概率单元测试卷

合集下载

概率单元测试卷(修改)

概率单元测试卷(修改)

《概率》的单元测试卷(时间:60分,满分:100分)班级: 姓名: 得分:一、选择题。

(每题3分,共24分)1、(2009义乌)下列事件是必然事件的 ( )A 、抛掷一枚硬币,四次中有两次正面朝上B 、打开电视体育频道,正在播放NBA 球赛C 、 从一定高度落下的图钉,落地后钉尖朝上.D 、若a 是实数,则0a2、从一副扑克牌中抽出5张红桃,4张梅花,3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情是 ( )A 、可能发生B 、不可能发生C 、很有可能发生D 、必然发生3、(2009成都) 下列说法正确的是 ( )(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨(B)随机抛掷一枚均匀的硬币,落地后正面一定朝上(C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相交4、(2009荆门)从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是p 1,摸到红球的概率是p 2,则 ( )(A)p 1=1,p 2=1. (B)p 1=0,p 2=1. (C)p 1=0,p 2=14. (D)p 1=p 2=14. 5、(2010遵义市)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是 ( ) A.74 B.73 C.72 D.71 6、(黄石)从0—9这10个自然数中任取一个,是2的倍数或是3的倍数的概率是( )A 、21B 、52C 、109D 、107 7、(2010年镇江市)15.有A ,B 两只不透明口袋,每只品袋里装有两只相同的球,A 袋中的两只球上分别写了“细”、“致”的字样,B 袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是 ( )A .31B .41C .32D .43 8、两个袋中各装有一只白球和一只黑球,从第一个袋中任取一球,记下颜色后再放入第二个袋中,搅匀后再从第二个袋中任取一球,那么两次取出的球有相同颜色的球的概率是( ) A.31 B.32 C.41 D.21 二、填空题。

第十章 概率 单元测试卷(解析版)

第十章 概率 单元测试卷(解析版)

