天步行距离大约至少为公里(精确到0.1公里)21.(8分)某校初三年级进行女子800米测试,甲、乙两名同学同时起跑,甲同学先以a 米/秒的速度匀速跑,一段时间后提高速度,以米/秒的速度匀速跑,b秒到达终点,乙同学在第60秒和第140秒时分别减慢了速度,设甲、乙两名同学所的路程为s(米),乙同学所用的时间为t(秒),s与t之间的函数图象如图所示.(1)乙同学起跑的速度为米/秒;(2)求a、b的值;(3)当乙同学领先甲同学60米时,直接写出t的值是.22.(9分)【感知】如图①,点C是AB中点,CD⊥AB,P是CD上任意一点,由三角形全等的判定方法“SAS”易证△PAC≌△PBC,得到线段垂直平分线的一条性质“线段垂直平分线上的点到线段两端的距离相等”【探究】如图②,在平面直角坐标系中,直线y=﹣x+1分别交x轴、y轴于点A和点B,点C是AB中点,CD⊥AB交OA于点D,连结BD,求BD的长【应用】如图③(1)将线段AB绕点A顺时针旋转90°得到线段AB′,请在图③网格中画出线段AB′(2)若存在一点P,使得PA=PB′,且∠APB′≠90°,当点P的横、纵坐标均为整数时,则AP长度的最小值为.23.(10分)如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2.点P从点A出发,以每秒个单位长度的速度向终点C运动,点Q从点B出发,以每秒2个单位长度的速度向终点A运动,连接PQ,将线段PQ绕点Q顺时针旋转90°得到线段QE,以PQ、QE为边作正方形PQEF.设点P运动的时间为t秒(t>0)(1)点P到边AB的距离为(用含t的代数式表示)(2)当PQ∥BC时,求t的值(3)连接BE,设△BEQ的面积为S,求S与t之间的函数关系式(4)当E、F两点中只有一个点在△ABC的内部时,直接写出t的取值范围24.(12分)在平面直角坐标系中,已知抛物线y=x2﹣2mx﹣3m(1)当m=1时,①抛物线的对称轴为直线,②抛物线上一点P到x轴的距离为4,求点P的坐标③当n≤x≤时,函数值y的取值范围是﹣≤y≤2﹣n,求n的值(2)设抛物线y=x2﹣2mx﹣3m在2m﹣1≤x≤2m+1上最低点的纵坐标为y0,直接写出y0与m之间的函数关系式及m的取值范围.。
备战2020中考【6套模拟】上海华东师范大学附属枫泾中学中考模拟考试数学试卷

备战2020中考【6套模拟】上海华东师范大学附属枫泾中学中考模拟考试数学试卷中学数学二模模拟试卷一、选择题(本大题共10小题,共30.0分)1.16的算术平方根为()A. B. 4 C. D. 82.2018年广东省经济保持平稳健康发展,经国家统计局核定,实现地区生产总值(GDP)97300000000元.将数据97300000000用月科学记数法表示为()A. B. C. D.3.下列图形中是轴对称图形,不是中心对称图形的是()A. 线段B. 圆C. 平行四边形D. 角4.计算正确的是()A. B.C. D.5.在一个不透明的口袋中装有2个绿球和若干个红球,这些球除颜色外无其它差别.从这个口袋中随机摸出一个球,摸到绿球的概率为,则红球的个数是()A. 2B. 4C. 6D. 86.若一个多边形的外角和是其内角和的,则这个多边形的边数为()A. 2B. 4C. 6D. 87.下列一元二次方程中,没有实数根的是()A. B. C. D.8.如图,数轴上的实数a、b满足|a|-|a-b|=2a,则是()A. B. C. D.9.△ABC中,∠C=90°,AB=10,AC=6.以点C为圆心、5为半径作圆C,则圆C与直线AB的位置关系是()A. 相交B. 相切C. 相离D. 不确定10.二次函数y=ax2+bx+c的部分图象如图,则下列说法正确的有()①对称轴是直线x=-1;②c=3;③ab>0;④当x<1时,y>0;⑤方程ax2+bx+c=0的根是x1=-3和x2=1A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共6小题,共24.0分)11.数据-5,-3,-3,0,1,3的众数是______.12.如图所示的不等式组的解集是______.13.分解因式:a3-25a=______.14.如图,⊙O的两条直径分别为AB、CD,弦CE∥AB,∠COE=40°,则∠BOD=______°.15.如图,点P在反比例函数y=的图象上,PM⊥x轴于M.若△PMO的面积为1,则k为______.16.如图,在四边形ABCD中,AB∥CD,∠A=45°,∠B=120°,AB=5,BC=10,则CD的长为______.三、计算题(本大题共1小题,共6.0分)17.先化简,再求代数式的值,其中.四、解答题(本大题共8小题,共60.0分)18.计算:tan60°+(-1)2019.19.A城市到B城市铁路里程是300千米,若旅客从A城市到B城市可选择高铁和动车两种交通工具,高铁速度是动车速度的1.5倍,时间相差30分钟,求高铁的速度.20.如图,△ABC中,AC=8,BC=10,AC>AB.(1)用尺规作图法在△ABC内求作一点D,使点D到两点A、C的距离相等,又到边AC、BC的距离相等(保留作图痕迹,不写作法);(2)若△ACD的周长为18,求△BCD的面积.21.学生利用微课学习已经越来越多,某学校调查了若干名学生利用微课学习语文、数学、英语、物理、历史的情况,根据结果绘制成如图所示的两幅不完整的统计图.请结合图中信息解决下列问题:(1)抽取了______名学生进行调查;(2)将条形统计图补充完整;(3)估计学生利用微课学习哪科的人数最多?若该校有2000名学生,估计有多少人利用微课学习该学科.22.矩形ABCD中,AB=4,BC=3,点E为AB的中点,将矩形ABCD沿CE折叠,使得点B落到点F的位置.(1)求证:AF∥CE;(2)求AF的长度.23.二次函数y=x2-2x-3.(1)画出上述二次函数的图象;(2)如图,二次函数的图象与x轴的其中一个交点是B,与y轴的交点是C,直线BC 与反比例函数的图象交于点D.且BC=3CD,求反比例函数的解析式.(3)在(2)的条件下,x轴上的点P的横坐标是多少时,△BCP与△OCD相似.24.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,过点C作∠BCD=∠BAC交AB的延长线于点D,过点O作直径EF∥BC,交AC于点G.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,∠BCD=30°;①连接AE、DE,求证:四边形ACDE是菱形;②当点P是线段AD上的一动点时,求PF+PG的最小值.25.如图,直线y=-x+2交坐标轴于A、B两点,直线AC⊥AB交x轴于点C,抛物线恰好过点A、B、C.(1)求抛物线的表达式;(2)当点M在线段AB上方的曲线上移动时,求四边形AOBM的面积的最大值;(3)点E在抛物线的对称轴上,点F在抛物线上,是否存在点F使得以A、C、E、F为顶点的四边形是平行四边形?若存在求出点F坐标;若不存在,说明理由.答案和解析1.【答案】B【解析】解:16的算术平方根为4.故选:B.依据算术平方根的性质求解即可.本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.2.【答案】A【解析】解:将数据973 00000000用月科学记数法表示为9.73×1010.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:A、线段,是轴对称图形,也是中心对称图形,故此选项错误;B、圆,是轴对称图形,也是中心对称图形,故此选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、角是轴对称图形,不是中心对称图形,故此选项正确;故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】D【解析】解:A、(-2019)0=1,故此选项错误;B、x6÷x2=x4,故此选项错误;C、(-a2b3)4=a8b12,故此选项错误;D、3a4•2a=6a5,故此选项正确.故选:D.直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及积的乘方运算,正确掌握相关运算法则是解题关键.5.【答案】C【解析】解:设红球有x个,根据题意,得:=,解得:x=6,经检验:x=6是分式方程的解,∴红球的个数为6,故选:C.设红球有x个,根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,列方程求出x的值即可得.此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.【答案】C【解析】解:设多边形的边数为n,由题意得,×(n-2)•180°=360°,解得n=6,答:这个多边形的边数是6.故选:C.设多边形的边数为n,根据多边形的内角和公式(n-2)•180°和多边形的外角和等于360°列方程求解即可.本题考查了多边形的内角与外角,熟记内角和公式与外角和定理是解题的关键.7.【答案】C【解析】解:A、△=4>0,有两个不相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16-4×2×3<0,没有实数根,故此选项符合题意;D、△=25-4×3×2=25-24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C.利用根的判别式△=b2-4ac分别进行判定即可.此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.【答案】B【解析】解:∵a<0<b,∴a-b<0,∵|a|-|a-b|=2a,∴-a-(b-a)=2a,∴-b=2a∴=-.故选:B.根据图示,可得:a<0<b,所以a-b<0,据此化简|a|-|a-b|,求出是多少即可.此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.9.【答案】A【解析】解:根据勾股定理求得BC=8.∵AB=10,AC=6,∴由勾股定理求得BC=8.S△ABC=AC×BC=×6×8=24,∴AB上的高为:24×2÷10=4.8,即圆心到直线的距离是4.8.∵4.8<5,∴⊙O与AB的位置关系是相交.故选:A.欲求圆与AB的位置关系,关键是求出点C到AB的距离d,再与半径r进行比较;若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.10.【答案】C【解析】解:①由抛物线图象得对称轴是直线x=-1,选项①正确;②根据抛物线与y轴的交点可得c=3;选项②正确;③由抛物线图象得:开口向下,即a<0;对称轴,则b<0,ab>0,选项③正确;④由图象与x轴的交点(-3,0)知x<-3时,y<0,选项④错误;⑤由图象得抛物线与x轴交点的横坐标为1,-3,则方程ax2+bx+c=0的根是x1=-3和x2=1,选项⑤正确.故选:C.根据二次函数的图象与性质即可求出答案.主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴的交点的确定是解题的关键.11.【答案】-3【解析】解:数据-3出现了2次,出现的次数最多,所以众数是-3.