传递误差计算

传递误差计算
传递误差计算

函数关系式误差的一般传递公式

n

2、标准误差的传递方式

若各个独立的直接测量量的误差分别用标准偏差估算误差,则间接测量量的标准偏差应按“方和根”合成,即绝对偏差为:

(1—3—10)相对误差为:

标准传递公式

n

例题:

例3.推导圆环面积的误差传递公式

解:

例4.用单摆测定重力加速度的公式为今测得(求重力加速度及标准误差与相对误差。

解:已知

根据(1—3—10)式,其误差传递公式为:

的测量结果表示为:

的相对误差为:

数值计算中误差的传播规律

数值计算方法 实 验 报 告 实验序号:实验一 实验名称:数值计算中误差的传播规律 实验人: 专业年级: 教学班: 学号: 实验时间:

实验一 数值计算中误差的传播规律 一、实验目的 1.观察并初步分析数值计算中误差的传播; 2.观察有效数字与误差传播的关系. 二、实验内容 1.使用MATLAB 的help 命令学习MATLAB 命令digits 和vpa 的用途和使用格式; 2.在4位浮点数下解二次方程01622=++x x ; 3.计算下列5个函数在点2=x 处的近似值 (1)60)1(-=x y , (2)61) 1(1+=x y , (3)32)23(x y -=, (4)3 3)23(1x y +=, (5)x y 70994-=. 三、实验步骤 本次实验包含三个相对独立的内容. 1.在内容1中,请解释两个命令的格式和作用; 在matlab 中采用help 语句得到:

1、digits用于规定运算精度,比如: digits(20); 这个语句就规定了运算精度是20位有效数字。但并不是规定了就可以使用,因为实际编程中,我们可能有些运算需要控制精度,而有些不需要控制。vpa就用于解决这个问题,凡是用需要控制精度的,我们都对运算表达式使用vpa函数。 例如: digits(5); a=vpa(sqrt(2)); 这样a的值就是1.4142,而不是准确的1.4142135623730950488016887242097 又如: digits(11); a=vpa(2/3+4/7+5/9); b=2/3+4/7+5/9; a的结果为1.7936507936,b的结果为1.793650793650794......也就是说,计算a的值的时候,先对2/3,4 /7,5/9这三个运算都控制了精度,又对三个数相加的运算控制了精度。而b的值是真实值,对它取11位有效数字的话,结果为1.7936507937,与a不同,就是说vpa 并不是先把表达式的值用matlab本身的精度求出来,再取有效数字,而是每运算一次都控制精度。 2.求解方程时,分别使用求根公式和韦达定理两种方法,并比较其有效数字和相对误差; 用求根公式解得:x1=-0.015,x2=-62.00 用韦达定理解得:x11=-0.016,x22=-62.00 x22=x2,x11=1/x22

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

七、系统误差的计算

直接与间接测量的系统误差分析 陈军灵 摘 要 本文论述了在电气工程中直接测量与间接测量的系统误差的分析,并列举系统误差计算范例。 关键词 系统误差 直接测量 间接测量 在电气测量技术中,按测量方法可分为直接测量和间接测量。测量误差可分为系统误差、偶然误差和疏失误差三大类[1]。在电气工程测量中,主要考虑的是系统误差。系统误差可按下面方法进行计算。 1.直接测量 在仪表的正常工作条件下,测量结果中的误差即是所使用仪表本身的基本误差,可以根据仪表的准确度等级计算。例如仪表测量时的读数为Ax ,仪表量程为A m ,准确度等级为K ,则测量结果可能出现的最大相对误差为 100%A K%A γx m max ?±= (1) 例如;用量限为30A ,准确度为1.5级的安培表,测得电流为10A ,求可能出现的最大相对误差max γ: 4.5%100%10300.015γm ax ±=??±= 即最大相对误差为±4.5% 2.间接测量 设y 为可直接测量的局部量x 1、x 2、x 3的测量结果。y γ为y 的相对误差(合成相对误差)。x1γ、x2γ、x3γ为对应于x 1、x 2、x 3的相对误差(局部量的相对误差)。因此 当 y=x 1+x 2+x 3 则 x33x22x11y γy x γy x γy x γ++= (2)