第十章概率单元测试卷一、单选题1.(2021·黑龙江·鹤岗一中高二阶段练习)将一枚骰子先后抛掷两次,若先后出现的点数分别为b,c,则方程20x bx c++=有实数根的样本点个数为()A.17B.18C.19D.20【答案】C【解析】【分析】直接列举即可得到.【详解】一枚骰子先后抛掷两次,样本点一共有36个;方程有实数根,需满足240b c-≥;样本点中满足240-≥的有(2,1)、(3,1)、(3,2)、(4,1)、(4,2)、(4,3)、(4,4)、(5,b c1)、(5,2)、(5,3)、(5,4)、(5,5)、(5,6)、(6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(6,6),共19个.故选:C2.(2021·全国·高一课时练习)某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则样本点共有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据基本事件的概念一一列举即可得出选项.【详解】解析:该生选报的所有可能情况是:数学和计算机、数学和航空模型、计算机和航空模型,所以样本点有3个.故选:C3.(2022·湖南·高一课时练习)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A=“两次都击中飞机”,B=“两次都没击中飞机”,C=“恰有一枚炮弹击中飞机”,D=“至少有一枚炮弹击中飞机”,下列关系不正确的是( )A .A ⊆DB .B ∩D =∅C .A ∪C =DD .A ∪B =B ∪D【答案】D【解析】【分析】按照事件间的互斥关系和包含关系分析求解即可.【详解】“恰有一枚炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一枚炮弹击中”包含两种情况:恰有一枚炮弹击中,两枚炮弹都击中.故A ⊆D ,A ∪C =DB ,D 为互斥事件,B ∩D =∅;A ∪B =“两个飞机都击中或者都没击中”,B ∪D 为必然事件,这两者不相等故选:D4.(2021·全国·高一单元测试)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.某天,齐王与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜,则田忌获胜概率为( ). A .112 B .16 C .14 D .13【答案】B【解析】【分析】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,列举所有比赛的情况,利用古典概型的概率公式计算即可得出结果.【详解】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,所有比赛的情况::11()a b ,、22(,)a b 、33(,)a b ,齐王获胜三局;11()a b ,、23(,)a b 、32(,)a b ,齐王获胜两局;12(,)a b 、21(,)a b 、33(,)a b ,齐王获胜两局;12(,)a b 、23(,)a b 、31(,)a b ,齐王获胜两局;13(,)a b 、21(,)a b 、32(,)a b ,田忌获胜两局;13(,)a b 、22(,)a b 、31(,)a b ,齐王获胜两局,共6种情况,则田忌胜1种情况,故概率为16P = 故选:B【点睛】本题考查了古典概型的概率计算问题,考查了理解辨析和数学运算能力,属于中档题目.5.(2021·全国·高一课时练习)10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为( ) A .35B .23C .34D .415【答案】B【解析】【分析】 根据题意,分析甲先抽,并且中奖后剩余的奖券和“中奖”奖券的数目,由古典摡型的概率计算公式,即可求解.【详解】根据题意,10张奖券中有4张“中奖”奖券,甲先抽,并且中奖,此时还有9张奖券,其中3张为“中奖”奖券,则在甲中奖条件下,乙没有中奖的概率6293P ==. 故选:B.6.(2021·吉林·长春市第二十中学高一期末)从数字1,2,3,4中任取三个不同的数字,则所抽取的三个数字之和能被6整除的概率为( ) A .12 B .15 C .14 D .25【答案】C【解析】【分析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从数字1,2,3,4中任取三个不同的数字,方法有:123,124,134,234++++++++共4种,其中所抽取的三个数字之和能被6整除的有:1236++=共1种,故所求概率为1 4 .故选:C7.(2021·黑龙江实验中学高二阶段练习)在新冠疫情的冲击下,全球经济受到重创,右图是各国公布的2020年第二季度国内生产值(GDP)同比增长率,现从这5个国家中任取2个国家,则这2个国家中第二季度GDP同比增长率至少有1个低于15%-的概率为()A.310B.12C.35D.710【答案】D【解析】【分析】利用列举法求解即可【详解】解:令中国、澳大利亚、印度、英国、美国的2020年第二季度国内生产值(GDP)同比增长率分别为A,B,C,D,E,其中C,D都低于15%-,则从这5个国家中任取2个国家有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10种,其中至少有1个低于15%-有AC,AD,BC,BD,CD,CE,DE共7种,所以所求概率为7 10.8.(2022·全国·高三专题练习(理))抛掷一颗质地均匀的骰子,记事件A 为“向上的点数为1或4”,事件B 为“向上的点数为奇数”,则下列说法正确的是( )A .A 与B 互斥B .A 与B 对立C .()23P A B +=D .()56P A B += 【答案】C【解析】根据互斥事件和对立事件的定义判断.求出事件A B +,然后计算概率.【详解】A 与B 不互斥,当向上点数为1时,两者同时发生,也不对立, 事件A B +表示向上点数为1,3,4,5之一,∴42()63P A B +==. 故选:C .【点睛】 关键点点睛:本题考查互斥事件和对立事件,考查事件的和,掌握互斥事件和对立事件的定义是解题关键.判断互斥事件,就看在一次试验中两个事件能不能同时发生,只有互斥事件才可能是对立事件,如果一次试验中两个事件不能同时发生,但非此即彼,即必有一个发生,则它们为对立事件.而不互斥的事件的概率不能用概率相加,本题()()()P A B P A P B +≠+.二、多选题9.(2021·重庆·高三开学考试)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( )A .2个球都是红球的概率为16B .2个球不都是红球的概率为13C .至少有1个红球的概率为23D .2个球中恰有1个红球的概率为12 【答案】ACD【解析】【分析】 根据题意可知,则从甲袋中摸出一个不是红球的概率是23,从乙袋中摸出一个不是红球的概率是12,根据对立事件和相互独立事件的概率计算公式,分别求出各选项中的概率,从而可判断得出答案.解:由题可知,从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,则从甲袋中摸出一个不是红球的概率是23,从乙袋中摸出一个不是红球的概率是12,对于A选项,2个球都是红球的概率为111326⨯=,A选项正确;对于B选项,2个球不都是红球的概率为1151326-⨯=,B选项错误;对于C选项,至少有1个红球的概率为2121323-⨯=,C选项正确;对于D选项,2个球中恰有1个红球的概率1211232132⨯+⨯=,D选项正确.故选:ACD.10.(2021·广东佛山·高二阶段练习)袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是()A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球【答案】BD【解析】【分析】根据互斥事件的定义和性质判断.【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B成立;在C中,至少一个白球与至多有一个红球,能同时发生,故C不成立;在D中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D成立;故选:BD.【点睛】本题考查互斥事件的判断,根据两个事件是否能同时发生即可判断,是基础题.11.(2022·全国·高二单元测试)抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为1234,,,P P P P ,则下列结论中正确的是( )A .1234P P P P ===B .312P P =C .12341P P P P +++=D .423P P =【答案】CD【解析】【分析】利用n 次的独立重复试验中事件A 恰好发生k 次的概率计算公式,分别求得1234,,,P P P P 的值,即可求解.【详解】由题意,抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为1234,,,P P P P , 根据独立重复试验的概率计算公式, 可得:3322121233431111113113(),(),()(1),(1)2828228228P P P C P C =====-==⋅-=, 由1234P P P P =<=,故A 是错误的;由313P P =,故B 是错误的;由12341P P P P +++=,故C 是正确的;由423P P =,故D 是正确的.故选:CD【点睛】本题主要考查概率的计算及其应用,其中解答中熟练应用n 次独立重复试验中事件A 恰好发生k 次的概率计算公式求得相应的概率是解答的关键,着重考查了运算与求解能力.12.(2021·河北·石家庄市第二十二中学高二阶段练习)甲乙两个质地均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .()()()P A PB PC ==B .()()()P BC P AC P AB == C .1()8P ABC =D .1()()()8P A P B P C ⋅⋅= 【答案】ABD【解析】【分析】根据题意,分别求得(),(),()P A P B P C 可判断A ,由独立事件概率乘法公式,可判断BCD.【详解】由已知22221()44442P A =⨯+⨯=,21()()42P B P C ===, 由已知有1()()()4P AB P A P B ==,1()4P AC =,1()4P BC =, 所以()()()P A P B P C ==,则A 正确;()()()P BC P AC P AB ==,则B 正确;事件A 、B 、C 不相互独立,故1()8P ABC =错误,即C 错误 1()()()8P A P B P C ⋅⋅=,则D 正确; 综上可知正确的为ABD.故选:ABD .【点睛】本题考查了古典概型概率计算公式的应用,概率乘法公式的应用,属于基础题.三、填空题13.(2022·全国·高三专题练习)某工厂生产了一批节能灯泡,这批产品中按质量分为一等品,二等品,三等品.从这些产品中随机抽取一件产品测试,已知抽到一等品或二等品的概率为0.86,抽到二等品或三等品的概率为0.35,则抽到二等品的概率为___________.【答案】0.21##21100【解析】【分析】设抽到一等品,二等品,三等品的事件分别为,,A B C ,利用互斥事件加法列出方程组即可求解.【详解】设抽到一等品,二等品,三等品分别为事件A ,B ,C 则()()0.86()()0.35()()()1P A P B P B P C P A P B P C +=⎧⎪+=⎨⎪++=⎩,则()0.21P B =故答案为:0.2114.(2021·全国·高一课时练习)从1,2,3,4,5中随机取三个不同的数,则其和为奇数这一事件包含的样本点个数为___________.【答案】4【解析】【分析】直接列举基本事件即可.【详解】从1,2,3,4,5中随机取三个不同的数有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种情况,其中(1,2,4),(1,3,5),(2,3,4),(2,4,5)中三个数字之和为奇数,共有4种.故答案为:4.15.(2021·黑龙江·哈师大附中高二开学考试)若三个原件A,B,C按照如图的方式连接成一个系统,每个原件是否正常工作不受其他元件的影响,当原件A正常工作且B,C中至少有一个正常工作时,系统就正常工作,若原件A,B,C正常工作的概率依次为0.7,0.8,0.9,则这个系统正常工作的概率为______【答案】0.686【解析】【分析】根据题意,先求得B与C至少有一个正常工作的概率,再结合独立事件概率的乘法公式,即可求解.【详解】由题意,系统正常工作的情况分成两个步骤,A正常工作且B,C至少有一个正常工作的情况,其中A正常工作的概率为0.7;B正常工作的概率为0.8,C正常工作的概率为0.9,---=,则B与C至少有一个正常工作的概率为1(10.8)(10.9)0.98所以这个系统正常工作的概率为:0.7×0.98=0.686;故答案为:0.686;【点睛】本题主要考查了对立事件和相互独立事件的概率的计算,其中解答中熟记相互独立事件的概率的计算公式,结合对立事件的概率计算公式求解是的关键,着重考查分析问题和解答问题的能力,属于基础题. 16.(2021·全国·高一课时练习)现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.