故答案为:-3.根据众数的概念直接求解即可.考查了众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.12.【答案】-2<x≤1【解析】解:由数轴可知-2<x≤1是公共部分,即如图所示的不等式组的解集是-2<x≤1.故答案是:-2<x≤1.根据不等式组解集是所有不等式解集的公共部分求解可得.考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.【答案】a(a+5)(a-5)【解析】解:原式=a(a2-25)=a(a+5)(a-5).故答案为:a(a+5)(a-5).首先提取公因式a,再利用平方差进行分解即可.此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】110【解析】解:∵OC=OE,∴∠ECO=∠OEC,∴∠OCE=(180°-∠COE)=×(180°-40°)=70°,∵CE∥AB,∴∠AOD=∠OCE=70°,∴∠BOD=180°-70°=110°,故答案为110.先利用半径相等得到∠ECO=∠OEC,再利用三角形内角和定理计算出∠OCE的度数,接着根据平行线的性质得∠AOD=∠OCE,然后利用邻补角求∠BOD的度数.本题考查了圆周角定理以及平行线的知识,解题的关键求出∠OCE的度数,此题难度不大.15.【答案】-2【解析】解:由题意知:S△PMO=|k|=1,所以|k|=2,即k=±2.又反比例函数是第二象限的图象,k<0,所以k=-2,故答案为-2.此题可从反比例函数系数k的几何意义入手,△PMO的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=,再结合反比例函数所在的象限确定出k的值.本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.16.【答案】10-5【解析】解:如图,作DE⊥AB交AB的延长线于E,CF⊥AB交AB的延长线于F.∵DE⊥EF,CF⊥EF,∴DE∥CF,∵CD∥EF,∴四边形CDEF是平行四边形,∵∠F=90°,∴四边形CDEF是矩形,∴CD=EF,DE=CF,在Rt△BCF中,∵BC=10,∠CBF=60°,∴BF=BC=5,CF=DE=5,在Rt△ADE中,∵∠A=45°,∴AE=DE=5,∴BE=5-5,∴CD=EF-5-(5-5)=10-5,故答案为10-5.如图,作DE⊥AB交AB的延长线于E,CF⊥AB交AB的延长线于F.易证四边形CDEF是矩形,推出CF=DE,CD=EF,解直角三角形求出BF,CF即可解决问题.本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直径三角形解决问题,属于中考常考题型.17.【答案】解:原式=÷=•=,当a=时,原式==+1.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.【答案】解:原式=+3--1=2-.【解析】直接利用绝对值的性质以及特殊角的三角函数值、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】解:设动车速度为x公里/小时,则高铁速度为1.5x公里/小时,依题意,得:-=,解得:x=200,经检验,x=200是原分式方程的根,且符合题意,∴1.5x=300.答:高铁速度为300公里/小时.【解析】设动车速度为x公里/小时,则高铁速度为1.5x公里/小时,根据时间=路程÷速度结合乘坐高铁比动车节省30分钟(小时),即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.【答案】解:(1)作线段AC的垂直平分线MN交AC于M,作∠ACB的平分线CK,交MN于点D,点D即为所求.(2)作DF⊥BC于F,连接AD,BD.∵AC+CD+AD=18,AC=DA,AC=8,∴CD=5,CE=4,∴DE==3,∵CD平分∠ACB,DE⊥AC,DF⊥CB,∴DF=DE=3,∴S△BCD=×BC×DF=×10∴3=15【解析】(1)作线段AC的垂直平分线MN交AC于M,作∠ACB的平分线CK,交MN于点D,点D即为所求.(2)作DF⊥BC于F,连接AD,BD.利用角平分线的性质定理求出DF即可解决问题.本题考查作图-复杂作图,角平分线的性质定理,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】100【解析】解:(1)本次调查的总人数为5÷5%=100(人),故答案为:100;(2)英语对应的人数为100-(5+20+30+25)=20,补全图形如下:(3)估计学生利用微课学习数学学科的人数最多,估计利用微课学习数学学科的人数为2000×=600(人).(1)由语文学科的人数及其所占百分比可得答案;(2)根据各学科人数之和等于总人数求得英语学科的人数即可补全图形;(3)用总人数乘以对应学科占总人数的比例即可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.求概率.22.【答案】证明:(1)∵折叠∴∠BEC=∠FEC,EF=AE,∵点E为AB的中点,∴BE=AE∴EF=AE∴∠EAF=∠EFA∵∠BEF=∠EAF+∠EFA=∠BEC+∠FEC∴2∠EAF=2∠BEC∴∠EAF=∠BEC∴CE∥AF(2)过点E作EG⊥AF于点F,∵四边形ABCD是矩形∴∠B=90°∵BC=3,AE=BE=AB=2∴CE==∵∠BEC=∠EAF,∠B=∠EGA=90°∴△BCE∽△GEA∴∴AG=∵AE=EF,EG⊥AF∴AF=2AG=【解析】(1)由折叠的性质可得∠BEC=∠FEC,EF=AE,由等腰三角形的性质和三角形外角的性质可得∠EAF=∠BEC,可证AF∥CE;(2)过点E作EG⊥AF于点F,由勾股定理可得CE=,可证△BCE∽△GEA,,可求AG的长,由等腰三角形的性质可求AF的长度.本题考查了翻折变换,平行线的判定,矩形的性质,相似三角形的判定和性质,勾股定理,证明△BCE∽△GEA是本题的关键.y=x-2x-3…0-3-4-30…描点,连线如图:(2)由(1)知,B(3,0),C(0,-3),∴OB=OC=3,过点D作DE⊥y轴于E,∴∠DEC=∠BOC=90°,∵∠DCE=∠BCO,∴△DEC∽△BOC,∴==,∵BC=3CD,∴DE=CE=1,∴OE=4,∴D(-1,-4),设反比例函数解析式为y=,则-4=,解得k=4,∴反比例函数解析式为y=;(3)由题意知,必有∠OCD=∠CBP=135°,①当=时,=,解得BP=9,∴此时点P坐标为(12,0);②当=时,=,解得BP=2,∴P(5,0);综上,当P的横坐标为5或12时,△BCP与△OCD相似.【解析】(1)列表、描点、连线即可得;(2)作DE⊥y轴于E,证△DEC∽△BOC得==,依据BC=3CD知DE=CE=1,从而得出D(-1,-4),再利用待定系数法求解可得;(3)先根据题意得出∠OCD=∠CBP=135°,再分=和=两种情况,分别求出BP的长即可得出答案.本题是二次函数的综合问题,解题的关键是掌握函数图象的画法、待定系数法求函数解析式、相似三角形的判定与性质等知识点.24.【答案】解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵OC=OB,∴∠ABC=∠OCB,∵∠BCD=∠CAB,∴∠OCB+∠BCD=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)①连接AE、ED、BE,∵∠BCD=30°,∴∠OCB=∠OBC=60°,∴∠CAD=∠CDA=30°,∴AC=DC,∵EF∥BC,∴∠AOF=∠OBC=60°,∴∠EOB=∠AOF=60°,∵OE=BC=OC,∴△OCB,△OEB是等边三角形,∴BC=OB=BE,∵∠ACB=∠AEB=90°,AB=AB,BC=BE,∴Rt△ABC≌Rt△ABE(HL),∴AC=AE,∠ABC=∠ABE,∴∠BDC=∠DBE,又∵BC=BE,BD=BD,∴△DBC≌△DBE(SAS),∴DC=DE,∴AC=CD=AE=DE,∴四边形ACDE是菱形;②作F关于直线AB的对称点H,H在⊙O上,连接GH交AB于点P,此时线段GH最短,则PF+PG最小,连接OH,过H作HI⊥EF,由①知∠AOF=60°,∵F与H关于直线AB对称,∴∠AOH=∠AOF=60°,∴∠GOH=120°,∠HOE=60°,在Rt△AGO中,OA=2,∴OG=OA cos60°=2×=1,在Rt△HIO中,OH=2,∴OI=OH cos60°=2×=1,HI=,∴GH==,∴PF+PG的最小值为.【解析】(1)连接OC,由AB是⊙O的直径知∠BAC+∠ABC=90°,由OC=OB知∠ABC=∠OCB,根据∠BCD=∠CAB得∠OCB+∠BCD=90°,据此可得答案;(2)①连接AE、ED、BE,先证△OCB,△OEB是等边三角形得BC=OB=BE,再证Rt△ABC≌Rt△ABE,△DBC≌△DBE得AC=CD=AE=DE,据此可得答案;②作F关于直线AB的对称点H,H在⊙O上,连接GH交AB于点P,此时线段GH最短,则PF+PG最小,连接OH,过H作HI⊥EF,先由F与H关于直线AB对称知∠GOH=120°,∠HOE=60°,再求得OG=OAcos60°=1,OI=OHcos60°=1,HI=,根据勾股定理可得答案.本题是圆的综合问题,解题的关键是掌握切线的判定与性质、圆周角定理、全等三角形的判定与性质、轴对称的性质等知识点.25.【答案】解:(1)∵直线y=-x+2交x轴于A、B两点∴A(0,2)、B(4,0)由AC⊥AB得,△AOC∽△BOA.∴===.∴OC=1.又∵C在x轴负半轴上∴C(-1,0).设抛物线解析式y=ax2+bx+c.把A(0,2),B(4,0),C(-1,0)代入上式得,,解得,∴抛物线解析式为,y=-x2+x+2.(2)如图1中学数学二模模拟试卷一、选择题(本大题共10小题,共30.0分)26.16的算术平方根为()A. B. 4 C. D. 827.2018年广东省经济保持平稳健康发展,经国家统计局核定,实现地区生产总值(GDP)97300000000元.将数据97300000000用月科学记数法表示为()A. B. C. D.28.下列图形中是轴对称图形,不是中心对称图形的是()A. 线段B. 圆C. 平行四边形D. 角29.计算正确的是()A. B.C. D.30.在一个不透明的口袋中装有2个绿球和若干个红球,这些球除颜色外无其它差别.从这个口袋中随机摸出一个球,摸到绿球的概率为,则红球的个数是()A. 2B. 4C. 6D. 831.若一个多边形的外角和是其内角和的,则这个多边形的边数为()A. 2B. 4C. 6D. 832.下列一元二次方程中,没有实数根的是()A. B. C. D.33.如图,数轴上的实数a、b满足|a|-|a-b|=2a,则是()A. B. C. D.34.△ABC中,∠C=90°,AB=10,AC=6.以点C为圆心、5为半径作圆C,则圆C与直线AB的位置关系是()A. 相交B. 相切C. 相离D. 不确定35.