当 y=x 1-x 2 则 x22x11y γy x γy x γ+= (3) 当 y=x 1x 2 则 x2x1y γγγ+= (4) 当 y =2 1x x 则 x2x1y γγγ-= (5) 当 y=q 3n 2m 1x x x ?? 则 x3x2x1y q γn γm γγ++= (6) 由此可见, (2)式:当被测量y 为可直接测值x 1、x 2、x 3之和时,合成相对误差y γ不会大于各局部相对误差x γ中的最大者。 例如;电流表测量得出两并联支路电流:I 1=10.0A,1γ=±2.0%,I 2=20.0A,2γ=±4.0%,求电路总电流I 以及可能产生的最大相对误差y γ。 I=I 1+I 2=10.0+20.0=30.0A 最差的情况出现在合成最大相对误差取同符号。即 3.33% 4.0%30.020.02.0%30.010.0γI I γI I γ2211y =?+?=+= (3)式:当被测量y 为两个被测量之差时,合成的相对误差不仅与局部相对误差有关,而且与两被测量之差有关。若两被测量之差越大,合成相对误差越小,反之两被测量之差越小,则合成相对误差越大,当x 1、x 2的值很接近时,将出现非常大的间接测量相对误差,所以工程上要尽量避免这样的间接测量。 例如;电压表测得串联电路的电压U =1000V , U γ=±3%;U 1 =800V , 1γ=±3%,求U 2最大相对误差2γ。 根据 U 2=U ―U 1=1000-800=200V 2γ =%27%3*200 800%3*2001000=+

误差基本知识及中误差计算公式

测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。 §2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值),n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即:。§3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m 1、m 2 、…m n ,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unit weight mean square error) m ,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

3.8系统误差分析与计算

第三章 系统的时间响应分析 3.8系统的误差分析与计算 对于任何一个稳定的控制系统,输出响应含有瞬态分量和稳态分量。 系统的稳态分量反映系统跟踪控制信号的准确度或抑制扰动信号的能力,用稳态误差来描述。在系统的分析、设计中,稳态误差是一项重要的性能指标,它与系统本身的结构、参数及外作用的形成有关,也与元件的不灵敏、零点漂移、老化及各种传动机械的间隙、摩擦等因素有关。本节只讨论由于系统结构、参数及外作用等因素所引起的稳态误差的计算方法。 本节内容分五点进行讲解: 一、系统的误差e(t)及偏差)(t ε 二、系统的稳态误差与稳态偏差 三、与输入有关的稳态偏差 四、系统结构对稳态偏差的影响 五、与干扰有关的稳态偏差 一、系统的误差e(t)及偏差)(t ε 1、定义 系统的误差e(t) (输出端定义):设()or x t 是控制系统的希望输出,()o x t 是其实际输出,则误差()e t 定义为: 值希望输出值-实际输出=-=)()()(t x t x t e o or Laplace 变换记为)(1s E ,为避免与系统的偏差()E s 混淆,用下标1区别。 )()()(1s X s X s E o or -= 系统的误差是从系统输出端来定义的,它在性能指标提法中经常使用,但在实际系统中 有时无法测量,因而,一般只有数学意义。 系统的偏差()t ε(输入端定义):为输入信号与反馈信号的差值 ()()()i t x t b t ε=-,它在系统中是可以测量的,因而具有实用性。 系统偏差的Laplace 变换记为()E s ,()()()()()()i i o E s X s B s X s H s X s =-=- 2、误差与偏差)(t ε的关系 输出为希望值时,即)()(s X s X or o =,不起调节作用)(=应该有)(0)(s E s E 0)()()()()()()(===s H s X s X s H s X s X s E or i o i -- ) () ()()()()(s H s X s X s H s X s X i or or i = ?=从而有, 输出偏离希望值时(一般情况)

定位误差计算方法

定位误差的计算方法: (1)合成法 为基准不重合误差和基准位移误差之和; (2)极限位置法 工序基准相对于刀具(机床)的两个极限位置间的距离就是定位误差; (3)微分法 先用几何方法找出工序基准到定位元件上某一固定点的距离,然后对其全微分,用微小增量代替微分,将尺寸误差视为微小增量代入,就可以得到某一加工尺寸的定位误差。 注:基准不重合误差和基准位移误差它们在工序尺寸方向上的投影之和即为定位误差。 例如:用V 型块定位铣键槽,键槽尺寸标注是轴的中心到键槽底面的尺寸H 。T D 为工件定位外圆的公差;α为V 型块夹角。 1. 工序基准为圆柱体的中心线。 表示一批工件依次放到V 型块上定位时所处的两个极端位置情形,当工件外圆直径尺寸为极大和极小时,其工件外圆中心线分别出于点 O '和点O ''。 因此工序基准的最大位置变动量O O ''',便是对加工尺寸 H 1所产生的定位误差: 故得: O E O E H H O O 11DH 1 ''-'='-''='''=ε O A E Rt 1''?中: max 1 D 2 1A O ='' 2 sin A O O E 1α''= ' O A E Rt 1''''?中:min 1 D 2 1 A O ='''' 2 sin A O O E 1α''''= '' 2 sin 2T 2sin 2T 2sin A O A O O E O E D D 11DH 1 α=α=α''''-''=''-'=ε 2. 工序基准为圆柱体的下母线:

工件加工表面以下母线C 为其工序基准时,工序基准的极限位置变动量 C C '''就是加工尺寸H2所产生的定位误差。 C S C S C O O O H H 22DH 2 '-''=''-'''='-''=ε C O C O O O ) C O O S ()C O O S (' '-''''+'''=''+'-'''+'= 而 2 sin 2T O O D α= ''' min D 2 1C O ='''' max D 2 1C O ='' 所以: C O C O O O 2 DH ''-''''+'''=ε ) 12 sin 1(2T 2T 2sin 2T 2D D 2 sin 2T )D (21 )D (212sin 2T D D D max min D max min D DH 2 -α=-α=-+ α=-+α=ε 3. 工序基准为上母线 如果键槽的位置尺寸采用上母线标注时,上母线K 的极限位置变动量为 K K ''',就是对加工尺寸H 3 所产生的定位误差。

中误差

评定精度的标准 一、评定精度的标准 为了对测量成果的精确程度作出评定,有必要建立一种评定精度的标准,通常用中误差,相对误差和容许误差来表示。 1.中误差 1)用真误差来确定中误差 设在相同观测条件下,对真值为的一个未知量进行次观测,观测值结果为,每个观测值相应的真误差(真值与观测值之差)为△1、△2、……,△n。则以各个真误差之平方和的平均数的平方根作为精度评定的标准,用表示,称为观测值中误差。 式中:观测次数 —称为观测值中误差(又称均方误差) 为各个真误差△的平方的总和。 上式表明了中误差与真误差的关系,中误差并不等于每个观测值的真误差,中误差仅是一组真误差的代表值,当一组观测值的测量误差愈大,中误差也就愈大,其精度就愈低;测量误差愈小,中误差也就愈小,其精度就愈高。 【例题】甲、乙两个小组,各自在相同的观测条件下,对某三角形内角和分别进行了7次观测,求得每次三角形内角和的真误差分别为:甲组:+2〞、-2〞、+3〞、+5〞、-5〞、-8〞、+9〞

乙组: -3〞、+4〞、0〞、-9〞、-4〞、+1〞、+13〞 则甲、乙两组观测值中误差为: 由此可知,乙组观测精度低于甲组,这是因为乙组的观测值中有较大误差出现,因中误差能明显反映出较大误差对测量成果可靠程度的影响,所以成为被广泛采用的一种评定精度的标准。 2)用观测值的改正数来确定观测值的中误差 在实际测量工作中,观测值的真误差往往是不知道的,因此,真误差也无法求得,所以常通过观测值的改正数V i 来计算观测值中误差。即: V i=L-L 1 (i=1,2.....,n) [] 1 -± =n vv m 3)算术平均值中误差 算术平均值L 的中误差M ,按下式计算: [] () 1-± ==n n vv n m M