【答案】34【解析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为153204=. 故答案为:34【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.四、解答题17.(2022·全国·高三专题练习(文))从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,,第八组[]190195,,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校的800名男生的身高的平均数和中位数;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x ,y ,事件{}5E x y =-≤,求()P E .【答案】(1)0.06;(2)平均数为174.1,中位数为1745.;(3)()715P E =. 【解析】 【分析】(1)由频率分布直方图的性质求第七组的频率;(2)根据平均数和中位数的定义利用频率分布直方图求平均数和中位数; (3)确定样本空间,利用古典概型概率公式求概率. 【详解】解:(1)第六组的频率为400850.=, ∴第七组的频率为()100850008200160042006006......--⨯⨯++⨯+=. (2)由直方图得,身高在第一组[)155160,的频率为00085004..⨯=, 身高在第二组[)160165,的频率为00165008..⨯=, 身高在第三组[)165170,的频率为004502..⨯=, 身高在第四组[)170175,的频率为004502..⨯=,由于0.040.080.20.320.5++=<,0.040.080.20.20.520.5+++=>,设这所学校的800名男生的身高中位数为m ,则170175m <<, 由()0040080217000405...m ..+++-⨯=得1745m .=,所以这所学校的800名男生的身高的中位数为174.5cm ,平均数为157.50.04162.50.08167.50.2172.50.2177.50.065182.50.08187.50.06⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+192.50.0085174.1⨯⨯=.(3)第六组[)180185,的抽取人数为4,设所抽取的人为a ,b ,c ,d , 第八组[]190195,的抽取人数为0.0085502⨯⨯=,设所抽取的人为A ,B ,则从中随机抽取两名男生有ab ,ac ,ad ,bc ,bd ,cd ,aA ,aB ,bA ,bB ,cA ,cB ,dA ,dB ,AB 共15种情况,因事件{}5E x y =-≤发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为ab ,ac ,ad ,bc ,bd ,cd ,AB 共7种情况.所以()715P E =. 18.(2021·江苏·高邮市临泽中学高一期末)袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是59,得到黄球或绿球的概率是23,试求:(1)从中任取一球,得到黑球、黄球、绿球的概率各是多少? (2)从中任取两个球,得到的两个球颜色不相同的概率是多少? 【答案】(1)黑球、黄球、绿球的概率分别是13,29,49;(2)1318.【解析】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A ,B ,C ,由已知列出()()()P A P B P C 、、的方程组可得答案;(2)求出从9个球中取出2个球的样本空间中共有的样本点,再求出两个球同色的样本点可得答案. 【详解】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A ,B ,C , 由于A ,B ,C 为互斥事件,根据已知,得()()()()()()()()()()59231P A B P A P B P B C P B P C P A B C P A P B P C ⎧+=+=⎪⎪⎪+=+=⎨⎪++=++=⎪⎪⎩,解得()()()132949P A P B P C ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,所以,任取一球,得到黑球、黄球、绿球的概率分别是13,29,49.(2)由(1)知黑球、黄球、绿球个数分别为3,2,4, 从9个球中取出2个球的样本空间中共有36个样本点,其中两个是黑球的样本点是3个,两个黄球的是1个,两个绿球的是6个, 于是,两个球同色的概率为31653618++=, 则两个球颜色不相同的概率是51311818-=. 【点睛】本题考查互斥事件和对立事件的概率,一般地,如果事件A 1、A 2、…、A n 彼此互斥,那么事件A 1+A 2+…+A n 发生(即A 1、A 2、…、A n 中有一个发生)的概率,等于这n 个事件分别发生的概率的和,即P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).19.(2021·全国·高一课时练习)进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益,是关乎生态文明建设全局的大事.为了普及垃圾分类知识,某学校举行了垃圾分类知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为p ,乙同学答对每题的概率都为()q p q >,且在考试中每人各题答题结果互不影响.已知每题甲,乙同时答对的概率为12,恰有一人答对的概率为512. (1)求p 和q 的值;(2)试求两人共答对3道题的概率. 【答案】(1)34p =,23q =;(2)512.【解析】(1)由互斥事件和对立事件的概率公式列方程组可解得,p q ;(2)分别求出两人答对1道的概率,答对两道题的概率,两人共答对3道题,则是一人答对2道题另一人答对1道题,由互斥事件和独立事件概率公式可得结论. 【详解】解:(1)设A ={甲同学答对第一题},B ={乙同学答对第一题},则()P A p =,()P B q =. 设C ={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB =,D AB AB =+.由于二人答题互不影响,且每人各题答题结果互不影响,所以A 与B 相互独立,AB 与AB 相互互斥,所以()()()()P C P AB P A P B ==,()()P D P AB AB =+()()()()()()()()()()()()11P AB P AB P A P B P A P B P A P B P A P B =+=+=-+-.由题意可得()()1,2511,12pq p q q p ⎧=⎪⎪⎨⎪-+-=⎪⎩即1,217.12pq p q ⎧=⎪⎪⎨⎪+=⎪⎩解得3,42,3p q ⎧=⎪⎪⎨⎪=⎪⎩或2,33.4p q ⎧=⎪⎪⎨⎪=⎪⎩由于p q >,所以34p =,23q =.(2)设=i A {甲同学答对了i 道题},i B ={乙同学答对了i 道题},0i =,1,2.由题意得,()11331344448P A =⨯+⨯=,()23394416P A =⨯=,()12112433339P B =⨯+⨯=,()2224339P B =⨯=.设E ={甲乙二人共答对3道题},则1221E A B A B =+. 由于i A 和i B 相互独立,12A B 与21A B 相互互斥,所以()()()()()()()12211221349458916912P E P A B P A B P A P B P A P B =+=+=⨯+⨯=. 所以,甲乙二人共答对3道题的概率为512. 【点睛】关键点点睛:本题考查互斥事件与独立事件的概率公式,解题关键是把所求概率事件用互斥事件表示,然后求概率,如设A={甲同学答对第一题},B={乙同学答对第一题},设C={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB=,D AB AB=+.同样两人共答对3题分拆成甲答对2题乙答对1题与甲答对1题乙答对2题两个互斥事件.20.(2021·海南·海口市灵山中学高二期中)某餐厅提供自助餐和点餐两种服务,其单人平均消费相近,为了进一步提高菜品及服务质量,餐厅从某日中午就餐的顾客中随机抽取了100人作为样本,得到以下数据表格.(单位:人次)满意度老年人中年人青年人自助餐点餐自助餐点餐自助餐点餐10分(满意)1212022015分(一般)22634120分(不满意)116232(1)由样本数据分析,三种年龄层次的人群中,哪一类更倾向于选择自助餐?(2)为了和顾客进行深人沟通交流,餐厅经理从点餐不满意的顾客中选取2人进行交流,求两人都是中年人的概率;(3)若你朋友选择到该餐厅就餐,根据表中的数据,你会建议你朋友选择哪种就餐方式?【答案】(1)中年人更倾向于选择自助餐;(2)110P=;(3)建议其选择自助餐.【解析】(1)分别求出三种年龄层次的人群中,选择自助餐的概率,进行比较从而得出结论.(2)点餐不满意的人群中,老年人1人(设为a),中年人2人(设为b,c),青年人2人(设为d,e),列出选2人的基本事件,得出基本事件数和两人都是中年人所包含的事件数,由古典概率公式可得答案. (3)分别求出自助餐和点餐满意的均值,建议选择满意度平均值大.【详解】(1)由题知,老年人选择自助餐的频率115 19P=,中年人选择自助餐的频率23239P =, 青年人选择自助餐的频率32742P =, 则213P P P >>,即中年人更倾向于选择自助餐.(2)点餐不满意的人群中,老年人1人(设为a ),中年人2人(设为b ,c ),青年人2人(设为d ,e ). 从中选取2人,其基本事件有(,)a b ,(,)a c ,(,)a d ,(,)a e ,(,)b c ,(,)b d ,(,)b e ,(,)c d ,(,)c e ,(,)d e ,共10个基本事件,其中2人都是中年人仅有一个(,)b c 符合题意; 故两人都是中年人的概率为110P =. (3)由表可知,自助餐满意的均值为:1521012510058052121074x ⨯+⨯+⨯==++.点餐满意的均值为:241017550125417526x ⨯+⨯+⨯==++12x x >,故建议其选择自助餐.21.(2021·新疆·乌市八中高二阶段练习)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【答案】(1)频率为:0.08;平均分为102;(2)25.(1)利用所有组频率和为1即可求得第七组的频率,然后利用81i i i x x p ==∑(其中i x 表示第i 组的中间值,ip 表示该组的频率)求出平均值;(2)利用古典概率模型概率的计算方法求解即可. 【详解】解:(1)由频率分布直方图得第七组的频率为:()10.0040.0120.0160.0300.0200.0060.004100.08-++++++⨯=.用样本数据估计该校的2000名学生这次考试成绩的平均分为: 700.04800.12900.161000.31100.21200.06x =⨯+⨯+⨯+⨯+⨯+⨯1300.081400.04102+⨯+⨯=.(2)样本成绩属于第六组的有0.00610503⨯⨯=人,设为,,A B C ,样本成绩属于第八组的有0.00410502⨯⨯=人,设为,a b ,从样本成绩属于第六组和第八组的所有学生中随机抽取2名, 基本事件有: AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10个 他们的分差的绝对值小于10分包含的基本事件个数AB ,AC ,BC ,ab 共 4个 ∴他们的分差的绝对值小于10分的概率42105p ==. 【点睛】本题考查利用频率分布直方图求解样本数据的平均值,考查古典模型概率的计算,难度一般. (1)计算样本数据的平均值时,只需利用每组中间值乘以本组频率求和即可得到答案; (2)古典概型的解答注意分析清楚基本事件总数及某事件成立时所包含的基本事件数.22.(2021·全国·高二课时练习)A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效,若在一个试验组中,服用A 有效的白鼠的只数比服用B 有效的多,就称该试验组为甲类组,设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12.(1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率. 【答案】(1)49;(2)604729.【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率. (2)根据对立事件的概率公式计算可得; 【详解】解:(1)设i A 表示事件:一个试验组中,服用A 有效的小鼠有i 只,0i =,1,2,i B 表示事件“一个试验组中,服用B 有效的小鼠有i 只“,0i =,1,2, 依题意有:1124()2339P A =⨯⨯=,2224()339P A =⨯=.0111()224P B =⨯=,1111()2222P B =⨯⨯=,所求概率为:010212()()()P P B A P B A P B A =++14141444949299=⨯+⨯+⨯= (2)依题意这3个试验组中至少有一个甲类组的对立事件为这3个试验组中没有一个甲类组的.所以概率34604119729P ⎛⎫=--= ⎪⎝⎭;【点睛】本题考查相互独立事件的概率公式的应用,以及对立事件的概率计算,属于中档题.。

