空压机余热回收技术方案
空压机余热回收方案-大淑村20244

空压机余热回收方案-大淑村20244随着工业发展的加快,空压机成为各种工业领域中不可或缺的设备。
空压机的工作原理是通过压缩空气提供压缩空气动力,但同时也会产生大量的热能。
由于空压机的能效较低,其余热的浪费问题也逐渐引起了人们的关注。
因此,如何有效回收空压机的余热,成为了一个值得研究的课题。
本文将详细介绍空压机余热回收的方案。
一、余热回收的原理空压机在工作过程中,会通过压缩空气而产生大量的热能。
传统的空气压缩机通常不对这部分热能进行有效回收,直接排放到大气中,造成了能源的浪费。
而空压机余热回收的原理就是通过一系列的措施,将空压机产生的余热有效回收利用。
常见的余热回收途径主要包括:热水回收利用、空气回收利用和电能回收利用。
二、余热回收方案1.热水回收利用将空压机产生的热水用于生活热水供应,是一种常见的余热回收利用方式。
具体方案为在空压机排气管道上设置一个热交换器,用于将空压机排出的热气与冷却水进行热交换,使冷却水达到热水供应的要求。
这样既能减少燃料的消耗,同时也能有效利用空压机产生的余热。
2.空气回收利用将空压机排出的热空气回收利用,也是一种常见的余热回收方案。
具体方案为在空压机排气口设置一个回收装置,将热空气收集起来用于加热或干燥等用途。
这样可以在一定程度上减少能源消耗,提高整体能效。
3.电能回收利用将空压机产生的余热转换为电能,也是一种较为先进的余热回收方式。
具体方案为在空压机排气管道上设置一个热发电装置,利用热发电技术将排出的热气转换为电能。
这样既能充分利用余热,又能进一步提高空压机的能效。
三、余热回收的优势1.节能减排通过余热回收,可以减少能源消耗,降低碳排放,达到节能减排的目的。
尤其对于大型企业来说,余热回收可以带来可观的经济和环境效益。
2.提高能效余热回收将热能转化为有用的能源,提高了空压机的能效。
通过余热回收,可以在一定程度上提高空压机的运行效率,减少能源浪费。
3.多样化应用余热回收的应用范围广泛,可以用于生活热水供应、加热、干燥等领域。
空压机余热回收方案

空压机余热回收方案空压机是工业生产中常用的设备,其工作过程中会产生大量的余热。
如何有效地回收这些余热,提高能源利用效率,成为了工业生产中的一个重要课题。
一种常见的空压机余热回收方案是利用余热发电。
在空压机工作时,产生的余热可以用来加热水蒸汽,驱动汽轮机发电,从而实现能源的再利用。
这种方案可以有效地提高空压机的能源利用效率,减少能源浪费,对环境也有着积极的影响。
另一种空压机余热回收方案是利用余热加热水。
在空压机工作过程中,产生的余热可以直接用来加热水,用于生活用水或工业生产中的加热需求。
这种方案可以减少对传统能源的依赖,降低生产成本,同时也有利于环境保护。
除此之外,还可以将空压机余热用于加热厂房。
通过将余热输送至厂房内部,可以提高厂房的温度,改善工作环境,提高生产效率,减少能源消耗。
在实际应用中,空压机余热回收方案需要根据具体情况进行选择。
不同的工厂、不同的生产工艺都可能需要不同的方案。
因此,需要对空压机的工作情况、余热产生情况、用热需求等进行详细的分析,结合实际情况制定合适的方案。
空压机余热回收方案的实施需要技术支持和资金投入。
在选择方案时,需要考虑投资与收益的平衡,综合考虑成本、效益、环保等因素,选择最为合适的方案进行实施。
总的来说,空压机余热回收方案是一项重要的能源利用工作,对于提高能源利用效率、降低生产成本、保护环境都有着积极的意义。
在实际应用中,需要根据具体情况进行选择和实施,同时也需要技术支持和资金投入的保障。