温度偏差计算方法

一、问题的提出 2002年,中国机械工业协会提出对1989年发布的8个《电工电子产品环境试验设备技术条件》进行修订,目前,该项工作正在进行之中。 在标准修订过程中,涉及到环境试验及环境试验设备的重要技术指标温度偏差、温度均匀度问题,新标准还提出了温度梯度问题。这对于环境试验设备用户和生产厂家来说,都是十分重要的问题。 本文试图通过对温度偏差与温度均匀度、温度梯度数值上的相关性的讨论,希望引起环境试验设备用户和生产厂家的重视,恰当理解和规定温度偏差、温度均匀度、温度梯度指标及测试计算方法。 本文仅限于在30分钟内对试验箱规定的测试点,测试15次(或16次、30次、31次)所得的数据进行讨论,因为温度偏差、温度均匀度、(新标准征求意见稿中提出的)温度梯度都使用这同一组数据,也就是说,温度偏差、温度均匀度、温度梯度只是从不同角度描述工作室温度参数的状况,它们在数值上的相关性是必然的。 二、GBlll58-89中温度偏差与温度均匀度数值上的相关性 GBlll58-89《高温试验箱技术条件》采用后面的方法计算温度偏差和温度均匀度。测试方法则是在试验箱温度达到设定温度2h后,30min内每隔2min测一次,共测15次,测试点根据工作空间大小分别为9个点或13个点。 GBl0586-89《湿热箱技术条件》GBl0589-89《低温试验箱技术条件》GBl0590-89《低温/低气压试验箱技术条件》、GBl0591-89《高温/低气压试验箱技术条件》的测试计算方法与GBll58-89基本相同,但个别标准所取系数有差异。 GBlll58-896.3.5规定的温度偏差、温度均匀度计算公式如下: 6.3.5f列出了计算温度均匀度的计算公式 △Tj=ThTL十0.55(σh+σL) (1) 式中: △T j——温度均匀度,℃ Th——平均最高温度,℃ TL——平均最低温度,℃ σh——平均最高温度的标准偏差 σL——平均最低温度的标准偏差 6.3.5h列出了温度偏差的计算公式 (△Th)=Th-T+2.14σh (2) (△TL)=TL-T+2.14σh 式中: △Th——温度上偏差,℃ △TL——温度下偏差,℃ T——标称温度,℃ 温度偏差与温度均匀度数值上的相关性,可以用计算值之比来讨论。 温度均匀度与温度上偏差之比: 温度均匀度与温度下偏差之比: GB11158-89对温度偏差、温度均匀度测试计算采用了平均值和标准差,这与GB/T5170.1-1995是有区别的。计算温度偏差则以标称温度T为基准,这与GB/T5170.1-1995

测站高差中误差

水准测量,一测站高差中误差为±3mm,若每公里观测16站,求每公里及K公里的高差中误差为多少 解:每千米的误差: ±√(16×3^2)=±4×3=±12(mm),即:±12mm/km k千米的误差:±√(k×12^2)=±(√k)12mm。 在最新版的《建筑变形测量规范》JGJ 8-2007中提到有关监测等级的定义和精度要求,其中关于沉降监测方面提到观测点测站高差中误差的概念。现我有一些疑问,特咨询大家: 1、在2007版的《建规》中提到关于变形等级为二级的精度要求,其要求观测点测站高差中误差《0.5(正负)。 问1:那么这里提到的观测点测站高差中误差如何求得,其计算公式有没有? 2、关于提到的观测点测站高差中误差,我查询了本规范中对观测点的定义,它是这样描述的: 观测点observation point:布设在建筑地基、基础、场地及上部结构的敏感位置上能反映其变形特征的测量点,亦称变形点。 问2:是不是可以认为,在判断某次沉降监测数据处理的精度是否满足相应等级的精度要求,只需要求得变形点的测站高差中误差,与之相比即可。而不用求得基准点和工作基点相应的测站高差中误差? 3.、现在回到最根本的地方,就是如何定义监测的等级,如何判定它是按二级还是按三级来监测,是否有一个公式可以计算出来。 我通过查资料,看到有这么一个推导过程: 沉降监测精度取决于监测目的、建筑物的结构和基础类型。为了监测建筑物的安全,其观测中误差应小于容许变形值的1/10~1/20;根据这一原则,通常采用“以当时可能达到的最高精度“确定变形观测精度。按照上述要求,结合该楼的实际情况,基准网采用国家一等水准测量的技术要求。沉降点的观测精度,采用以下公式进行估算m=△k/t。式中,Δ为容许变形值,t为置信区间内最大误差与中误差的比例值;K为安全系数。估算时,通常采用K=0.05,t=2。参考以上资料与方法,最后沉降观测精度确定为最弱点高程中误差m≤+1mm。由此而确定沉降监测等级。 问:不知道这么做是否科学,是否可行,或者还有其他方法来确定监测的等级。

误差基本知识及中误差计算公式

测量中误差 测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。

§2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值), n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即: 。 §3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m1、m2、…m n,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差 (unit weight mean square error)m0,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

标准偏差与相对标准偏差公式

标准偏差 数学表达式: S-标准偏差(%) n-试样总数或测量次数,一般n值不应少于20-30个 i-物料中某成分的各次测量值,1~n; 标准偏差的使用方法 六个计算标准偏差的公式[1] 标准偏差的理论计算公式 设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。令测得值l与该量真值X之差为真差占σ, 则有σ1 = l i?X σ2 = l2?X …… σn = l n?X 我们定义标准偏差(也称标准差)σ为

(1) 由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。标准偏差σ的常用估计—贝塞尔公式 由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值 来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。 于是我们用测得值l i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即 设一组等精度测量值为l1、l2、……l n 则 …… 通过数学推导可得真差σ与剩余误差V的关系为 将上式代入式(1)有