二次函数y=ax2+bx+c的部分图象如图,则下列说法正确的有()①对称轴是直线x=-1;②c=3;③ab>0;④当x<1时,y>0;⑤方程ax2+bx+c=0的根是x1=-3和x2=1A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共6小题,共24.0分)36.数据-5,-3,-3,0,1,3的众数是______.37.如图所示的不等式组的解集是______.38.分解因式:a3-25a=______.39.如图,⊙O的两条直径分别为AB、CD,弦CE∥AB,∠COE=40°,则∠BOD=______°.40.如图,点P在反比例函数y=的图象上,PM⊥x轴于M.若△PMO的面积为1,则k为______.41.如图,在四边形ABCD中,AB∥CD,∠A=45°,∠B=120°,AB=5,BC=10,则CD的长为______.三、计算题(本大题共1小题,共6.0分)42.先化简,再求代数式的值,其中.四、解答题(本大题共8小题,共60.0分)43.计算:tan60°+(-1)2019.44.A城市到B城市铁路里程是300千米,若旅客从A城市到B城市可选择高铁和动车两种交通工具,高铁速度是动车速度的1.5倍,时间相差30分钟,求高铁的速度.45.如图,△ABC中,AC=8,BC=10,AC>AB.(1)用尺规作图法在△ABC内求作一点D,使点D到两点A、C的距离相等,又到边AC、BC的距离相等(保留作图痕迹,不写作法);(2)若△ACD的周长为18,求△BCD的面积.46.学生利用微课学习已经越来越多,某学校调查了若干名学生利用微课学习语文、数学、英语、物理、历史的情况,根据结果绘制成如图所示的两幅不完整的统计图.请结合图中信息解决下列问题:(1)抽取了______名学生进行调查;(2)将条形统计图补充完整;(3)估计学生利用微课学习哪科的人数最多?若该校有2000名学生,估计有多少人利用微课学习该学科.47.矩形ABCD中,AB=4,BC=3,点E为AB的中点,将矩形ABCD沿CE折叠,使得点B落到点F的位置.(1)求证:AF∥CE;(2)求AF的长度.48.二次函数y=x2-2x-3.(1)画出上述二次函数的图象;(2)如图,二次函数的图象与x轴的其中一个交点是B,与y轴的交点是C,直线BC 与反比例函数的图象交于点D.且BC=3CD,求反比例函数的解析式.(3)在(2)的条件下,x轴上的点P的横坐标是多少时,△BCP与△OCD相似.49.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,过点C作∠BCD=∠BAC交AB的延长线于点D,过点O作直径EF∥BC,交AC于点G.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,∠BCD=30°;①连接AE、DE,求证:四边形ACDE是菱形;②当点P是线段AD上的一动点时,求PF+PG的最小值.50.如图,直线y=-x+2交坐标轴于A、B两点,直线AC⊥AB交x轴于点C,抛物线恰好过点A、B、C.(1)求抛物线的表达式;(2)当点M在线段AB上方的曲线上移动时,求四边形AOBM的面积的最大值;(3)点E在抛物线的对称轴上,点F在抛物线上,是否存在点F使得以A、C、E、F为顶点的四边形是平行四边形?若存在求出点F坐标;若不存在,说明理由.答案和解析1.【答案】B【解析】解:16的算术平方根为4.故选:B.依据算术平方根的性质求解即可.本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.2.【答案】A【解析】解:将数据973 00000000用月科学记数法表示为9.73×1010.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:A、线段,是轴对称图形,也是中心对称图形,故此选项错误;B、圆,是轴对称图形,也是中心对称图形,故此选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、角是轴对称图形,不是中心对称图形,故此选项正确;故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】D【解析】解:A、(-2019)0=1,故此选项错误;B、x6÷x2=x4,故此选项错误;C、(-a2b3)4=a8b12,故此选项错误;D、3a4•2a=6a5,故此选项正确.故选:D.直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及积的乘方运算,正确掌握相关运算法则是解题关键.5.【答案】C【解析】解:设红球有x个,根据题意,得:=,解得:x=6,经检验:x=6是分式方程的解,∴红球的个数为6,故选:C.设红球有x个,根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,列方程求出x的值即可得.此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.【答案】C【解析】解:设多边形的边数为n,由题意得,×(n-2)•180°=360°,解得n=6,答:这个多边形的边数是6.故选:C.设多边形的边数为n,根据多边形的内角和公式(n-2)•180°和多边形的外角和等于360°列方程求解即可.本题考查了多边形的内角与外角,熟记内角和公式与外角和定理是解题的关键.7.【答案】C【解析】解:A、△=4>0,有两个不相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16-4×2×3<0,没有实数根,故此选项符合题意;D、△=25-4×3×2=25-24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C.利用根的判别式△=b2-4ac分别进行判定即可.此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.【答案】B【解析】解:∵a<0<b,∴a-b<0,∵|a|-|a-b|=2a,∴-a-(b-a)=2a,∴-b=2a∴=-.故选:B.根据图示,可得:a<0<b,所以a-b<0,据此化简|a|-|a-b|,求出是多少即可.此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.9.【答案】A【解析】解:根据勾股定理求得BC=8.∵AB=10,AC=6,∴由勾股定理求得BC=8.S△ABC=AC×BC=×6×8=24,∴AB上的高为:24×2÷10=4.8,即圆心到直线的距离是4.8.∵4.8<5,∴⊙O与AB的位置关系是相交.故选:A.欲求圆与AB的位置关系,关键是求出点C到AB的距离d,再与半径r进行比较;若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.10.【答案】C【解析】解:①由抛物线图象得对称轴是直线x=-1,选项①正确;②根据抛物线与y轴的交点可得c=3;选项②正确;③由抛物线图象得:开口向下,即a<0;对称轴,则b<0,ab>0,选项③正确;④由图象与x轴的交点(-3,0)知x<-3时,y<0,选项④错误;⑤由图象得抛物线与x轴交点的横坐标为1,-3,则方程ax2+bx+c=0的根是x1=-3和x2=1,选项⑤正确.故选:C.根据二次函数的图象与性质即可求出答案.主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴的交点的确定是解题的关键.11.【答案】-3【解析】解:数据-3出现了2次,出现的次数最多,所以众数是-3.故答案为:-3.根据众数的概念直接求解即可.考查了众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.12.【答案】-2<x≤1【解析】解:由数轴可知-2<x≤1是公共部分,即如图所示的不等式组的解集是-2<x≤1.故答案是:-2<x≤1.根据不等式组解集是所有不等式解集的公共部分求解可得.考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点。
2020华师大版九年级上学期数学期中模拟测试卷

【文库独家】九年级上学期数学期中模拟测试卷一、选择题:(每题3分,共30分)1.下面是一名同学所做6道练习题:①(-3.14)0=1,②a3+a3=a6,③(-a5)÷(-a)3=-a2,④4m-2=214m ,⑤(xy2)3=x3y6,12=.他做对的题的个数是( )A.0B.2C.3D.42.下面是小明同学在一次测验中解答的填空题,其中答对的是( ) A.若x2=4,则x=2 B.方程x(2x-1)=2x-1的解为x=1C.若x2+2x+k=0两根的倒数和等于4,则k=-12D.若分式2321x x x -+-的值为零,则x=1,2 3. 两圆半径长分别为R 和r(R>r),圆心距为d,若关于x 的方程x2-2rx+(R-d)2=0有相等的实数根,则两圆的位置关系是( )A.内切B.内切或外切C.外切D.相交4.下列方程:①x2+2x-1=0;②x2-2x-2004=0;③x2-2x+2=0;④x2-2x+2=0;⑤x2+2x+3=0中两实数根之和是2的方程有( )A.1个B.2个C.3个D.4个5、下列等式从左到右变形正确的是( )A 、b a b ab =2B 、b c a b c a +-=+-C 、11++=b a b a D 、22b a b a = 6、如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A+∠B+∠C=( )度;A 、 180oB 、90oC 、45oD 、 30o7、如图,⊙O 是△ABC 的外接圆,连接OA 、OC ,⊙O 的半径R=2,SinB=43,则弦AC 的长为( ) A .43 B .7 C .3 D .238.如果m,n 是一元二次方程x2-3x+1=0的两根,那么代数式2m2+4n2-6n+2004的值是( ) A.2020 B.2016 C.1982 D.19809.关于x 的方程x2+2(k+2)x+k2=0的两个实数根之和大于-4,则k 的取值范围是( ) A.k>-1 B.k<0 C.-1<k<0 D.-1≤k<010.如果m 为整数,那么,使分式13++m m 的值为整数的m 的值有( )(A )2个 (B )3个 (C )4个 (D )5个 二、填空题:(每题2分,共20分)11.若分式2221x x +-的值为正数,则x 的取值范围是________.12. 如图1,AB 是⊙O 的直径,弦CD 与AB 交于点E ,的度数是72°, ∠BCD=68°,则∠AED 的度数为 。
中考数学模拟试卷华师版

中考数学模拟试卷 (1)(华东师大版)时间:120分钟 满分:150一、选择题(本题共10小题,每题4分,共40分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在题后的括号内.)1.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克。