希望通过各方的努力,空压机余热回收工作能够取得更好的效果,为工业生产和环境保护做出积极贡献。
空压机余热回收利用方案

空压机余热回收利用方案空压机是工业生产过程中常见的能量设备之一,其主要功能是将气体压缩,为生产提供所需的压缩空气。
然而,空压机在工作过程中产生的大量余热往往被忽视,没有得到充分的利用。
本文将探讨空压机余热回收利用的方案,以期达到能源的节约和环境的保护。
一、余热回收的意义和现状空压机在压缩空气的过程中会产生大量余热,通常被排放到环境中,并没有得到有效的利用。
这种浪费不仅造成了能源的浪费,更加加剧了环境的污染。
因此,对于空压机余热的回收利用具有重要的意义。
目前,一些工业企业已经开始关注空压机余热的利用,例如利用余热进行供热、供暖等。
然而,这些利用方式仍然只是冰山一角,还有许多其他潜在的利用方式有待开发和探索。
二、余热回收利用方案的探讨1. 利用余热进行供热将空压机产生的余热与供暖系统相结合,可以将余热直接用于加热水源或者空气,实现供热的效果。
这不仅可以减少燃料的消耗,节约能源,还可以缓解供热系统的压力。
2. 利用余热进行发电通过将空压机产生的余热转化为蒸汽或者高温热水,再利用蒸汽或者热水驱动涡轮机发电,实现能源的再生利用。
这样不仅能够减少对化石燃料的依赖,还可以增加电力供应。
3. 利用余热进行蒸馏空压机的余热可以用于蒸馏过程中,提高蒸馏效率,降低能源消耗。
蒸馏是一种常见的分离纯化技术,在化工、制药等行业有广泛的应用。
通过利用空压机余热进行蒸馏,不仅可以减少能源消耗,还可以提高生产效率。
4. 利用余热进行空气处理空压机在压缩空气的过程中产生的余热,可以用于空气处理系统中,例如用于加热干燥器、烘箱等设备。
这样可以减少电力消耗,提高生产效率。
三、余热回收利用方案的应用案例1. 某石化公司该石化公司通过将空压机产生的余热与供热系统相结合,实现了余热的回收利用。
通过余热回收,不仅实现了能源的节约,还减少了污染物的排放,对环境起到了积极的保护作用。
2. 某发电厂该发电厂将空压机产生的余热转化为蒸汽,驱动涡轮机发电,实现了能源的再生利用。
空压机余热回收技术方案

空压机余热回收技术方案概述:在工业生产过程中,空压机是一种常用设备,其通过压缩空气的方式为工业生产提供动力。
然而,空压机在运行的过程中会产生大量的余热,如果这些余热不能得到有效利用,不仅会造成能源的浪费,还会对环境造成负面影响。
因此,研究和开发空压机余热回收技术方案是非常必要的。
技术方案:1.热交换器技术:利用热交换器对空压机产生的余热进行回收。
通过与冷却液或其他介质进行热交换,将余热转化为可用热能。
这种技术可以用于灌注空压机的压缩机、冷却器和干燥器等部件,以最大程度地回收余热。
2.蒸汽发生器技术:将空压机产生的余热用于蒸汽发生器,产生高温高压蒸汽。
这种蒸汽可以用于工业生产中的加热、蒸发和蒸馏等过程,提高能源利用效率。
3.热泵技术:利用热泵技术将空压机产生的余热转化为制冷或供暖能源。
通过热泵的工作原理,将余热转化为高温的热能,然后利用高温热能进行制冷或供暖,达到能源的再利用。
4.热电联产技术:利用余热发电装置将空压机产生的余热转化为发电能源。
通过余热发电装置的工作原理,将余热转化为电能,提高能源利用效率。
5.热回收技术:将空压机产生的余热回收用于生产过程中的其他热源需求,如加热水、供暖等。
通过与生产过程中的其他热源进行热交换,将余热转化为可用热能,提高能源利用效率。
具体实施:1.安装热交换器,将空压机产生的余热与冷却液或其他介质进行热交换,将余热转化为可用热能。