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。

第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。

【精品试卷】人教版数学九年级上册《第二十五章 概率初步》单元测试

【精品试卷】人教版数学九年级上册《第二十五章 概率初步》单元测试

(2)若小军事先选择的数是5,用列表法或画树状图的方法求他获胜的概率.
23.有,,三种款式的帽子,甲,乙两种款式的围巾,穿戴时小华任意选一顶帽子
和一条围巾.
(1)用列表法或树状图表示搭配的所有可能性结果.
(2)求小华恰好选中她所喜欢的款帽子和乙款围巾的概率.
24.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做
19.在一个不透明的袋子中有6个红球和若干个白球,这些球除颜色外均相同,每次从
袋子中摸出一个球记录颜色后再放回,经过大量重复试验,摸到白球的频率稳定在
0.25,则袋子中白球的个数是 ______.
20.在一个不透明的盒子中装有个球,它们除了颜色之外其它都没有区别,其中含有
3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放
3.下列说法正确的是( )
A. 为了解人造卫星的设备零件的质量情况,应选择抽样调查
B. 了解九年级(1)班同学的视力情况,应选择全面调查
C. 购买一张体育彩票中奖是不可能事件
D. 抛掷一枚质地均匀的硬币刚好正面朝上是必然事件
4.翻开鲁教版八年级下册数学课本,恰好是45页,这个事件是( )
A. 不可能事件
回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出的值
大约是______.
三 、解答题(本大题共 4 小题,共 32 分)
21.某校为了加强同学们的安全意识,随机抽取部分同学进行了一次安全知识测试,按
照测试成绩分为优秀、良好、合格和不合格四个等级,绘制了如下不完整的统计图.
等,则小球从出口落出的概率是( )
1
1
1
1
A. 2