某地今年计划栽插这种超级水稻3000亩,预计该地今年收获这种超级杂交稻的总产量(用科学记数法表示)是( )A .2.5×106千克B . 2.46×106千克C .2.5×105千克D .2.46×105千克2.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )3.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( )A .1:1B .1:2C .1:3D .1:4 4.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是( )A . 120°B .80°C .60°D .150°5.在下列图形中,既是中心对称图形又是轴对称图形的是 ( )A .等腰三角形B .圆C .梯形D .平行四边形6.把分式方程12121=----xx x 的两边同时乘以(x-2), 约去分母,得( )A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-27.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距为( )A .21cmB .16cmC .7cmD .27cm8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是(1) A B C DE D C B A( )(A) (B) (C) (D)9.右图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是( )A.180万B.200万C.300万D.400万10.如图,ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12、BD=10、AB=m ,那么m 的取什范围是A . 2<m <22B .1<m <11C .10<m <12D .5<m <6二、填空题(本题共有5小题,每题4分,共20分.请把结果直接填在题中的横线上.) 11.分解因式:a 3-a= 。
2020—2021年最新华东师大版九年级数学下册期中模拟检测试题1及答案.docx

(新课标)华东师大版九年级下册期中检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.(2013·兰州中考)二次函数的图象的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)2.(2013·哈尔滨中考)把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A. B. C. D.3.(2013·吉林中考)如图,在平面直角坐标系中,抛物线所表示的函数解析式为,则下列结论正确的是()A. B.<0,>0C.<0,<0D.>0,<04. (2013·河南中考)在二次函数的图象上,若随的增大而增大,则的取值范围是( ) A.1B.1C.-1D.-15. 已知二次函数2(0)y ax bx c a =++≠的图象如图所示,给出以下结论: ①;②;③;④;⑤.其中正确结论的个数是( )A.2B.3C.4D. 5 6.在同一平面直角坐标系中,函数y mx m =+和函数222y mx x =-++(是常数,且0m ≠)第7题图第3题图第5题图的图象可能是()..7.(2014·天津中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0B.1C.2D.38.(2014·苏州中考)二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为()A.-3 B.-1 C.2 D.59.(2014·兰州中考)抛物线y=312-(x的对称轴是()-)A.y轴B.直线x=-1C.直线x=1D.直线x=-310.(2014·兰州中考)把抛物线y=22x-先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A. 222+122-+-=)(xyy B. 21+-(x=)C. 222+1-22--=)(xy1--=)(xy D. 211.抛物线c-=2的部分图象如图所示,若0>y,则x的取+y+xbx值范围是( )A.14<<-xB.13<<-xC.4-<x 或1>xD.3-<x 或1>x12.(2014·兰州中考)二次函数y=2ax bx c ++(a ≠0)的图象如图所示,其对称轴为x=1.下列结论中错误的是( )A.abc <0B.2a +b=0C.b 2-4ac >0D.a-b +c >0二、填空题(每小题3分,共18分) 13.已知二次函数12+-+-=k kx x y 的图象顶点在轴上,则. 14.二次函数的最小值是____________.15.(2014·南京中考)已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如下表:第11题图第12题图x ... -1 0 1 2 3 ... y ...105212...则当5<y 时,x 的取值范围是_____.16.(2014·天津中考)抛物线y =x 2-2x +3的顶点坐标是 . 17. (2014·广州中考) 若关于x 的方程222320x mx m m +++-=有两个实数根12,x x ,则21212()x x x x ++的最小值为 .18.(2013· 成都中考)在平面直角坐标系中,直线为任意常数)与抛物线交于两点,且点在轴左侧,点的坐标为(0,-4),连接,.有以下说法: ①;②当时,的值随的增大而增大; ③当-时,;④△面积的最小值为4,其中正确的是 .(写出所有正确说法的序号) 三、解答题(共78分)19.(8分)已知抛物线的顶点坐标为,且经过点,求此二次函数的解析式.20.(8分)已知二次函数.(1)求函数图象的顶点坐标及对称轴.(2)求此抛物线与轴的交点坐标.21.(8分)已知抛物线的部分图象如图所示.第21题图(1)求的值;(2)分别求出抛物线的对称轴和的最大值;(3)写出当时,的取值范围.22.(8分)(2014·南京中考)已知二次函数3222+y(mxmx-=m+是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?23.(10分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量(千克)随销售单价(元/千克)的变化而变化,具体关系式为2240w x=-+,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为(元),解答下列问题:(1)求与的关系式.(2)当取何值时,的值最大?(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?24.(10分)抛物线2y ax bx c =++交x 轴于A ,B 两点,交y 轴于点C ,已知抛物线的对称轴为1x =,(3,0)B ,(0,3)C -.⑴求二次函数2y ax bx c =++的解析式;⑵在抛物线的对称轴上是否存在一点P ,使点P 到B ,C 两点距离之差最大?若存在,求出P 点坐标;若不存在,请说明理由;⑶平行于x 轴的一条直线交抛物线于M N ,两点,若以MN 为直径的圆恰好与x 轴相切,求此圆的半径.25.(12分)(2014·苏州中考)如图,二次函数y =a(x 2-2mx -3m 2)(其中a ,m 是常数且a>0,m>0的图象与x 轴分别交于点A ,B (点A 位于点B 的左侧),与y 轴交于点C(0,-3),点D 在二次函数的图象上,CD ∥AB ,连接AD .过点A 作射线AE交二次函数的图象于点E ,AB 平分∠DAE . (1)用含m 的代数式表示a ; (2)求证:AD AE为定值;(3)设该二次函数图象的顶点为F .探索:在x 轴的负半轴上是否存在点G ,连接GF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.第25题图26.(14分)(2013·哈尔滨中考)某水渠的横截面呈抛物线形,水面的宽为AB (单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O .已知8AB =米,设抛物线解析式为24y ax =-. (1)求a 的值;(2)点()1C m -,是抛物线上一点,点C 关于原点O的对称点为第26题图点D,连接,,CD BC BD,求△BCD的面积.期中检测题参考答案1.A 解析:因为的图象的顶点坐标为, 所以的图象的顶点坐标为(1,3).2.D 解析:把抛物线向下平移2个单位,所得到的抛物线是,再向右平移1个单位,所得到的抛物线是.点拨:抛物线的平移规律是左加右减,上加下减.3.A 解析:∵图中抛物线所表示的函数解析式为, ∴这条抛物线的顶点坐标为.观察函数的图象发现它的顶点在第一象限,∴.4.A 解析:把配方,得.∵-10,∴二次函数图象的开口向下.又图象的对称轴是直线,∴当1时,随的增大而增大.5.B 解析:对于二次函数,由图象知:当时,,所以①正确;由图象可以看出抛物线与轴有两个交点,所以,所以②正确;因为图象开口向下,对称轴是直线,所以,所以,所以③错误;当时,,所以④错误;由图象知,所以,所以⑤正确,故正确结论的个数为3.6.D 解析:选项A中,直线的斜率,而抛物线开口朝下,则,得,前后矛盾,故排除A选项;选项C中,直线的斜率,而抛物线开口朝上,则,得,前后矛盾,故排除C选项;B、D两选项的不同处在于,抛物线顶点的横坐标一正一负.两选项中,直线斜率,则抛物线顶点的横坐标m22--,故抛物线的顶点应该在轴左边,故选项D正确.7.D 解析: ∵ 抛物线与x 轴有两个交点,∴ 方程20ax bx c ++=有两个不相等的实数根,∴ 240b ac ∆=->,①正确.∵抛物线的开口向下,∴ 0a <.又∵抛物线的对称轴是直线2b x a=-,02ba->,∴0b >.∵ 抛物线与y 轴交于正半轴,∴0c >,∴0abc <,②正确.方程20ax bx c m ++-=的根是抛物线2y ax bx c =++与直线y m =交点的横坐标,当2m >时,抛物线2y ax bx c =++与直线y m =没有交点,此时方程20ax bx c m ++-=没有实数根,③正确,∴ 正确的结论有3个.8.B 解析:把点(1,1)代入12-+=bx ax y ,得.11,11-=--∴=-+b a b a 9.C 解析:由二次函数的表达式可知,抛物线的顶点坐标为(1,-3),所以抛物线的对称轴是直线x=1.10.C 解析:抛物线y=22x -向右平移1个单位长度后,所得函数的表达式为212)(--=x y ,抛物线212)(--=x y 向上平移2个单位长度后,所得函数的表达式为2122+--=)(x y . 11.B 解析:∵ 抛物线的对称轴为,而抛物线与轴的一个交点的横坐标为1,∴ 抛物线与轴的另一个交点的横坐标为, 根据图象知道若,则,故选B .12.D 解析:∵二次函数的图象的开口向下,∴ a<0.∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴ c>0.∵二次函数图象的对称轴是直线x=1,∴12b a-=,∴b>0,∴0abc <,∴选项A 正确.∵12b a-=,∴2b a =-,即20a b +=,∴选项B 正确.