2.利用余热对蒸汽发生器进行加热,产生高温高压蒸汽,用于工业生产中的加热、蒸发和蒸馏等过程。
3.安装热泵系统,将空压机产生的余热转化为制冷或供暖能源,提高能源利用效率。
4.安装余热发电装置,将空压机产生的余热转化为发电能源,提高能源利用效率。
5.将余热与生产过程中的其他热源进行热交换,将余热转化为可用热能,提高能源利用效率。
利益:1.节约能源:通过空压机余热回收技术,将原本被浪费的余热转化为可用能源,减少对传统能源的依赖,实现能源的可持续利用。
空压机余热利用技术方案

空压机热能回收系统节能改造项目技术方案二〇二零年六月目录一、项目概况 (1)二、节能技术概述 (1)2.1空压机基本原理 (1)2.2空压机余热再利用热水工程的优点 (1)2.3产品特点介绍 (2)2.4设计依据及执行标准 (2)三、余热回收节能效益分析 (2)3.1项目简介 (2)3.2空压站余热回收节能效益分析 (3)四、节能量汇总 (4)一、项目概况公司制氮空压机房有4台900kW离心式空压机(3开1备)、3台1120KW 离心式空压机(不使用);空压机站有4台1000kW离心机(3开1备)共计11台离心式空压机。
正常运行其中6台空压机,其余2台作为备机,3台因耗能过高长年不使用。
目前的热能都未做任何的回收利用,水冷系统也属耗能,造成能源的浪费。
经过初步考察,本方案初步分析了压缩空气系统的运行和耗能情况,并针对其中存在的节能空间推荐了改造方案。
二、节能技术概述2.1空压机基本原理空压机长期连续工作过程中,把电能转换为机械能,机械能转换为热能,在机械能转换为热能过程中,空气得到强烈的高压压缩,使之温度骤升,这是普通物理学机械能量转换现象,机械螺杆的高速旋转,同时也摩擦发热,这些产生的热量通过空压机自身散热器排放到空气中。
离心式空压机,空压机运行三级压缩后产生的余热,温度通常达到120℃及以上,直接由后冷却系统通过冷却水将热量带走,不但浪费了能源,更会造成热污染;空气压缩机余热再利用装置并非简单和传统的冷热交换形式,采用同程截流式反串使冷热交换效果大增到1.8-2.0倍。
产出的热水可提供生产车间工艺用水或者员工生活用水,从而解决了企业主为产生热水长期经济支付的沉重负担。
2.2空压机余热再利用热水工程的优点空压机余热再利用装置,充分利用了免费的热能,不需运行费用,一次投资就可以得到取之不尽的生活热水,只要工厂开工,不受恶劣天气的影响,只需消耗水泵用电,无任何污染,同时空压机的运行温度条件也得到了极大改善,并延长了机器的使用寿命。
空压机余热回收方案

空压机余热回收 系统工程方案书目 录一:空压机余热回收原理、用途说明 (3)二:空压机热能回收的优点 (5)三:空压机专用热水机和热泵、锅炉等各种制热设备的比较 (6)四:贵公司的热能回收方案设计基础 (7)五:空压机热能回收应用安装示意图 (8)六:方案目标及验收标准 (10)七:“新热能”空压机专用热水机的独特原理、设备数据、产品特点 (10)八:工程施工依据与管道选材 (14)九:安装施工方案 (15)十:售后服务 (17)十一:报价清单、回报周期、商务条款 (17)十二:回报周期、商务条款: (19)十三:工程实例图: (20)附件:热水机产品介绍………………………………………………………………一、空压机余热回收原理、用途说明:1、概述:空压机热能的基本概况:空压机的工作过程中,输入电能的80%左右变成热量,余不足20%左右变成最终的压缩空气能。
压缩机在工作过程中所耗电能转变成热量后,大部分被压缩后的油气混合物带走。