(2) 式(2)就是著名的贝塞尔公式(Bessel)。 它用于有限次测量次数时标准偏差的计算。由于当时, ,可见贝塞尔公式与σ的定义式(1)是完全一致的。 应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。它不是总体标准偏差σ。因此, 我们称式(2)为标准偏差σ的常用估计。为了强调这一点, 我们将σ的估计值用“S ” 表示。于是, 将式(2)改写为 (2') 在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有 于是, 式(2')可写为 (2") 按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺 , 即可。 标准偏差σ的无偏估计 数理统计中定义S2为样本方差

定位误差计算方法

定位误差计算方法 皇甫彦卿 (杭州电子科技大学信息工程学院,浙江杭州310018) 摘要:分析了定位误差产生的原因和定位误差的本质,并结合具体的实例,对定位误差的计算提出了三种方法:几何法、微分法、组合法,并且为正确选择计算方法提供了依据。 关键词:定位误差;几何法;微分法;组合法 Position error calculation method Abstract:To analyze the causes of the positioning error and the nature of the positioning error, and combined with concrete examples, three methods are put forward for the calculation of position error: geometric method, differential method, group legal, and provide the basis for correct selection of calculation method. Key words: positioning error; Geometry method; Differentiation; Set of legal 1 引言 定位误差分析与计算,是机床夹具设计课程中的重点和难点。在机械加工中,能否保证工件的加工要求,取决于工件与刀具间的相互位置。而引起相互位置产生误差的因素有四个,定位误差就是重要因素之一(定位误差一般允许占工序公差的三分之一至五分之一)。定位误差分析与计算目的是为了对定位方案进行论证,发现问题并及时解决。 2 工件定位误差 2.1定位误差计算的概念 按照六点定位原理,可以设计和检查工件在夹具上的正确位置,但能否满足工件对工序加工精度的要求,则取决于刀具与工件之间正确的相互位置,而影响这个正确位置关系的因素很多,如夹具在机床上的装夹误差、工件在夹具中的定位误差和夹紧误差、机床的调整误差、工艺系统的弹性变形和热变形误差、机床和刀具的制造误差及磨损误差等。 因此,为保证工件的加工质量,应满足如下关系式: δ ?式中:?--各种因素产生的误差总和;δ--工件被加工尺寸的公差。 ≤ 2.2定位误差及其产生原因 所谓定位误差,是指由于工件定位造成的加工面相对工序基准的位置误差。因为对一批

测角中误差、测距相对中误差计算表

测角中误差、测距相对中误差计算表 测站 后视 盘位 目标 半测回角值 一个测回角值 平均测回角值 半测回距值 (m ) 一个测回距值(m ) 平均测回距值(m ) 备注 JT3 JT2 左 JT4 2°09′10″ 2°09′03″ 2°09′05″ 113.574 113.576 113.576 右 2°08′55″ 113.577 左 2°09′04″ 2°09′07″ 113.575 113.575 右 2°09′09″ 113.575 JT4 JT3 左 JT2 176°35′00″ 176°34′58″ 176°34′59″ 193.465 193.467 193.465 右 176°34′56″ 193.468 左 176°35′03″ 176°34′59″ 193.460 193.463 右 176°34′55″ 193.465 JT2 JT4 左 JT3 1°15′39″ 1°15′43″ 1°15′42″ 306.922 306.923 306.923 右 1°15′46″ 306.924 左 1°15′44″ 1°15′40″ 306.922 306.922 右 1°15′35″ 306.921 计算: 1、测角中误差 (1) 测站JT3 112851290312v v v ?'"-?'"=?--==",222851290716v v v ?'"-?'"=?--==" 角度改正值 11()/214(12)2v v v =?-?=---=-∑″″″ 22()/214(16)2v v v =?-?=---=∑″″″ 观测角中误差2 22 v (2)2 2.832121 m -+=± =±±--"∑″″∈5±";