概率单元综合测试题

概率单元综合测试题

概率单元综合测试题(总分100分 时间60分钟)一.请准确填空(每空2分,共32分)1.天阴了,就会下雨是________事件,其发生的可能性在________到________之间.2.一副扑克牌中,去掉大小王牌,任意摸一张,(1)P (摸到红桃)=________;(2)P (摸到A )=________;(3)P (摸到Q 、K 、A 中的任意一张)=________.3.某班有男生30人,女生20人,现在要选1名学生领队,选中的这名学生不是女生的概率为________.4.一盒装有5个红球,3个黄球和2个白球,任意摸出一球,摸到________球的可能性较大,摸到________色球的可能性较小.5.将下列事件发生的概率标在图中.(1)50年后地球将消失;(2)投一枚硬币正面朝上;(3)10个苹果分装三个果盘里,一定有一个果盘里至少装4个苹果.12- 15题图6.掷一枚均匀的骰子,其结果是P (“2”点朝上) ________P (“6”点朝上)(填“>”“=”“<”).7.如图,一任意转动的转盘被均匀分成六份,当随意转动一次,停止后指针落在阴影部分的概率是________,落在空白部分的概率为________.8.如图:是一个放在桌子上的长方体,这个长方体的长、宽、高分别为4、2、3,飞来一只苍蝇要落在长方体的表面上,则苍蝇落在长方体正面(前面)上的概率是________.7题图8题图二.相信你的选择(每小题3分,共24分) 9.下列事件中,概率为1的事件有①2008年在中国举办奥运会 ②夜间12点有太阳 ③中央电视台一套新闻联播节目的收视率为80% ④吉林长春市某年冬天的温度达32℃( ) A.0个 B.1个 C.2个 D.3个10.掷一枚均匀的骰子(正方体),骰子的每个面上分别标有数字1、2、3、4、5、6,则3的倍数朝上的概率为( ) A.61 B.31 C.41 D.2111.不可能发生的事件的概率是( ) A.1 B.0 C.0或100%D.1或100%12.一个口袋中有8个红球,2个黑球,每个球除颜色不同外,其余都相同,若从中任意拿出3个球,则下列结论成立的是( )A.所取3个球中至少有1个是黑球B.所取3个球中至少有2个是红球C.所取3个球中至少有1个是红球D.所取3个球中最多有2个红球13.小明所在的七年级二班有54人,在投票选举班长时,小明得了28票,超过半数且票数第一,当选班长,则小明当班长的支持率为( ) A.2714 B.2713 C.43 D.5314.老师想在第五学习小组的6名成员中,任选一名同学来参加游戏比赛,小伟是第五学习小组中的一位,则他入选的机率是( ) A.31 B.41 C.51 D.6115.一副中国象棋共32枚,其中将棋两枚、车棋4枚,从中任摸一个棋子,P (摸到将棋)与P (摸到车棋)的概率分别为( ) A.61 81 B.161 81 C.81 161 D.161 4116.在质量检查时,某商品100件中有6件次品,那么从中任意抽取一件抽到次品的概率是( ) A.501 B.251 C.503 D.252三.考查你的基本功(共8分)17.(4分)甲、乙两同学做掷骰子游戏,骰子是均匀的正方体,六个面分别刻有1、2、3、4、5、6六个数.游戏规定:掷一次2的倍数朝上,甲同学获胜;掷一次朝上的数字大于3则乙同学获胜.你认为这个游戏公平吗?请说明理由.18.(4分)有人说:“今天下雨的可能性为95%,那么出门必定带雨伞”;又有人说:“明天下雨的可能性为10%,那么出门就不用带雨伞”,你认为他们的话都有道理吗?阐述一下你的观点.四.生活中的数学(共10分)19.(4分)每天上学小颖的妈妈总是叮咛她:“横穿马路一定要走人行道,别让来往的车辆碰着.”你怎样体会这句话?20.(6分)小明所在学校七年级有10个班,每班45名学生,学校体育组从全校七年级中随机抽出一个班,并在该班中随机抽出1名同学检查50 m 跑成绩 .(1)小明所在的七年级班被抽中的概率为多大?小明在班级中被抽中的概率是多少? (2)就全年级组而言,小明被抽中的概率为多少?五.探究拓展与应用(共26分)21.(5分) 书架的上层放着数学、语文、英语三本书,下层放着数学练习册、语文练习册、英语练习册,从上层和下层各任意抽取一本恰好是数学和数学练习册的概率是多少?22.(5分)有10个纸箱,其中4个纸箱中有糖果,小明随意打开其中一个纸箱,拿到糖果的概率是多少?23.(7分)用10个球设计一个摸球游戏,(1)使摸到红球的概率为51;(2)使摸到红球和白球的概率都是52 (各球除颜色不同外其余均相同).24.(9分)某商场为了吸引顾客,设立了一可以自由转动的转盘,如图所示,并规定:顾客消费100元(含100元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折区域,顾客就可以获得此项待遇.24题图(1)某顾客正好消费99元,有没有获得转盘的机会?(2)某顾客正好消费120元,他转一次转盘,获得打折待遇的概率是多少?他获得九折、八折、七折待遇的概率分别是多少?。

人教版数学九年级上学期《概率初步》单元检测附答案

故选择7获胜的可能性大.
故选A.
[点睛]本题考查用列表法或画树状图求概率,解此题的关键在于熟练掌握其知识点.
3.在–1,1,2这三个数中任意抽取两个数 , ,则一次函数 的图象不经过第二象限的概率为( )
A. B. C. D.
[答案]B
[解析]
分析:
详解:根据题意可得共有6种情况:①k=-1,m=1;②k=1,m=-1;③k=-1,m=2;④k=2,m=-1;⑤k=1,m=2;⑥k=2,m=1;符合题意的有①和③,则P(不经过第二象限)= ,故选B.
A. B. C. D.
[答案]D
[解析]
试题分析:好人牌有六张,共有9张牌,所以抽到好人牌的概率是 ,故选D.
5.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )
A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
A.7B.6C.5D.4
3.在–1,1,2这三个数中任意抽取两个数 , ,则一次函数 的图象不经过第二象限的概率为( )
A. B. C. D.
4.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小明参与游戏,如果只随机抽取1张,那么小明抽到好人牌的概率是( )
A. B. C. D.
5.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )
A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
6.如图的四个转盘中,转盘3,4被分成8等分,若让转盘自由转动一次停止后,指针落在阴影区域内可能性从大到小排列为( )

人教A版高一数学必修第二册第十章《概率》单元练习题卷含答案解析 (45)