分别在各自的冷却器(油冷却器和气冷却器)中被冷却介质(水或空气)带走,热量白白地浪费了。
从理论上讲,除了2%的辐射热量不能回收外,几乎98%的热量均可以被回收利用。
2、热水机的基础原理及热能回收的用途:“新热能”热水机组实际上是一台热量回收装置,不同于机器上的冷却器。
根据压缩机各机型的不同热量,设计制造出不同型号的机组与各种型号的压缩机匹配使用,避免因换热面积不精确,压降过大等原因给压缩机带来故障。
热水机组接管通常设置在压缩机主机和冷却器之间,无论是水冷式压缩机还是风冷式压缩机都可适用。
要实现全自动供水功能还需添置其它设备,其中包括热水管道、保温工程、储热水箱、循环水泵、自动控制箱、各种阀件管件等。
可根据用户的不同需求安装不同的控制系统,使余热回收工程在最经济、最安全可靠的状态下运行。
回收水温常规为55℃-75℃之间,广泛适用于需要高温水或热水地方,如:员工浴室用水、食堂用水、造纸及食品工业等生产设备用热水、锅炉预热、取暖设备、木材及电子产品烘干等。
空压机余热利用技术要求(四篇)

空压机余热利用技术要求高效热能回收系统是压风机的配套产品。
通过压风机内部的改造,利用热能交换设备,可以大量回收压风机运行过程中产生的多余热能。
并将回收的热能用于生产和生活,达到保护环境,节约能源,降低企业生产成本和生活支出的目的。
高效热能回收系统,与压风机采用一对一的配套方式。
主要配置要求:压风机内部循环系统改造、热量交换模块、进/出水温度、压力就地仪表监测、板式换热器。
主要技术要求:1、4台压风机各单独采用1套余热利用回收系统,互不影响。
2、压风机安装余热回收系统后,压风机控制系统不变,工作性能不变,操作维修方式不变。
余热回收系统如有任何故障,余热回收系统停水、停用时,原压风机系统仍可以照常运行。
3、压风机安装余热回收装置后,单台压风机增加油量不超过45升。
4、压风机安装余热回收装置后压风机单台产生热水量(50℃)200KW压风机不低于70吨/天;250KW压风机85吨/天。
5、压风机余热回收装置水侧和油侧管路接口尺寸为DN50。
6、压风机余热回收装置油侧管路材质要求为304不锈钢。
7、余热回收装置配置专门的设备保证余热回收后压风机的回油温度不低于60度。
8、当单台压风机停机时,对应的热回收装置水路能够断开,防止单台空压机余热回收系统停机时有反水现象发生。
9、连接管路具有三通管路设计,在极端情况下能够快速隔离压风机与余热回收装置,保证压风机设备安全。
10、任何由于热回收装置造成的压风机的损坏由设备供应商负责。
11、设备供应商具备余热应用系统设计的能力,能够参与用热端(洗澡水使用侧)设计并能够提供煤矿系统的成功的应用案例至少3家以上。
要求提供合同原件作为参考。
1、焊条采用不锈钢焊条,ER308L,全部采用钨极氩气保护焊接工艺;2、焊接前应按GB/T985-xx的规定打坡口,焊缝外形成尺寸应符合JB/T794-xx的规定,并且要保证无虚焊、无夹渣;3、表面光滑、无裂纹、焊缝无气泡,内衬结构排列要匀称,无毛刺。
空压机余热回收方案

空压机余热回收方案空压机的余热回收是指将空压机产生的废热通过适当的技术手段进行回收利用,以提高能源利用效率和降低能源消耗。
空压机余热回收方案可以采用以下几种方式:1.空压机余热回收系统空压机在工作过程中,会产生大量的热能,可以通过安装余热回收系统来回收这些热能,减少能源的浪费。
这种系统一般包括余热回收装置、余热回收管道、余热回收器等,通过将余热传递给需要加热的介质,来实现能量的回收利用。