∵二次函数的图象与x 轴有2个交点,∴方程20ax bx c ++=有两个不相等的实数根,∴ b 2-4ac >0,∴选项C 正确. ∵当1x =-时,y=a-b+c <0,∴选项D 错误.13.2 解析:根据题意,得2404ac b a -=,将,,代入,得()()241041k k ⨯--=⨯-,解得.14.3 解析:当时,取得最小值3.15. 0<x <4 解析: 根据二次函数图象的对称性确定出该二次函数图象的对称轴,然后解答即可.∵ x=1和x=3时的函数值都是2,∴ 二次函数图象的对称轴为直线x=2.由表可知,当x=0时,y=5,∴ 当x=4时,y=5.由表格中数据可知,当x=2时,函数有最小值1,∴ a >0,∴ 当y <5时,x 的取值范围是0<x <4. 16.(1,2) 解析:抛物线()2y a x h k =-+的顶点坐标是(),h k .把抛物线解析式223y x x =-+化为顶点式得()212y x =-+,所以它的顶点坐标是(1,2). 17. 54解析:由根与系数的关系得到:212122,32x x m x x m m +=-=+-,∴21212()x x x x ++=()22211221212x x x x x x x x ++=+-2332m m =-+2153.24m ⎛⎫=-+ ⎪⎝⎭1530, 24m >∴=Q 当时,它有最小值.∵方程有两个实数根, ∴Δ0≥,解得23m ≤. ∴2332m m -+的最小值为54符合题意.18. ③④ 解析:本题综合考查了二次函数与方程和方程组的综合应用.设点A 的坐标为(,),点B 的坐标为().不妨设13k =,解方程组得12212,3,21,,3x x y y =-⎧=⎧⎪⎨⎨==-⎩⎪⎩∴()223,13A B ⎛⎫-- ⎪⎝⎭,,.此时,,∴ .而=16,∴ ≠,∴ 结论①错误.当=时,求出A(-1,-),B (6,10), 此时()(2)=16.由①时,()()=16.比较两个结果发现的值相等.∴ 结论②错误.当-时,解方程组得出A (-2,2),B (,-1),求出12,2,6,∴,即结论③正确.把方程组消去y 得方程,∴,.∵ =·||OP ·||=×4×||=2=2,∴ 当时,有最小值4,即结论④正确.19.分析:因为抛物线的顶点坐标为,所以设此二次函数的解析式为()212y a x =--,把点(2,3)代入解析式即可解答. 解:已知抛物线的顶点坐标为, 所以设此二次函数的解析式为, 把点(2,3)代入解析式,得,即,所以此函数的解析式为.20.分析:(1)首先把已知函数解析式配方,然后利用抛物线的顶点坐标、对称轴的公式即可求解;(2)根据抛物线与轴交点坐标的特点和函数解析式即可求解. 解:(1)∵,∴ 顶点坐标为(1,8),对称轴为直线. (2)令,则,解得,.∴ 抛物线与轴的交点坐标为(),().21.解:(1)由图象知此二次函数过点(1,0),(0,3), 将点的坐标代入函数解析式,得01,3,b c c =-+-⎧⎨=-⎩解得2,3.b c =-⎧⎨=-⎩(2)由(1)得函数解析式为,即为,所以抛物线的对称轴为的最大值为4. (3)当时,由,解得,即函数图象与轴的交点坐标为(),(1,0). 所以当时,的取值范围为.22.(1)证法一:因为(–2m )2–4(m 2+3)= –12<0, 所以方程x 2–2mx+m 2+3=0没有实数根,所以不论m 为何值,函数2223y x mx m =-++的图象与x 轴没有公共点.证法二:因为10a =>,所以该函数的图象开口向上. 又因为22223()33y x mx m x m =-++=-+≥, 所以该函数的图象在x 轴的上方.所以不论m 为何值,该函数的图象与x 轴没有公共点. (2)解:22223()3y x mx m x m =-++=-+,把函数2()3y x m =-+的图象沿y 轴向下平移3个单位长度后,得到函数2()y x m =-的图象,它的顶点坐标是(m ,0), 因此,这个函数的图象与x 轴只有一个公共点.所以把函数2223y x mx m =-++的图象沿y 轴向下平移3个单位长度后,得到的函数的图象与x 轴只有一个公共点. 23.分析:(1)因为,故与的关系式为.(2)用配方法化简函数式,从而可得的值最大时所对应的(3)令 ,求出的值即可.解:(1),∴ 与的关系式为. (2),∴ 当时,的值最大.(3)当时,可得方程.解这个方程,得.根据题意,不合题意,应舍去.∴ 当销售单价为75元时,可获得销售利润2 250元. 24.解:(1)将(0,3)C -代入c bx ax y ++=2,得3-=c .将3-=c ,(3,0)B 代入c bx ax y ++=2,得 03-39=+b a . ∵1x =是对称轴,∴12=-ab. 由此可得1=a ,2-=b .∴二次函数的解析式是322--=x x y . (2)AC 与对称轴的交点P 即为到B C 、两点距离之差最大的点.∵ C 点的坐标为(0,3)-,A 点的坐标为(1,0)-,∴ 直线AC 的解析式是33--=x y .又对称轴为1x =,∴ 点P 的坐标为(1,6)-.(3)设1(,)M x y 、2(,)N x y ,所求圆的半径为,则 r x x 212=-.∵ 对称轴为1x =,∴212=+x x .∴ 12+=r x .将()1,N r y +代入解析式223y x x =--,得()()21213y r r =+-+-, 整理得42-=r y . 由于,当0>y 时,042=--r r ,解得21711+=r ,21712-=r (舍去);当0<y 时,042=-+r r ,解得21711+-=r ,21712--=r (舍去). ∴ 圆的半径是2171+或.2171+-25.(1)解:将C (0,-3)代入二次函数y=a (x 2-2mx -3m 2),则-3=a (0-0-3m 2), 解得 a=21m .(2)证明:如图,过点D 、E 分别作x 轴的垂线,垂足为M 、N .由a (x 2-2mx -3m 2)=0,解得 x 1=-m ,x 2=3m , ∴ A (-m ,0),B (3m ,0). ∵ CD ∥AB ,∴ 点D 的坐标为(2m ,-3). ∵ AB 平分∠DAE , ∴∠DAM=∠EAN. ∵ ∠DMA=∠ENA=90°, ∴ △ADM ∽△AEN . ∴AD AMDMAEANEN==.设点E 的坐标为 2221(23)x x mx m m⎛⎫-- ⎪⎝⎭,, 第25题答图 ∴22231(23)x mx m m--=3()mx m --,∴ x=4m ,∴ E (4m ,5). ∵ AM=AO+OM=m+2m=3m ,AN=AO+ON=m+4m=5m ,∴ 35AD AM AEAN==,即为定值.(3)解:如图所示,记二次函数图象的顶点为点F,则点F的坐标为(m,-4),过点F作FH⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=OCOG ,tan∠FGH=HFHG,∴OCOG=HFHG,∴OG=3m.此时,GF=22+GH HF=216+16m=421m+,AD=22+AM MD=29+9m=321m+,∴GFAD=.由(2)得ADAE=,∴AD︰GF︰AE=3︰4︰5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.26.分析:(1)求出点A或点B的坐标,将其代入,即可求出a的值;(2)把点代入(1)中所求的抛物线的解析式中,求出点C的坐标,再根据点C和点D关于原点O对称,求出点D的坐标,然后利用求△BCD的面积.解:(1)∵,由抛物线的对称性可知,∴(4,0).∴0=16a-4.∴a.第26题答图(2)如图所示,过点C 作于点E,过点D 作于点F.∵a=,∴-4.当-1时,m=×-4=-,∴C(-1,-). ∵点C关于原点O的对称点为点D,∴D(1,).∴. ∴×4×+×4×=15.∴△BCD的面积为15平方米.点拨:在直角坐标系中求图形的面积,常利用“割补法”将其转化为有一边在坐标轴上的图形面积的和或差求解.美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!。
2019-2020上海 华东师范大学第四附属中学数学中考一模试卷(含答案)

2019-2020上海华东师范大学第四附属中学数学中考一模试卷(含答案)一、选择题1.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°2.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+93.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.4.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元A.8B.16C.24D.325.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体6.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数k y x =(k >0)的图象上,且x 1=﹣x 2,则( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 2 7.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k > C .514k k ≠<且 D .514k k ≤≠且 8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样10.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A .5米B .6米C .8米D .(3+5 )米 11.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题13.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.14.已知62x =+,那么222x x -的值是_____. 15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.16.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.17.若a b =2,则222a b a ab--的值为________. 18.计算:21(1)211x x x x ÷-+++=________. 19.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.20.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是三、解答题21.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?22.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?23.