中心偏差的计算方法

汽轮机找中心 一、概述 汽轮机找中心工作,是机组安装检修过程中一个极其重要的环节。本节针对难度较大的机组轴系按联轴器找中心过程从理论推导到实践应用作了详细的介绍,并总结了其中的方法和规律。在生产实践中将测量数值代人相关公式,即可由计算结果的正负值判断调整量的大小和方向。1.找中心的目的 ●使汽轮发电机组各转子的中心线连成一条连续光滑曲线,各轴承负荷分配符合设计要求。 ●使汽轮机的静止部分和转子部件基本保持同心。 ●将轴系的扬度调整到设计要求。 2.找中心步骤 ●汽缸轴承座找正。通常只用水平仪检查汽缸、轴承座位置是否发生偏斜。汽缸和轴承座是汽 轮机安装过程中的重要工作之一。一般来说,除非基础变形或沉降,否则汽缸和轴承座的位置偏移不会太大,因而在一般的机组检修过程中,仅对汽缸、轴承座的位置做监视性测量,在不影响机组安全运行的情况下,可不做调整。 ●结合轴颈扬度值及转子对轴承座及汽缸的洼窝中心进行各转子按联轴器找中心,也叫预找中 心。 扬度改变值过大会影响轴系负荷分配、发电机负荷分配,在一定程度上也影响转子对轴承座及汽缸的洼窝中心不正,将会加大油档隔板及汽封套的调整量,所以进行各转子按联轴器找中心时,一定要结合扬度及洼窝中心进行,当三者发生矛盾时,以各转子按联轴器找中心为主。 ●轴封套及隔板套找中心。机组运行时,要求隔板汽封及转子之间的间隙要大小适当、均匀合 理。如果轴封套及隔板与转子之间间隙相差很多,则在以后进行的汽封间隙调整时,将具有很大难度,所以要将轴封套及隔板按转子找中心。 ●复查各转子中心(也叫正式找中心)。在汽轮机通流部分全部组合后,各转子联轴器中心值可 能发生一些变化,所以要复查汽轮机各转与子、汽轮机与发电机、发电机转子与励磁机转子之间的中心情况,如有变化,需重新找正。 一般说来,变化不会太大,如果由于某种特殊原因造成中心变化很大,则不能强行找正,因为此时通流部分径向间隙都已调整完毕,如转子调整量过大,将会造成动静之间的严重摩擦。只能揭汽缸,查明原因,重新调整。 二、中心不正的危害 1.造成个别支撑轴承负荷过重、轴承乌金磨损、润滑油温升高 2.使机组产生振动 如果转子不对中,转子连接后将受到强迫外力作用,引起轴系强迫振动。由于转子中心不正会使轴承个别轴承负荷减轻,轻载轴承失稳转速很低,很容易产生油膜自激振动,即平时所说的半速涡动(转速低于两倍转速时)和油膜振荡(转速高于两倍临界转速时)

有效数字及误差计算

有效数字及误差计算 一、测量 所谓测量,就是被测量的物理量和选为标准的同类量(即,单位)进行 比较,确定出它是标准量的多少倍。如:测量一本书的长度,将书与米尺进行比较,书的长度是米尺的18.85%,则书的长度为0.1885m 。 测量结果的数值大小和选择的单位密切相关。同样一个量,测量时选择 的单位越小,测量结果数值就越大,所以任何测量结果都必须标明单位.如 273.15K ,3.0×108m/s 等等。 二、测量分类 根据获得数据的方法不同,测量可分为直接测量和间接测量两类。 1.直接测量 直接测量:使用量具或仪表等标准量具经过比较可直接读数获取数据。 相应测得量称为直接测量量。如:米尺测量长度、温度计测量温度、天平测量质量等等。 2.间接测量 间接测量:不能直接测量出结果,而必须先直接测量与它有关的一些物 理量,然后利用函数关系而获取被测量数据的测量.相应的测得量就是间接测量量。如:物质的密度3/a m =ρ、物体运动的速度t S v /=、物体的体积等等。 三、有效数字 测量的结果因所用单位不同而不同,但在某一单位(量具)下,表示该 测量值的数值位数不应随意取位,而是要用有确定意义的表示法。 图1用毫米尺测量工件的长度