2.空压机余热供暖系统空压机的余热可以用于供暖系统,减少使用传统的燃气锅炉或电锅炉的能源消耗。
可以通过余热回收装置将空压机产生的余热传递给供暖系统的水或空气,提高供暖效果,减少供暖能源的消耗。
3.空压机余热再发电系统空压机的余热也可以用于热电联供系统,通过余热再发电装置将余热转化为电能,提高能源利用效率。
余热再发电系统一般包括余热回收装置、蒸汽发电机等设备,通过高温高压的蒸汽驱动发电机发电,将余热转化为电能。
4.空压机余热空调系统空压机的余热还可以用于空调系统,提高空调效果,减少能源消耗。
可以通过余热回收装置将空压机产生的余热传递给制冷系统的冷却介质,实现冷热能量的转化,提高空调的制冷效果。
5.空压机余热利用于工艺过程空压机的余热还可以利用于一些工艺过程中,提高工艺效率,减少能源消耗。
比如在一些生产过程中需要加热的物体或介质,可以利用空压机的余热进行加热,减少外部能源的消耗。
综上所述,空压机的余热回收方案有多种选择,可以根据具体情况选择适合的方案。
无论采用何种方案,都需要注意系统的稳定性和安全性,确保系统能够正常运行并实现能源的回收利用。
同时,还需要考虑余热回收系统的投资成本和运营成本,确保回收利用的经济效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXX有限公司
XXX系统技术方案
一、概述
节能减排,降耗增效是当今每个企业所必须面对的话题,是关系到企业生存和发展的重中之重。
能源的危机对于高能耗的企业,面临着严峻的考验和巨大的生存压力,现如今激烈的市场竞争,导致企业的利润空间已经大幅度下浮。
只有在企业内部挖潜,在节能降耗上下功夫,不然企业无法生存。
作为节能设备的制造企业,我们针对市场开发了适合于各种行业的空压机热能回收系列产品。
本系统设计主要是提取空压机运行过程中浪费的热能,在回收热能的同时对空压机进行保护作用。
从而达到节约能源与环保的作用。
系统采用智能数字自动化控制,自动化程度高,可以完全不需要专人操作。
二、工程实施的意义
1、利用原本浪费的空压机热能进行回收,避免空压机房温度过高,空压机排气温度保持在750C到850C最好温度运行。
2.使空压机更省电,风扇不用开启,以贵公司76千瓦螺杆机为例风机为2.2千瓦,每小时可省约2.2度电,二十四小时可省52.8度电。
3、无需任何费用回收460C~480C热水,用于办公室或者车间供暖热源。
4、完全清洁无污染,安装方便,无需改变原有压缩机结构。
5、提高员工待遇(硬件设施),减少电费支出。
三、系统特点
系统采用全自动智能化控制,
无需专人看管。
回收热水温度可调
循环水箱自动补水
扬程水泵自动送水(达到设定的温度)
循环水箱水位控制
保温水箱水位控制
电脑检测循环水箱水位显示
电脑检测保温水箱水位显示
循环水自动循环加热
电脑系统自动检测故障源并显示在显示屏上
四、系统设计方案
(一)、根据贵公司提供的有关数据可以计算出供暖的面积:针对贵公司x台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收):
第一部分:空压机加载吸收的热量可转化中央空调供暖的功率为:
76×8×80%×80%=389千瓦
第二部分:空压机卸载吸收的热量可转化中央空调供暖的功率为:
76×8×20%×40%×80%=38.9千瓦
总共可以转化成中央空调供暖的功率为:
389+38.9=427.9千瓦
经过保温处理并考虑热量损失10%计算,可供中央空调供暖的总功率为:385千瓦
按照生活供暖加热到23摄氏度为例,每平方米面积所需供暖的功率为180W~200W左右,所以:
压缩机总体可以供暖的面积大致在2000个平方左右。
(二)设计方案如下:
针对贵公司8台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收);
1、本系统采用8台DL-125D油气热能双交换机组,系统可以根据当前空压机运行情况自动的调整运行。
4、该系统对螺杆式空压机进行油热回收,提取油和压缩空气中的热能与水进行交换,使水进行升温;由于中央空调系统对水温要求最高不能超过48摄氏度(防止结水垢),本系统会设置如果水温超过48摄氏度热能转换系统会自动停止工作;
5、整个系统安装有20吨的循环水箱,系统对水进行循环加热,将一定温度的水供给中央空调系统(水泵大小、保温水箱的大小选择由客户根据自身的需要选择),同时中央空调的水箱与该系统的水箱通过水泵输送循环,达到不间断供暖的目的(水泵大小、保温水箱的大小选择由客户根据自身的需要选择)。
6、整个系统的管道采用4寸的PPR管并用聚氨酯发泡材料做保温处理,避免温度损失。
7、整个系统安装了循环水箱液位控制、循环水箱温度控制,自动补水控制,系统自动启动和停止控制,无需人员管理。
注:该系统可以白天给车间、办公室供暖用,因为水温始终保持在46~48摄氏度水源是自来水,所以同时也可以常年供员工夜晚洗澡用,只要条件允许只要稍作更改就可以做到。
五、系统的工艺流程
系统工程构造图:
压缩机热能回收系统简图
六、系统回收的效益分析
空压机省电:那么给空压机上节省的电费方面(一年工作300天,每天24小时工作)计算如下:
每台76KW空压机风扇不转节省的电费为:
2.2 X24X300=15840元
8台76KW空压机节省的电费为:15840X8=126720元
空压机热回收系统需要消耗的电费为:
热能回收机系统自带的循环泵功率为3千瓦(暂定),与中央空调保温水箱的循环泵功率为3千瓦(暂定)那么耗电如下:
3千瓦的循环水泵是24小时工作的,
3 X2
4 X300 =21600元
3千瓦的两水箱循环水泵一天需要开启的时间大致为24小时,
3 X24X300=21600元
热回收机一年的耗电为:43200元
中央空调系统加热系统省电为(一年按照供暖5个月计算
150天,每天12小时,电费1元/千瓦时计算):
385KW X12H X150=693000元
如果加上员工洗澡节省下来的费用,如果保温桶足够大,8台76KW压缩机负载率80%,利用热能转换系统12小时产生的热水可以供3000人洗澡是没有问题的,按照3000名员工计算,没人一年的洗澡支出费用按照每个月洗4次澡,一次5元计算,一个月20元,一年240元,我们按照一个员工一年100元计算,那么3000个元供一年洗澡产生的费用大致为300000元。
节省的费用=
中央空调节省的电费+员工洗澡节省的电费+空压机节省的电费-热回收机消耗的费用
即:693000+300000+126720-43200=1076520元
热能回收系统可以节省费用为:一百万元 /年,这是非常可观的。
热能回收系统没有维护费用、基本没有故障点、对压缩机起保护作用,对压缩机产气效率的影响可以忽略不计(因为只延伸了管路,几乎没有影响)。
注意:本系统补水的水源要求是自来水,不可以用地下
水,考虑到水垢的影响每年要求清洗一次热能回收机的转换器(费用大致为XX元,不含人工费)。
七、系统制造工期
本系统生产周期为XX天,安装调试周期大约为XX天。
整个工程周期取决于管道安装时间,整个工程在签订合同后大约在XX天内完成(以上时间为大致估计,视客户情况而定)。