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且ab m n 、、、均为正整数,求a 的值. 24.已知抛物线y =ax 2﹣13x +c 经过A (﹣2,0),B (0,2)两点,动点P ,Q 同时从原点出发均以1个单位/秒的速度运动,动点P 沿x 轴正方向运动,动点Q 沿y 轴正方向运动,连接PQ ,设运动时间为t 秒(1)求抛物线的解析式;(2)当BQ =13AP 时,求t 的值; (3)随着点P ,Q 的运动,抛物线上是否存在点M ,使△MPQ 为等边三角形?若存在,请求出t 的值及相应点M 的坐标;若不存在,请说明理由.25.修建隧道可以方便出行.如图:A ,B 两地被大山阻隔,由A 地到B 地需要爬坡到山顶C 地,再下坡到B 地.若打通穿山隧道,建成直达A ,B 两地的公路,可以缩短从A 地到B 地的路程.已知:从A 到C 坡面的坡度3i =B 到C 坡面的坡角45CBA ∠=︒,42BC =.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.01)(2 1.414≈),3 1.732【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D、x2﹣6x+9=(x﹣3)2,故选项正确.故选D.3.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.4.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.【详解】解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.5.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.6.D解析:D【解析】 由题意得:1212k k y y x x ==-=-,故选D. 7.D解析:D【解析】【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( ,解得:k ≤54且k ≠1. 故选:D .【点睛】 此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键8.A解析:A【解析】【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答.【详解】解:a b =Q ,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=,故选项A 错误,故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.C【解析】试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选C.考点:列代数式.10.A解析:A【解析】试题分析:根据CD:AD=1:2,CD=3米,AD=6米,根据AB=10米,∠D=90°可得:米,则BC=BD-CD=8-3=5米.考点:直角三角形的勾股定理11.D解析:D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE,设ED=x,则AE=8﹣x,在△ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8﹣x)2,解方程得x=5,即ED=5故选C.【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.14.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确解析:4【解析】【分析】将所给等式变形为x=【详解】∵x=,∴x-=∴(22x=,∴226x-+=,∴24x-=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.-3【解析】分析:由平行四边形面积转化为矩形BDOA 面积在得到矩形PDOE 面积应用反比例函数比例系数k 的意义即可详解:过点P 做PE⊥y 轴于点E∵四边形ABCD 为平行四边形∴AB=CD 又∵BD⊥x 轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.详解:过点P 做PE ⊥y 轴于点E ,∵四边形ABCD 为平行四边形∴AB=CD又∵BD ⊥x 轴∴ABDO 为矩形∴AB=DO∴S 矩形ABDO =S ▱ABCD =6∵P 为对角线交点,PE ⊥y 轴∴四边形PDOE 为矩形面积为3即DO•EO=3∴设P 点坐标为(x ,y )k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k 的几何意义以及平行四边形的性质.17.【解析】分析:先根据题意得出a=2b 再由分式的基本性质把原式进行化简把a=2b 代入进行计算即可详解:∵=2∴a=2b 原式==当a=2b 时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本 解析:32【解析】分析:先根据题意得出a =2b ,再由分式的基本性质把原式进行化简,把a =2b 代入进行计算即可. 详解:∵a b=2,∴a =2b , 原式=()()()a b a b a a b +-- =a b a+ 当a =2b 时,原式=22b b b +=32. 故答案为32. 点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.18.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+=()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.19.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n 种可解析:12. 【解析】【分析】 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q 共6个数,大于3的数有3个,P ∴(大于3)3162==; 故答案为12. 【点睛】 本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k ≠0.考点:根的判别式.三、解答题21.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x 人,则甲公司有(1+20%)x 人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人,根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x =500是该方程的实数根.22.甲每小时做24个零件,乙每小时做20个零件.【解析】【分析】设甲每小时做x 个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设甲每小时做x 个零件,则乙每小时做(x ﹣4)个零件, 根据题意得:1201004x x =-, 解得:x=24, 经检验,x=24是分式方程的解,∴x ﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a=m2+3n2,b=2mn.∵4=2mn,且m、n为正整数,∴m=2,n=1或m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.24.(1)y=-23x2-13x+2;(2)当BQ=13AP时,t=1或t=4;(3)存在.当t=1-+M(1,1),或当t=3+M(﹣3,﹣3),使得△MPQ为等边三角形.【解析】【分析】(1)把A(﹣2,0),B(0,2)代入y=ax2-13x+c,求出解析式即可;(2)BQ=13AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP 关于t的表示,代入BQ=13AP可求t值.(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.【详解】(1)∵抛物线经过A(﹣2,0),B(0,2)两点,∴240,32.a cc⎧++=⎪⎨⎪=⎩,解得2,32.ac⎧=-⎪⎨⎪=⎩∴抛物线的解析式为y=-23x2-13x+2.(2)由题意可知,OQ=OP=t,AP=2+t.①当t≤2时,点Q在点B下方,此时BQ=2-t.∵BQ=13AP,∴2﹣t=13(2+t),∴t=1.②当t>2时,点Q在点B上方,此时BQ=t﹣2.∵BQ=13AP,∴t﹣2=13(2+t),∴t=4.∴当BQ=13AP时,t=1或t=4.(3)存在.作MC ⊥x 轴于点C ,连接OM .设点M 的横坐标为m ,则点M 的纵坐标为-23m 2-13m +2. 当△MPQ 为等边三角形时,MQ =MP ,又∵OP =OQ ,∴点M 点必在PQ 的垂直平分线上,∴∠POM =12∠POQ =45°, ∴△MCO 为等腰直角三角形,CM =CO ,∴m =-23m 2-13m +2, 解得m 1=1,m 2=﹣3. ∴M 点可能为(1,1)或(﹣3,﹣3).①如图,当M 的坐标为(1,1)时,则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2﹣2t +2=2t 2,解得t 1=3-t 2=13-(负值舍去).②如图,当M 的坐标为(﹣3,﹣3)时,则有PC =3+t ,MC =3,∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2+6t +18=2t 2,解得t 1=333+t 2=333-∴当t =3-M (1,1),或当t =333+M (﹣3,﹣3),使得△MPQ 为等边三角形.【点睛】本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.25.(1)隧道打通后从A 到B 的总路程是(434)公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =,∴4CD BD ==.在Rt ACD ∆中, ∵3CD i AD==, ∴343AD CD ==∴()434AB =+公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中,∵3CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=,∴842AC CB +=+∵434AB =,∴842434 2.73AC CB AB +-=+≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.。
2020年秋季学期 华东师大版九年级数学上册 期中模拟测试卷(含答案)