如图1是用毫米尺测量一段工件长度的示意图。此工件的长度介于13mm 和14mm 之间,其右端点超过13mm 刻度线处,估计为6/10格,即工件的长度为13.6mm 。从获得结果看,前两位13是直接读出,称为可靠数字,而最末一位0.6mm 则是从尺上最小刻度间估计出来的,称为可疑数字(尽管可疑,但还是有一定根据,是有意义的)。 定义: 由几位可靠数字加上一位可疑数字在内的读数,称为有效数字。 如上读数13.6mm 共有三位有效数字,这里的第三位数“6”已是估计出 来的,因此,用这种规格的尺子不可能测量到以毫米为单位小数点后第2位。 注: 1、有效数字的多少,表示了测量所能达到的准确程度,这与所用的测量 工具有关。 2、当被测物理量和测量仪器选定后,测量值的有效数字位数就可以确定 了。 3、仪器的读数规则 测量就要从仪器上读数,读数包括仪器指示的全部有意义的数字 和能够估读出来的数字。在测量中,有一些仪器读数是需要估读的, 如米尺、螺旋测微计、指针式电表等等。估读时,首先根据最小分格 大小、指针的粗细等具体情况确定把最小分格分成几分来估读,通常 读到格值的1/10,1/5或1/2。 4、有效位数的认定 (1)数字中无零的情况和数字间有零的情况:全部给出的数均为有效 数。如:56.14mm ,50.007mm 有效位数分别为四位、五位。 (2)对于小数末尾的零:有小数点时,小数点后面的零全部为有效数 字。如:50.140mm ,2.204500的有效位数分别为五位、七位。 (3)对于第一位非零数字左边的零:第一位非零数字左边的零称为无 效位零。如:0.05mm ,0.00155m 有效位数分别为一位、三位。 (4)科学计数法:计量单位的不同选择可改变量值的数值,但决不应 改变数值的有效位。因此,在变换单位时,为了正确表达出有效位 数,实验中常采用科学计数法(10的幂次方)。如: km 1030.4m 1030.4m 1030.4cm 30.4542--?=μ?=?= 注:大单位转换小单位或小单位转换大单位时,原数的有效位不变。

土木工程中的计算器统计功能简化等精度观测值中误差的计算(精)

土木工程中的计算器统计功能简化等精度观测值中 误差的计算 土木工程中的计算器统计功能简化等精度观测值中误差的计算 摘要: 介绍了如何利用CASIO fx-4500p计算器的坐标转换功能简化坐标正反算以及计算器的统计功能简化等精度观测值中误差的计算。 关键词: 测量坐标正算坐标反算白塞尔公式中误差 “测、绘、算”是测量工作者的3项基本功。在几年的测量教学中,笔者发现学生的计算能力较差,对计算器的功能掌握很生疏。测量学中的计算,计算数据复杂,计算量庞大,学生稍有不慎,就容易出错。如果能熟练并灵活使用计算器的一些特殊功能,就能简化计算并保证计算的正确与快速。下面是笔者在教学中总结出的有关计算器使用的几点经验,以飨读者。(计算器的的型号很多,文中仅针对工程测绘中常用的CASIO fx-4500p计算器) 1 坐标正算根据已知点坐标及已知边长和坐标方位角计算未知点的坐标。 1.1 坐标正算的公式已知控制点A(XA,YA),αAB,DAB;计算控制点B(XB,YB)。其中XB=XA+ΔXAB(1)YB=YA+ΔYAB(2)坐标增量 ΔXAB=DAB×cosαAB(3)ΔYAB=DAB×sinαAB(4) 在坐标正算中,关键是坐标增量的计算,按照式(3)和式(4),ΔX、ΔY是独立进行计算的。利用计算器的坐标转换,则能同时得到ΔX、ΔY。 1.2 用CASIO fx-4500p计算器极坐标转换成直角坐标进行坐标正算计算器操作说明书中的符号与式(3)、式(4)的符号的对应关系见表1。表1 符号对应关系表计算器符号x y rθ公式符号ΔXΔY Dα极坐标转换为直角坐标执行Rec功能。具体操作步骤见算例1。 1.3 算例1例:已知DAB=136.850 m,αAB=158°04′18″,求ΔXAB,ΔYAB。按照公式计算的结果为:ΔXAB=-126.949 mΔYAB=51.106 m利用计算器按键操作 见表2。表2 按键操作表步骤键操作显示画面1 MODE 4 D2SHIFT Rec( 136.85 ,158°04′18″) EXE-126.949 134 43 RCL W W=51.106 161 9 表2中步骤2显示画面的数据即ΔXAB,步骤3显示画面的数据即为 ΔYAB。 2 坐标反算根据两点的已知坐标计算其边长和坐标方位角。 2.1 坐标反算的公式已知控制点A(XA,YA),控制点B(XB,YB);计算边长DAB和坐标方位角αAB。其中ΔXAB=XB-XA(5)ΔYAB=YB-YA(6)两点的边长 DAB=ΔX2AB+ΔY2AB(7)坐标方位角αAB= arc tgΔYABΔXAB(8) 坐标方位角α是指从坐标纵轴的正方向顺时针绕至该直线的夹角,且0°≤α≤360°。在测量上,以X轴作为纵轴,以Y轴作为横轴,象限顺序顺时针编排。在坐标反算