高一数学必修第二册第十章《概率》单元练习题卷4(共22题)一、选择题(共10题)1.从一批羽毛球中任取一个,如果其质量小于 4.8g的概率是0.3,质量不小于4.85g的概率是0.32,那么质量在[4.8,4.85)范围内的概率是( )A.0.62B.0.38C.0.7D.0.682.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件C(2≤n≤5,n∈N),若事件C n的概率最大,则n的所有可能值为( )A.3B.4C.2和5D.3和43.一个口袋中装有大小相同的2个白球和3个黑球,从中摸出一个球,放回后再摸出一个球,则两次摸出的球恰好颜色相同的概率为( )A.25B.35C.1225D.13254.从一批苹果中随机抽取50个,其质量(单位:克)的频数分布表如下:分组[80,85)[85,90)[90,95)[95,100]频数5102015用分层随机抽样的方法从质量在[80,85)和[95,100]内的苹果中共抽取4个,再从抽取的4个苹果中任取2个,则有1个苹果的质量在[80,85)内的概率为( )A.14B.13C.12D.165.某英语初学者在拼写单词“steak”时,对后三个字母的记忆有些模糊,他只记得由“a”,“e”,“k”三个字母组成并且“k”只可能在最后两个位置,如果他根据已有信息填入上述三个字母,那么他拼写正确的概率为( )A.16B.14C.13D.126.宁波古圣王阳明的《传习录》专门讲过易经八卦图,如图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示根阴线),从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )A.514B.314C.328D.5287.从1,2,⋯,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A.59B.49C.1121D.11218.下列说法正确的是( )A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机的,在试验前不能确定9.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现双方各出上,中,下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,若双方均不知道对方马的出场顺序,则田忌获胜的概率为( )A.13B.14C.15D.1610.我国古代有着辉煌的数学研究成果.《周髀算经》《九章算术》《海岛算经》《孙子算经》《缉古算经》等10部专著,有着丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选 2 部专著中至少有一部是魏晋南北朝时期专著的概率为 ( ) A .1415B .115C . 29D . 79二、填空题(共6题)11. 甲射击一次,中靶的概率是 P 1,乙射击一次,中靶的概率是 P 2,已知1P 1,1P 2是方程 x 2−5x +6=0 的根,且 P 1 满足方程 x 2−x +14=0.则甲射击一次,不中靶的概率为 ;乙射击一次,不中靶的概率为 .12. 若事件 A ,B 满足 P (A )=12,P (B )=45,P (AB )=25,则 P(AB)−P(AB)= .13. 从 2 名男生和 2 名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为 .14. 甲小组有 2 个男生和 4 个女生,乙小组有 5 个男生和 3 个女生,现随机从甲小组中抽出 1 人放入乙小组,然后从乙小组中随机抽出 1 人,则从乙小组中抽出女生的概率是 .15. 某同学进行投篮训练,在甲、乙、丙三个不同的位置投中的概率分别 13,12,p ,该同学站在这三个不同的位置各投篮一次,恰好投中两次的概率为 718,则 p 的值为 .16. 已知随机事件 A 和 B 相互独立,若 P (AB )=0.36,P(A)=0.6(A 表示事件 A 的对立事件),则 P (B )= .三、解答题(共6题)17. 为了促进学生的全面发展,某市某中学开始加强学生社团文化建设,现用分层随机抽样的方法从“话剧社”“创客社”“演讲社”三个金牌社团中抽取 6 人组成社团管理小组,有关数据如表:社团名称成员人数抽取人数话剧社50a 创客社150b 演讲社100c(1) 求 a ,b ,c 的值;(2) 若从“话剧社”“创客社”“演讲社”已抽取的 6 人中再任意抽取 2 人担任管理小组组长,求这 2人来自不同社团的概率.18.某中学组织了一次高二文科学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取80人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(1) 估计男生成绩的平均分;(2) 若所得分数大于等于90分认定为优秀,在优秀的男生、女生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率,19.在一个不透明的袋中有大小相同的4个小球,其中有2个白球,1个红球,1个蓝球,每次从袋中摸出一球,然后放回搅匀再摸,在摸球试验中得到下列表格中部分数据:摸球次数105080100150200250300出现红球的频数220273650出现红球的频率30%26%24%(1) 请将表中数据补充完整;(2) 如果按照此方法再摸球300次,所得频率与表格中摸球300次对应的频率一定一样吗?为什么?(3) 试估计红球出现的概率.20.盒子中放有10个分别标有号码1,2,⋯⋯,10的小球,从中随机抽取3个球,试分别对“无放回抽取”和“有放回抽取”的方式求3个球的号码都不大于7的概率.21.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10个智力题,每个题10分,然后作了统计,结果如图:贫困地区参加测试的人数3050100200500800得60分以上的人数162752104256402得60分以上的频率发达地区参加测试的人数3050100200500800得60分以上的人数172956111276440得60分以上的频率(1) 完成上面的表格;(2) 求两个地区参加测试的儿童得60分以上的概率;(3) 分析贫富差距为什么会带来人的智力的差别.22.一个盒子里装有标号为1,2,4,8的4张标签.(1) 从盒中不放回地随机取两张标签,求取出的标签上的数字之和不大于5的概率.(2) 从盒中有放回地随机取两张标签,求第一次取出的标签上的数字小于第二次取出的标签上的数字的概率.答案一、选择题(共10题) 1. 【答案】B【解析】记“质量小于 4.8 g ”为事件 A ,“质量不小于 4.85 g ”为事件 B ,“质量不小于 4.8 g ,小于 4.85 g ”为事件 C ,易知三个事件彼此互斥,且三个事件的并事件为必然事件, 所以 P (C )=1−0.3−0.32=0.38. 【知识点】事件的关系与运算2. 【答案】D【解析】分别从 A 和B 中各取 1 个数,则有 6 种可能的取法,点 P (a,b ) 恰好落在直线 x +y =2 上的取法只有 1 种:(1,1);恰好落在直线 x +y =3 上的取法共有 2 种:(1,2),(2,1);恰好落在直线 x +y =4 上的取法共有 2 种:(1,3),(2,2);恰好落在直线 x +y =5 上的取法只有 1 种:(2,3),故事件 C n 的概率分别为 16,13,13,16(n =2,3,4,5),故当 n =3,4 时概率最大.【知识点】古典概型3. 【答案】D【解析】从口袋中摸取一个白球的概率为 25, 摸取一个黑球的概率为 35,则两次都是白球的概率是 25×25=425,两次都是黑球的概率是 35×35=925.则两次摸球颜色恰好相同的概率是 425+925=1325. 【知识点】古典概型4. 【答案】C【解析】设从质量在 [80,85) 内的苹果中抽取 x 个, 则从质量在 [95,100] 内的苹果中抽取 (4−x ) 个,因为频数分布表中 [80,85),[95,100] 两组的频数分别为 5,15, 所以 5:15=x:(4−x ),解得 x =1,即抽取的 4 个苹果中质量在 [80,85) 内的有 1 个, 记为 a ,质量在 [95,100] 内的有 3 个,记为 b 1,b 2,b 3 任取 2 个有 ab 1,ab 2,ab 3,b 1b 2,b 1b 3,b 2b 3 共 6 个样本点, 其中有 1 个苹果的质量在 [80,85) 内的样本点有 ab 1,ab 2,ab 3,共 3 个,所以所求概率为36=12.【知识点】古典概型5. 【答案】B【知识点】古典概型6. 【答案】B【解析】由题意可知,八卦中含1根与2根阴线的卦各有3种,含0根与3根阴线的卦各有1种,故从8种卦中取2卦的取法总数为C82种.因为2卦中恰含4根阴线的取法为C32+C31⋅1=6种,所以所求概率P=6C82=314.故选B.【知识点】古典概型7. 【答案】C【知识点】古典概型8. 【答案】C【解析】必然事件发生的概率为1,不可能事件发生的概率为0,所以任何事件发生的概率总在[0,1]之间,故A错误,B、D混淆了频率与概率的概念,错误.【知识点】频率与概率9. 【答案】D【解析】设齐王的下等马,中等马,上等马分别记为a1,a2,a3,田忌的下等马,中等马,上等马分别记为b1,b2,b3,齐王与田忌赛马,其情况有:(a1,b1),(a2,b2),(a3,b3),齐王获胜;(a1,b1),(a2,b3),(a3,b2),齐王获胜;(a2,b1),(a1,b2),(a3,b3),齐王获胜;(a2,b1),(a1,b3),(a3,b2),齐王获胜;(a3,b1),(a1,b2),(a2,b3),田忌获胜;(a3,b1),(a1,b3),(a2,b2),齐王获胜,共6种等可能结果,其中田忌获胜的只有一种(a3,b1),(a1,b2),(a2,b3),则田忌获胜的概率为16,故选D.【知识点】古典概型10. 【答案】A【解析】从10部专著中选择2部的所有可能情况有C102=45(种).设“所选2部专著中至少有一部是魏晋南北朝时期的专著”为事件A,则A包含的基本事件个数为C71C31+C72=42.由古典概型概率公式可得P(A)=4245=1415.【知识点】古典概型二、填空题(共6题)11. 【答案】12;23【解析】由P1满足方程x2−x+14=0知,P12−P1+14=0,解得P1=12,因为1P1,1P2是方程x2−5x+6=0的根,所以1P1⋅1P2=6,所以P2=13,因此甲射击一次,不中靶的概率为1−12=12,乙射击一次,不中靶的概率为1−13=23.【知识点】事件的关系与运算12. 【答案】310【知识点】事件的关系与运算13. 【答案】13【解析】设2名男生记为A1,A2,2名女生记为B1,B2,任意选择两人在星期六、星期日参加某公益活动,共有A1A2,A1B1,A1B2,A2B1,A2B2,B1B2,A2A1,B1A1,B2A1,B1A2,B2A2,B2B1,12种情况,而星期六安排一名男生、星期日安排一名女生共有A1B1,A1B2,A2B1,A2B2,4种情况,则发生的概率为P=412=13.【知识点】古典概型14. 【答案】1127【解析】根据题意,记事件A1为从甲小组中抽出的1人为男生,事件A2为从甲小组中抽出的1人为女生,事件B为从乙小组中抽出的1人为女生,则 P (A 1)=13,P (A 2)=23, 所以P (B )=P (A 1)P (B ∣A 1)+P (A 2)P (B ∣A 2)=13×39+23×49=1127.【知识点】事件的关系与运算15. 【答案】 23【解析】在甲、乙、丙处投中分别记为事件 A ,B ,C , 恰好投中两次为事件 ABC ,BC ,ABC 发生, 故恰好投中两次的概率:p =13×12×(1−p )+13(1−12)×p +(1−13)×12×p =718,解得 p =23.【知识点】事件的相互独立性16. 【答案】 0.9【解析】 P(A)=0.6⇒P (A )=0.4,P (AB )=P (A )⋅P (B )=0.36⇒P (B )=0.9. 【知识点】独立事件积的概率、事件的关系与运算三、解答题(共6题) 17. 【答案】(1) 由分层随机抽样得 a =650+150+100×50=1,b =650+150+100×150=3,c =650+150+100×100=2,所以 a ,b ,c 的值分别是 1,3,2.(2) 设从“话剧社”“创客社”“演讲社”抽取的 6 人分别为 A ,B 1,B 2,B 3,C 1,C 2,则从 6 人中抽取 2 人的所有可能结果有 (A,B 1),(A,B 2),(A,B 3),(A,C 1),(A,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共 15 个样本点. 记事件 D 为“抽取的 2 人来自不同社团”则事件 D 包含的样本点有 (A,B 1),(A,B 2),(A,B 3),(A,C 1),(A,C 2),(B 1,C 1),(B 1,C 2),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),共 11 个, 所以这 2 人来自不同社团的概率为 1115 .【知识点】分层抽样、古典概型18. 【答案】(1) 男生平均成绩为:65×0.3+75×0.4+85×0.2+95×0.1=76. (2) 男生优秀人数:80×0.1=8,女生优秀人数:80×0.15=12, 故男生抽取 2 人,女生抽取 3 人,至少一名男生的反面是抽出 2 人全部是女生,包含(女1女2,女1女3,女2女3)三种情况,总共有 10 种情况,所以 P =1−310=710.【知识点】频率分布直方图、古典概型、样本数据的数字特征19. 【答案】(1) 频数分别是 15,65,72;频率分别是 20%,25%,27%,24%,25%.(2) 可能不一样,因为频率会随每次试验的变化而变化.(3) 频率集中在 25% 附近, 所以可估计概率为 0.25.【知识点】频率与概率20. 【答案】724,3431000.【知识点】古典概型21. 【答案】(1) 因为1630=0.53,2750=0.54,52100=0.52,104200=0.52,256500=0.51,402800=0.50.所以第一张表格从左至右分别填写 0.53,0.54,0.52,0.52,0.51,0.50;因为 1730=0.567,2950=0.580,56100=0.560,111200=0.555,276500=0.552,440800=0.550. 第二张表格从左至右分别填写 0.567,0.580,0.560,0.555,0.552,0.550. (2) 概率分别为 0.5 与 0.55.(3) 经济上的贫困导致该地区生活水平落后,儿童的健康和发育会受到一定的影响;另外,经济落后也会使教育事业发展落后,导致智力出现差别. 【知识点】样本数据的数字特征、频率与频数、古典概型22. 【答案】(1) 一个盒子里装有标号为1,2,4,8的4张标签.从盒中不放回地随机取两张标签,基本事件总数n=C42=6,取出的标签上的数字之和不大于5包含的基本事件有:(1,2),(1,4),共2个,所以取出的标签上的数字之和不大于5的概率p=26=13.(2) 从盒中有放回地随机取两张标签,基本事件n=4×4=16,第一次取出的标签上的数字小于第二次取出的标签上的数字包含的基本事件有:(1,2),(1,4),(1,8),(2,4),(2,8),(4,8),共6个,所以第一次取出的标签上的数字小于第二次取出的标签上的数字的概率p=616=38.【知识点】古典概型11。