2020年秋季学期华东师大版九年级数学上册期中模拟测试卷一、选择题(每题3分,共30分)1.二次根式6-x中x的取值范围是()A.x≥6 B.x≤6 C.x<6 D.x>62.点(6,-5)关于x轴对称的点的坐标在()A.第一象限B.第二象限C.第三象限D.第四象限3.用配方法解方程x2+10x+9=0,下列变形正确的是()A.(x+5)2=16 B.(x+10)2=91C.(x-5)2=34 D.(x+10)2=1094.在二次根式45、108、96、32、24中,能与6合并的有() A.1个B.2个C.3个D.4个5.如图,已知△OAB与△OA′B′是相似比为1∶2 的位似图形,点O为位似中心,若△OAB内一点P(x,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标为()A.(-x,-y) B.(-2x,-2y)C.(-2x,2y) D.(2x,-2y)6.已知△ABC如图所示.则与△ABC相似的是下列图中的()A. B. C.D.7.已知m、n是方程x2-2x-1=0的两根,且(m2-2m+a)(3n2-6n-7)=8,则a的值为()A.-5 B.5 C.-3 D.38.如图,已知钓鱼竿AC的长为6 m,露在水面上的鱼线BC长为3 2 m,某钓者想看看鱼钩上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为34 m,则BB′的长为()A. 2 m B.2 2 m C. 5 m D.2 3 m9.商场将进价为2 000元的冰箱以2 400元售出,平均每天能售出8台.为了促销,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4 800元,同时又要使消费者得到更多实惠,每台冰箱应降价( ) A .100元 B .200元 C .300元 D .400元10.如图,Rt △ABO 中,∠AOB =90°,AO =3BO ,点B 在反比例函数y =2x 的图象上,OA 交反比例函数y =kx (k ≠0)的图象于点C ,且OC =2CA ,则k 的值为( )A .-2B .-4C .-6D .-8 二、填空题(每题3分,共15分) 11.化简:(3-10)2=________.12.方程3x 2+2x =0的两根之和为________.13.如图,l 1∥l 2∥l 3,AB =25AC ,DF =10,那么DE =________.14.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,在DC的延长线上取一点E,连结OE交BC于点F,AB=2,BC=3,CE=1,则CF=________.15.请阅读下列材料:问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=y2.把x=y2代入已知方程,得:⎝⎛⎭⎪⎫y22+y2-1=0.化简,得:y2+2y-4=0,故所求方程为:y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):已知方程x2+x-1=0,求一个一元二次方程,使它的根分别为已知方程根的倒数,则所求方程为________.三、解答题(16~19题每题8分,20题9分,21~22题每题10分,23题14分,共75分)16.计算:(1) 18-8+( 3+1)( 3-1);(2) 12×323÷33.17.解下列方程:(1)2x2+5x+3=0;(2)(x-2)(x-4)=12.18.如图,△ABC的中线BE,CD相交于点O,F,G分别是BO、CO的中点,试猜想DF与EG有怎样的数量关系和位置关系?并证明你的猜想.19.已知x=3+12,y=3-12,求x2-xy+y2和1x+1y的值.20.近年来,我国使用移动支付的人数呈逐年上升趋势.据统计2018年3月底我国使用移动支付的有6亿人左右,预计到2020年3月底将增加到8.64亿人左右,求这两年我国使用移动支付人数的年平均增长率为多少.21.已知关于x的一元二次方程x2+2(m-1)x+m2-4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,且该方程的两个根都是整数,求m的值.22.如图,MN经过△ABC的顶点A,MN∥BC,AM=AN,MC交AB于D,NB 交AC于E,连结DE.(1)求证:△ADE∽△ABC;(2)如果DE=1,BC=3,求MN的长.23.如图①,P为△ABC所在平面上一点,且∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1)如果点P为锐角三角形ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若P A=3,PC=4,求PB的长.(2)已知锐角三角形ABC,分别以AB、AC为边向外作正三角形ABE和正三角形ACD,CE和BD相交于P点.如图②.①求∠CPD的度数;②求证:P点为△ABC的费马点.答案一、1.B 2.A 3.A 4.B 5.B 6.C7.C 点拨:∵m 、n 是方程x 2-2x -1=0的两根,∴m 2-2m -1=0,n 2-2n-1=0,∴m 2-2m =1,n 2-2n =1,∴代入(m 2-2m +a )(3n 2-6n -7)=8得:(1+a )(3×1-7)=8,解得:a =-3.故选:C. 8.B9.B 点拨:设每台冰箱应降价x 元,每台冰箱的利润是(2 400-2 000-x )元,每天售出⎝ ⎛⎭⎪⎫8+x 50×4台,列方程得,(2 400-2 000-x )⎝ ⎛⎭⎪⎫8+x 50×4=4 800,x 2-300x +20 000=0,解得x 1=200,x 2=100;要使消费者得到更多实惠,只能取x =200,故选:B.10.D 点拨:作CH ⊥x 轴于H ,作BE ⊥x 轴于E .设B (m ,n ).∵∠BOC =∠CHO =∠BEO =90°,∴∠COH +∠HCO =90°,∠COH +∠BOE =90°,∴∠BOE =∠HCO ,∴△COH ∽△OBE ,∴BE OH =OE CH =OBOC ,∵AO =3OB ,OC =2CA ,∴CO =2OB ,∴OH =2n ,CH =2m ,∴C (-2n ,2m ),∵mn =2,∴k =-4mn =-8,故选:D. 二、11.10-3 12.-23 13.414.34 点拨:过O 作OM ∥BC 交CD 于M ,∵在▱ABCD 中,BO =DO ,CD =AB=2,AD =BC =3,∴CM =12CD =1,OM =12BC =32.∵OM ∥CF ,∴△CFE∽△MOE ,∴CF OM =CE EM ,即CF 32=12,∴CF =34.15.y 2-y -1=0 点拨:设所求方程的根为y ,则y =1x ,所以x =1y ,把x =1y 代入已知方程得:⎝ ⎛⎭⎪⎫1y 2+1y -1=0,化简得:y 2-y -1=0.故答案为:y 2-y -1=0.三、16.解:(1)原式=3 2-2 2+3-1=2+2. (2)原式=2 3×4 23×33=8 2.17.解:(1)方程两边同除以2,得:x 2+52x +32=0,移项,得x 2+52x =-32,配方,得x 2+52x +⎝ ⎛⎭⎪⎫542=-32+⎝ ⎛⎭⎪⎫542,⎝ ⎛⎭⎪⎫x +542=116, x +54=14或x +54=-14,x 1=-1;x 2=-32;(2)原方程可化为:x 2-6x -4=0,∵a =1,b =-6,c =-4;∴x =-b ±b 2-4ac 2a =6±36-4×1×(-4)2×1=6±522, ∴x 1=3+13,x 2=3-13.18.解:DF =EG ,DF ∥EG .理由:连结AO ,∵D 是AB 的中点,F 是BO 的中点,可得DF ∥AO ,且DF =12AO ;同理可得EG ∥AO ,且EG =12AO ,所以DF =EG ,DF ∥EG .19.解:∵x =3+12,y =3-12,∴x +y =3,xy =(3+1)(3-1)4=12, ∴x 2-xy +y 2=(x +y )2-3xy =(3)2-3×12=32;1x +1y =x +y xy =312=2 3.20.解:设这两年我国使用移动支付人数的年平均增长率为x .依题意,得6(1+x )2=8.64.(1+x )2=1.44.解这个方程,得x 1=0.2,x 2=-2.2.其中x 2=-2.2不合题意,舍去,所以x =0.2=20%.答:这两年我国使用移动支付人数的年平均增长率为20%.21.解:(1)∵关于x的一元二次方程x2+2(m-1)x+m2-4=0有两个不相等的实数根,∴Δ=[2(m-1)]2-4(m2-4)=-8m+20>0,解得:m<5 2.(2)∵m为正整数,∴m=1或m=2.当m=1时,原方程为x2-3=0,解得:x=±3(舍去);当m=2时,原方程为x2+2x=0,解得:x1=0,x2=-2,满足题意,∴m=2.22.(1)证明:∵MN∥BC,∴△ADM∽△BDC,△ANE∽△CBE,∴AMBC=ADBD,ANBC=AECE,又∵AM=AN,∴ADBD=AEEC,∴ADAB=AEAC.又∠DAE=∠BAC,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴ADAB=DEBC=13,∴ADBD=12,即AMBC=ADBD=12,∴AM=12BC=32,∴MN=2AM=3.23.(1)①证明:∵∠P AB+∠PBA=180°-∠APB=60°,∠PBC+∠PBA=∠ABC =60°,∴∠P AB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP.②解:∵△ABP∽△BCP,∴P APB=PBPC,∴PB2=P A·PC=12,∴PB=2 3.(2)①解:如图,∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴△AEC≌△ABD,∴∠1=∠2.∵∠3=∠4,∴∠CPD=∠5=60°.②证明:易知△ADF∽△PCF,∴AFPF=DFCF,即AFDF=PFCF,∵∠AFP=∠CFD,∴△AFP∽△DFC.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∵∠BPC=180°-∠CPD=120°. ∴∠APB=360°-∠BPC-∠APC=120°,∴P点为△ABC的费马点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东师大版xx 年中考数学模拟试题 (1)一、细心填一填:(本大题共有12小题,15空,每空2分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!) 1、-2的倒数是_________,()=-32 ________. 2、9的平方根是__________,-8是_______的立方根. 3、用四舍五入所得的数是-2.164,它精确到 位. 4、计算:cos45︒= ,tan30︒= . 