如何进行误差计算

误差 一、直接测量和间接测量 在物化实验中需对某些物理量进行测量,以便寻找出化学反应中的某些规律,测量又可分为直接测量和间接测量。直接测量是指实验结果可直接用实验数据表示。如用温度计测量温度,用米尺测量长度,用压力计测量压力等。另一类间接测量是指实验结果不能直接用实验数据表示,而必须由若干个直接测量的数据通过某种公式进行数学运算方可表示的实验结果。如用凝固点降低法测溶质的分子量,就必须通过测量质量、体积和温差这些直接测量的数据,再用冰点降低公式进行数学运算后,方可得到溶质的分子量。 在直接测量过程中由于所使用的测量工具不准确,测量方法的不完善,都使得测量结果不准确,以致于偏离真实值,这就是误差。在间接测量中由于直接测量的结果有误差,此误差可传递到最后的结果中,也可使其偏离真实值。 由上所述,可知误差存在于一切测量之中,所以讨论误差,了解其规律、性质、来源和大小就非常有必要。实验误差的分析,对人们改进实验,提高其精密度和准确度(精密度和准确度的意义在以后讨论),甚至新的发现都具有重要的意义。 二、真值 真值是一个实际上不存在的值,它只是一个理论上的数值。例如,我们可取光在真空中的速度作为速度的计量标准,又如,可用理论安培作为电流的计量标准,其定义为:若在真空中有两根截面无限小的相距2米的无限长平行导体,在其上流过一安的电流时,则在二导体间产生10-7牛顿/米的相互作用力。这样的参考标准实际上是不存在的,它只存在于理论之中,因此这样的真值是不可知的。但人类的认识总是在发展的,能够无限地逐渐迫近真值。 由于真值是不可知的,所以一般国家(或国际上)都设立一个能维持不变的实物基础和标准器。指定以它的数值作为参考标准。例如,以国家计量局的铯射束原子频率标准中,铯原子的基态超精细能级跃迁频率的平均值作为9,129,631,770赫。这样的参考标准叫做指定值。 在实际工作中,我们不可能把所使用的仪器都一一地与国家或国际上的指定值相对比,所以通常是通过多级计量检定网来进行一系列的逐级对比。在每一级的对比中,都把上一级的标准器的量值当作近似真值,而称为实际值。 三、准确度和精密度 准确度是指测量结果的正确性,即测得值与真值的偏离程度。精(密)度是指测量结果的可重复性及测得结果的有效数字位数(有效数字在以后讨论)。我们说测量值与真值越接近,则准确度越高。测量值的重复性越好,有效数字越多,则精度越高。对准确度和精度的理解,可以用打靶的例子来说明: 图II-(1) 准确度与精密度的示意图 图II-(1)中(a)、(b)、(c)表示三个射手的成绩。(a)表示准确度和精度都很高。(b)则因能密集射中一个区域,就精度而言是很高的,但没射中靶眼,所以准确度不高。(c)则不论是准确度还精度都很不好。在实际工作中,尽管测量的精度很高但准确度并不一定高。而准确度很高的测量要求其精度必定也很高。 四、误差的种类、来源及其对测量结果的影响和消除的方法 根据误差的性质,可把测量误差分为系统误差、偶然误差和过失误差三类。 、系统误差 在相同条件下多次测量同一物理量时,测量误差的绝对值(即大小)和符号保持恒定,或在条件改变时,按某一确定规律而变的测量误差,这种测量误差称为系统误差。 系统误差的主要来源有:

测量中误差计算公式(很有用哦)

测量中误差计算公式(很有用哦) 测量误差按其对测量结果影响的性质,可分为: 一、系统误差(system error) 1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2、特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二、偶然误差(accident error) 1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2、特点: (1) 具有一定的范围。 (2) 绝对值小的误差出现概率大。 (3) 绝对值相等的正、负误差出现的概率相同。 (4) 数学期限望等于零。即:

误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。 2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一、中误差 方差 某量的真误差,[]求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1、用真误差(true error)来确定中误差适用于观测量真值已知时。 真误差Δ观测值与其真值之差,有: 标准差 中误差(标准差估值), n为观测值个数。 2、用改正数来确定中误差(白塞尔公式)适用于观测量真值未知时。 V最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二、相对误差 1、相对中误差=

2、往返测较差率K= 三、极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即:。 3误差传播定律 一、误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二、权(weight)的概念 1、定义:设非等精度观测值的中误差分别为m 1、m 2、…mn,则有: 权 其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unit weight mean square error)m0,故有:。 2、规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

相关文档
最新文档