2022-2023学年湘教版2019必修一第三章 概率 单元测试卷(word版含答案)

第三章 概率 单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(共40分)1、(4分)2021年高考前第二次适应性考试结束后,对全市数学成绩进行统计分析,发现数学成绩的频率分布直方图与正态分布()295,8N 的密度曲线非常拟合,据此估计:在全市随机抽取的4名高三同学中,恰有2名同学的数学成绩超过95分的概率( ) A.16 B.13 C.12 D. 382、(4分)已知随机变量X 的概率分布如表所示.当a 在内增大时,方差的变化为( )A. 增大B. 减小C. 先增大再减小D. 先减小再增大 3、(4分)某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,A 学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为X 分,B 学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为Y 分,则()()D Y D X -的值为( )A.12512B.3512C.274D.2344、(4分)坛子里放有3个白球,2个黑球,从中不放回地摸球,用1A 表示第1次摸得白球,2A 表示第2次摸得白球,则( )A.1A 与2A 是互斥事件B.相互独立事件C.对立事件D.不相互独立事件5、(4分)某校高二(1)班甲、乙两名同学进行投篮比赛,他们投进球的概率分别是34和45,现甲、乙两人各投篮一次,恰有一人投进球的概率是( )A.120B.320C.15D.7206、(4分)某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师各自分别将活动通知的信息独立且随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )A.25B.1225C.1625D.45 7、(4分)某电视台夏日水上闯关节目中的前三关的过关率分别为0.8,0.6,0.5,只有通过前一关才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为( )A.0.48B.0.4C.0.32D.0.248、(4分)若随机变量X 满足正态分布()2,N μσ,则有()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈.现有20000参加数学测试,成绩大致服从正态分布()2100,10N ,则可信计本次测试数学成绩120分以上的学生人数约为( )A.1587B.228C.455D.31749、(4分)甲、乙二人争夺一场围棋比赛的冠军,比赛为三局两胜制,甲在每局比赛中获胜的概率均为34,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为( ) A.13 B.25 C.23 D.4510、(4分)将三枚骰子各掷一次,设事件A 为“三个点数都不相同”,事件B 为“至少出现一个6点”,则概率(|)P A B 的值为( ) A.6091 B.12 C.518 D.91216二、填空题(共25分)11、(5分)某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是30.90.1⨯;③他至少击中目标1次的概率是()410.1-.其中正确结论的序号是______________(写出所有正确结论的序号).12、(5分)某学校团委在2021年春节前夕举办教师“学习强国”知识答题赛,其中高一年级的甲、乙两名教师组队参加答题赛,比赛共分两轮,每轮比赛甲、乙两人各答一题.已知甲答对每个题的概率为23,乙答对每个题的概率为12.假定甲、乙两人答题正确与否互不影响,则比赛结束时,甲、乙两人共答对三个题的概率为____________.13、(5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是____________.14、(5分)设随机变量X 服从正态分布()0,1N ,如果()10.8413P X ≤=,则()10P X -<<=________.15、(5分)甲、乙两人对同一目标各射击一次,甲命中的概率为45,乙命中的概率为23,且他们的结果互不影响,若命中目标的人数为ξ,则()Eξ=___________.三、解答题(共35分)16、(8分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求(2)P X=;(2)求事件“4X=且甲获胜”的概率.17、(9分)电影公司随机收集了电影的有关数据,经分类整理得到下表:假设所有电影是否获得好评相互独立。