5、函数y=11-x 中,自变量x 的取值范围是__________;函数中,自变量x 的取值范围是_________.6、在实数内分解因式:x 4-2x 2= .7、一个多边形的每个外角都等于30︒,这个多边形的内角和为_________度. 8、下面一组数据表示初三(1)班23位同学衣服上衣口袋的数目:3,4,2,6,5,5,3,1,4,2,4,2,4,5,10,6,1,5,5,62,10,3 若任选一位同学,则其上衣口袋的数目为5的概率为 .9、一个矩形的周长为60㎝,其面积为S ,则S 的取值不超过 ㎝2.10、⊙O 的直径CD 与弦AB 交于点M ,添加条件 (写出一个即可)就可得到M 是AB 的中点.11、如下图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.12、如图所示是由7个完全相同的正方形拼成的图形,请你用一条直线将它分成面积相等的两部分.(在原图上作出).二、精心选一选:(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 13、已知x=-1是方程x 2+mx+1=0的一个实数根,则m 的值是( )A 、0B 、1C 、2D 、-2 14、下列各式中,与3是同类二次根式的是( )A 、9B 、27C 、18D 、2415、如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b ),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是( )A 、()()b a b a b a -+=-22(1)(2)(3)第11题第12题ab aba bbb第15题B 、()2222b ab a b a ++=-C 、()2222b ab a b a +-=-D 、()()2222b ab a b a b a -+=-+16、在直角坐标系中,⊙O 的圆心在圆点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交17、有十五位同学参加智力竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛( )A 、平均数B 、众数C 、最高分数D 、中位数18、在“抛一枚均匀硬币”的实验中,如果现在没有硬币,则下面各个试验中哪个不能代替( ) A 、两张扑克,“黑桃” 代替“正面”,“红桃” 代替“反面”; B 、两个形状大小完全相同,但一红一白的两个乒乓球; C 、扔一枚图钉;D 、人数均等的男生、女生,以抽签的方式随机抽取一人.19、相信同学们都玩过万花筒,右图是某个万花筒的造型, 图中的小三角形均是全等的等边三角形,那么图中的菱形AEFG 可以看成是把菱形ABCD 以A 为旋转中心( )A 、顺时针旋转60°得到B 、顺时针旋转120°得到C 、逆时针旋转60°得到D 、逆时针旋转120°得到20、将一张正方形的纸片按下图所示的方式三次折叠,折叠后再按图所示沿MN 裁剪,则可得( )A 、多个等腰直角三角形;B 、一个等腰直角三角形和一个正方形C 、四个相同的正方形;D 、两个相同的正方形三、认真答一答:(本大题共7小题,满分58分. 只要你认真思考, 仔细运算, 一定会解答正确的!) 21、(本题共有3小题,每小题5分,共15分) (1)计算:()0020053323++-(2)已知不等式5(x-2)+8<6(x-1)+7的最小整数解是方程2x-ax=4的解,求a 的值.A B C D FEG 第19 A B C DA B C D A B C D A B C D N N M(3)先化简,再求值:112223+----x x xx x x ,其中x=2.22、(本题满分6分)方格纸中每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形. (1)在10×10的方格中(每个小方格的边长为1个单位),画一个面积为1的格点钝角三角形ABC ,并标明相应字母.(2)再在方格中画一个格点△DEF ,使得△DEF ∽△ABC ,且相似比为2,并加以证明. 23、(本题满分7分)如图,给出五个条件:①AE 平分∠BAD ,②BE 平分∠ABC ,③E 是CD 的中点,④AE ⊥EB ,⑤AB=AD+BC.(1)请你以其中三个作为命题的条件,写出一个能推出AD ∥BC 的正确命题,并加以说明;(2)请你以其中三个作为命题的条件,写出一个不一定能推出AD ∥BC 的正确命题,并举例说明.A B C D E24、(本题满分6分)夏雪同学调查了班级同学身上有多少零用钱,将每位同学的零用钱记录下来,下面是全班40名同学的零用钱的数目(单位:元)2,5,0,5,2,5,6,5,0,5,5,52,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.(1)请你写出同学的零用钱(0元,2元,5元,6元8元)出现的频数;(2)求出同学的零用钱的平均数、中位数和众数;(3)假如老师随机问一个同学的零用钱,老师最有可能得到的回答是多少元?25、(本题满分8分)某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校. 若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得. 现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?26、(本题满分8分)某市的一家报刊摊点从报社买进一种晚报,其价格为每份0.30元,卖出的价格为0.50现经市场调查发现,在一个月中(按30天记数)有20天可卖出150份/天,有10天只能卖出100份/天,而报社规定每天批发给摊点的报纸的数量必须相同.(1)通过在坐标系中(以退还的钱数为纵坐标,退还的报纸数量为横坐标)描出点,分析出退还的钱数y(元)与退还的报纸数量k(份)之间的函数关系式.(2)若该家报刊摊点每天从报社买进的报纸数x份(满足100<x<150),则当买进多少报纸时,毛利润最大?最多可赚多少钱?27、(本题满分8分)在一块长16m 、宽12m 的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半. 下面分别是小明和小颖的设计方案.小明说:我的设计方案如图(1),其中花园四周小路的宽度相等. 通过解方程,我得到小路的宽为2m 或12m.小颖说:我的设计方案如图(2),其中花园中每个角上的扇形相同. (1)你认为小明的结果对吗?请说明理由.(2)请你帮助小颖求出图中的x (精确到0.1m ).(3)你还有其他的设计方案吗?请在下边的矩形中画出你的设计草图,并加以说明.12m 16m图(1) 图(2) 12m 16m x 12m16m四、动脑想一想:(本大题共有2小题,共18分. 开动你的脑筋,只要你勇于探索,大胆实践,你一定会获得成功的!) 28、(本题满分8分)如图,在△ABC 中,∠C=90°,AC=6,BC=8,M 是BC 的中点,P 为AB 上的一个动点,(可以与A 、B 重合),并作∠MPD=90°,PD 交BC (或BC 的延长线)于点D.(1)记BP 的长为x ,△BPM 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)是否存在这样的点P ,使得△MPD 与△ABC 相似?若存在,请求出x 的值;若不存在,请说明理由.A BC PD M29、(本题满分10分)如图,已知AB 是⊙O 的直径,AC 是⊙O 的弦,点D 是¼ABC 的中点,弦DE ⊥AB ,垂足为F ,DE 交AC 于点G.(1)图中有哪些相等的线段?(要求:不再标注其他字母,找结论的过程中所作的辅助线不能出现在结论中,不写出推理过程)(2)若过点E 作⊙O 的切线ME ,交AC 的延长线于点M (请补完整图形),试问:ME=MG 是否成立?若成立,请证明;若不成立,请说明理由.(3)在满足第(2)问的条件下,已知AF=3,FB=34,求AG 与GM 的比.〖第(1)的结论可直接利用〗B参考答案一、细心填一填1. ﹣21 ,﹣8 2. ±3 ,﹣125 3. 千分位 4. 22,33 5. x ≠1 ,x ≥3 6 . x 2(x+2)(x-2) 7. 1800 8.2349. 225 10. CD ⊥AB 11. 179 12. 略二、精心选一选13. C 14. B 15. A 16. C 17. D 18. C 19. D 20. C 三、认真答一答 21. (1)3;(2)a=4 ; (3) 2x-1 ,3 22. 略 23.(1) ①②⑤⇒AD ∥BC .证明:在AB 上取点M ,使AM =AD ,连结EM ,可证△AEM ≌△AED, △BEM ≌△BCE ,∴∠D=∠AME, ∠C=∠BME ,故∠D+∠C =∠AME+∠BME =180° ∴AD ∥BC.(2)①②③⇒ AD ∥BC 为假命题 反例 :△ABM 中,E 是内心,过E 作DC ⊥EM ,显然有,AE 平分∠BAM ,BE 平分∠ABM ,ED=EC,但AD 不平分于BC. 24.(1)0元的频数是5,2元的频数是7,5元的频数是21,6元的频数是5,8元的频数是2.(2)平均数是4.125,中位数是5,众数是5. (3)5元. 25.(1)256;(2)503,252; (3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均位黄球,把它们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会. 26.(1)通过作图,知y =mk+n ,0.255,0.2010,m n m n =+⎧⎨=+⎩ 0.1,0.3.m n =-⎧⎨=⎩当0<k<30,且为整数, y =﹣0.1k+0.3;当k ≥30 , y=0.02.(2) S=2×0.2x +100×10×0.2-(0.3-y)(x -100)= 4x +200-0.1(x -100)2=﹣0.1x +24x -800.当x=﹣)1.0(224-⨯=120时,即每天买进120份报纸时,可获最大毛利润为640元.27.(1)设小路的宽为xm ,则(16-2x )(12-2x )=21×16×12, 解得x=2,或x=12(舍去). ∴x=2,故小明的结果不对.(2)四个角上的四个扇形可合并成一个圆,设这个圆的半径为rm ,故有πr 2=21×16×12,解得r ≈5.5m. (3)依此连结各边的中点得如图的设计方案. 28.(1)作PK ⊥BC 于K ,BM =4,AB =10,∵PK ∥AC ,∴8pk =10x ⇒pk =54x ,∴y =21×4×54x =58x (0<x<10). (2)①∠PMB=∠B, PM=PB ,MK=KB=2 ,10x =82, x=2.5; ②∠PMD=∠A,又∠B =∠B ,∴△BPM ∽△BAC , ∴BP ·AB =BM ·BC , ∴10x=4×8 ,x =3.2, ∴存在 x =2.5或3.2.29.(本题仅供学有余力的同学参考)(1)OA=OB ,DF=EF ,DE=AC ,AG=DG ,EG=CG.(2)ME=GM. 理由是:连EO 并延长交⊙O 于点N ,连结DN. ∵EM 是⊙O 的切线,∴∠OEM=90º,∴∠GEM+∠GEN=90º. ∵EN 是⊙O 的直径,∠N+∠GEN=90º, ∴∠N=∠GEM.∵AB 是⊙O 的直径,∴∠B+∠BAC=90º, ∵∠AGF+∠GAF=90º,∴∠AGF=∠B , ∵∠AGF=∠CGE ,∴∠CGE=∠B. ∵AC=DE ,∴∠N=∠B , ∴∠GEM=∠CGE ,∴MG=ME.(3)答案:310.。