人教版九年级上册数学《概率初步》单元测试(含答案)

2.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为
A. B. C. D.
3.下列说法中正确的是()
A.不确定事件发生的概率是不确定的
B.事件发生的概率可以是任何小于 的正数
C.事件发生的概率可以等于事件不发生的概率
C,必然事件是一定会发生的事件,则对于选项C很明显不一定能发生,故此选项错误;
D,此试卷确实共24小题,所以是必然事件,故此选项正确.
故选D.
2.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为
A. B. C. D.
4.在“红桃 、红桃 、红桃 ”这三张扑克牌中任取一张,抽到“红桃 ”的概率是()
A.
B.
C.
D.
【答案】B
【解析】
【分析】
根据题意,共3张扑克牌,其中有1张为“红桃7”,根据概率的计算公式计算可得答案.
【详解】解:根据题意,共3张扑克牌,其中有1张为“红桃7”,则抽到“红桃7”的概率是 ,
故选B.
0.074
0.069
0.069
0.071
0 070
0.069
根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).
12.在用模拟试验估计50名同学中有两个是同一天生日 概率中,将小球每次搅匀的目的是_________.
13.一个布袋里面装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是_______.
14.除颜色外完全相同的五个球上分别标有1,2,3,4,5五个数字,装入一个不透明的口袋内搅匀.从口袋内任摸一球记下数字后放回.搅匀后再从中任摸一球,则摸到的两个球上数字和为5的概率是________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率单元测试卷
开县温泉中学 韩先敏
一、选择题:(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选
出符合题目要求的一项,请将每题答案写在下面的表格中) 1.下列事件中是必然事件的是 ( )
(A)我国夏季的平均气温比冬季高. (B)我市2008年7月6日的最高气温是30℃. (C)我市夏季的平均气温比冬季低. (D)2008年12月1日一定下雪. 2.下列说法正确的是( )
A.“明天降雨的概率是80%”表示明天有80%的时间降雨
B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上
C.“彩票中奖概率是1%”表示买100张彩票一定会中奖
D.“抛一枚正方体骰子朝正面的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数
3.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为 ( ) (A)
61
(B) 81 (C) 101 (D) 12
1 4.连掷两次骰子,它们的点数都是4的概率是( )
A 、61
B 、41
C 、161
D 、36
1
5.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。

若某人购物满100元,那么他中一等奖的概率是 ( )
A 、 1001
B 、10001
C 、100001
D 、10000111
6.某一小组的12名同学的血型分类如下:A 型3人、B 型3人、AB 型4人、O 型2人,若从该小组随机抽出2人,这两人的血型均为O 型的概率为 ( ) (A)
661 (B) 33
1 (C) 2215 (D) 227 7.从标有1,2,3…,20的20张卡片中任意抽取一张,可能性最大的是( ) (A)卡片上的数字是4的倍数. (B)卡片上的数字是2的倍数. (C)卡片上的数字是5的倍数. (D)卡片上的数字是3的倍数. 8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、
154 B 、31 C 、51 D 、15
2
9. 6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆. 在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( ) A .
61
B .31
C .21
D .
3
2
10.袋中放有一套(五枚)北京2008年奥运会吉祥物福娃纪念币,依次取出(不放回)两枚纪念币,恰好能够组成“欢迎”的概率是( )
A .
251
B .
201 C .10
1
D .
5
1
二、填空题:(本大题共5小题,每小题5分,共25分)
11.在正方形内有一扇形(见阴影部分),
点P 随意等可能落在正方形内,则这点落在扇形外且在正方形内的概率为 .
12. 袋子中有6个白球,k 个红球,从中任取一个球恰好为红球的概率为0.25,则k =_________
13.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼__________条.
14.某暗箱中放有10个球,其中有红球3个,白球和蓝球若干,从中任取一白球的概率为0.2,则从中任取一蓝球的概率是____________.
15. 给出以下结论: ①如果一件事发生的机会只有十万分之一,那么它就不可能发生; ②二战时期美国某公司生产的降落伞合格率达99.9%,使用该公司的降落伞不会发生危险; ③如果一件事不是必然发生的,那么它就不可能发生;
④从1、2、3、4、5中任取一个数是奇数的可能性要大于偶数的可能性. 其中正确的结论是_______________.
概率单元测试卷
班级 姓名
11 12 13 14 15
三、解答题:(本大题共6小题,共75分。

解答应写出文字说明,或演算步骤)
16.(12分)一只小老鼠想吃到房间里的食物,如图共有二个房间,每个房间内有两个橱柜,其中只有一个房间内的一个橱柜内有食物.用树状图表示可能得到食物的情况.求出成功获得食物的概率.
贝贝
晶晶 欢欢 迎迎 妮妮
17.(12分)某种彩票是由7位数组成,每为数字均由0~9这10个数码中任一个,由摇号得出一个7位数(首位可为0)为中奖号,如果某张彩票的7位数与中奖号相同即为一等奖,若6位相连数字与中奖号相同,即为二等奖,求获得二等奖以及以上的概率.
18、(12分)“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援汶川.
(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;
(2)求恰好选中医生甲和护士A的概率.
19.(13分)用计算机随机产生的有序二元数组(,)
x y,满足11
x
-<<,11
y
-<<,对每
个有序二元数组(,)
x y,用计算机计算22
x y
+的值,记A为事件22
"1"
x y
+<,求事件A
发生的概率。

20.(12分) 某厂生产的产品中,有8件正品,2件次品,正品与次品在外观上没有区别。

从这10件产品中任意抽检2件,计算:
a)2件都是正品的概率;
b)1件是正品,1件是次品的概率;
c)如果抽检的2件产品都是次品,则这一批产品被退货,求这批产品被退货的概
率。

21.(14分)一只口袋装有形状、大小都相同的6只小球,其中有2只白球、2只红球和2只黄球。

从中一次随机摸出2只球,试求:
(1)2只球都是红球的概率;
(2)2只球同色的概率;
(3)“恰有1只球是白球的概率”是“2只球都是白球的概率”的多少倍?。

相关文档
最新文档