离散数学树知识点总结

合集下载

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结离散数学是一门重要的数学学科,它涉及到离散的对象和离散的结构,而不是连续的对象和结构。

以下是离散数学的几个重要知识点的总结:集合论- 集合:集合是由元素组成的对象的集合。

集合的运算包括并集、交集和差集等。

集合:集合是由元素组成的对象的集合。

集合的运算包括并集、交集和差集等。

- 子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。

子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。

- 幂集:一个集合的幂集是所有可能的子集构成的集合。

幂集:一个集合的幂集是所有可能的子集构成的集合。

逻辑- 命题:一个命题是一个陈述句,可以被判断为真或假。

命题:一个命题是一个陈述句,可以被判断为真或假。

- 逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。

逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。

- 真值表:用来列出复合命题在各种可能情况下的真值。

真值表:用来列出复合命题在各种可能情况下的真值。

关系- 关系:关系用来描述元素之间的联系。

关系可以是二元的或多元的。

关系:关系用来描述元素之间的联系。

关系可以是二元的或多元的。

- 等价关系:等价关系是一种满足自反性、对称性和传递性的关系。

等价关系:等价关系是一种满足自反性、对称性和传递性的关系。

- 偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。

偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。

- 图的表示:图可以用邻接矩阵或邻接表来表示。

图的表示:图可以用邻接矩阵或邻接表来表示。

图论- 连通性:图中的连通性用来描述图中顶点之间是否存在路径。

连通性:图中的连通性用来描述图中顶点之间是否存在路径。

- 最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。

最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。

离散数学-图论-树

离散数学-图论-树

二叉树
• 定义:二元有序树称为二叉树.
– 每个顶点最多有两个子顶点,一般称为左子顶 点和右子顶点. – 类似地,称每个顶点的左子树和右子树. – 每个顶点的出度都是0或2,称为二叉正则树.
二叉树的性质
• 定理:设有二叉树T, (1)第i层最多有2i个顶点; (2)若T高度为h,则T最多有2h11个顶点,最 少有h个顶点; (3)树叶个数出度为2的顶点个数1.
1 2
Huffman树与最优编码
• 若以符号为树叶,符号概率为树叶的权,利 用通过Huffman算法得到的二叉树对符号 编码,则可以保证i pili最小. • 例:对1,1,2,3,5,6,7,8构造Huffman树.
7 3 2 1 1 5 6
8
编码:设 A, B, C, D 的频率(即权值)分别为 17%, 25%, 38%, 20%, 试设计哈夫曼编码(最佳前缀码/最优编码)。
最优编码
• 构成消息的各符号的使用频率是不一样 的,显然常用符号编码短一些,罕用符号编 码长一点,可以使传输的二进制位数最少. • 最优编码问题:给定符号集{a1,a2,...,am}, ai 的出现概率是pi,编码长度为li,要使i pili最 小.
例:如果需传送的电文为 ‘A B A C C D A’,它只用到四种字符, 用两位二进制编码便可分辨。假设 A, B, C, D 的编码分别为 00, 01,10,11,则上述电文便为 ‘00010010101100’(共 14 位), 译码员按两位进行分组译码,便可恢复原来的电文。 数据的最小冗余编码问题 在编码过程通常要考虑两个问题 译码的惟一性问题
5 1 5 6 6
U 1
1 5 6 1 5 5 4 6 5 4 5 5
2

离散数学 图论-树

离散数学 图论-树

中序遍历(次序:左-根-右) 前序遍历(次序:根-左-右) 后序遍历(次序:左-右-根) b 中序遍历: c b e d g f a I k h j 前序遍历: a b c d e f g h i k j 后序遍历: c e g f d b k i j h a
例:给定二叉树,写出三种访问 结点的序列
是否为根树
(a) (no)
(b) (no)
(c) (yes)
从树根到T的任意顶点v的通 路(路径)长度称为v的层数。 v5的层数为 层。
层数最大顶点的层数称为树 高.将平凡树也称为根树。 右图中树高为( )。
v1
v2 v3
v4 v8v5Fra bibliotekv6v7 v10
v9
在根树中,由于各有向边的方向是一 致的,所以画根树时可以省去各边上的所 有箭头,并将树根画在最上方.
等长码:0-000;1-001;2-010;3-011;4-100; 5-101;6-110;7-111. 总权值: W2=3*100=300
4、二叉树的周游(遍历)
二叉树的周游:对于一棵二叉树的每一个结点都访问一次且 仅一次的操作 1)做一条绕行整个二叉树的行走路线(不能穿过树枝) 2)按行走路线经过结点的位臵(左边、下边、右边) 得到周游的方法有三种: 中序遍历(路线经过结点下边时访问结点) 访问的次序:左子树-根-右子树 前序遍历(路线经过结点左边时访问结点) 访问的次序:根-左子树-右子树 后序遍历(路线经过结点右边时访问结点) 访问的次序:左子树-右子树-根
2、根树中顶点的关系
定义:设T为一棵非平凡的根树, v2 ∀vi,vj∈V(T),若vi可达vj,则称vi为 vj的祖先,vj为vi的后代; v4 v5 若vi邻接到vj(即<vi,vj>∈E(T),称 vi为vj的父亲,而vj为vi的儿子 v8 若vj,vk的父亲相同,则称vj与vk是兄 弟

离散数学必备知识点总结资料

离散数学必备知识点总结资料

离散数学必备知识点总结资料离散数学是指离散的数学概念和结构,独立于连续的数学。

它是在计算机科学、信息科学、数学基础研究、工程技术等领域中的基础课程之一。

以下是离散数学必备的一些知识点总结。

一、逻辑与集合1. 命题与谓词:命题是一个陈述,可以被判断为真或假,而谓词是一种用来描述命题所涉及实体之间关系的语句。

2. 命题逻辑:重点关注命题真假和与或非等运算关系,包括真值表和主范式。

3. 一阶谓词逻辑:注意包含全称量词和存在量词,也包括a|b, a//b等符号的理解。

4. 集合与运算:集合是指不同元素组成的一个整体。

基本的集合运算包括并、交、差等。

5. 关系与函数:关系是一种元素之间的对应关系,而函数是一种具有确定性的关系,即每一个自变量都对应唯一的函数值。

6. 等价关系与划分:等价关系是指满足自反性、对称性和传递性的关系。

划分是指将一个集合分成若干个不相交的子集,每个子集称为一个等价类。

二、图论1. 图的定义和基本概念:图由节点和边构成,节点间的连线称为边。

包括度、路径、连通性等概念。

2. 图的表示方法:邻接矩阵和邻接表。

3. 欧拉图与哈密顿图:欧拉图是指能够一笔画出的图,哈密顿图是指含有一条经过每个节点恰好一次的路径的图。

4. 最短路径与最小生成树:最短路径问题是指在图中找出从一个节点到另一个节点的最短路径。

最小生成树问题是指在图中找出一棵覆盖所有节点的树,使得边权之和最小。

三、代数系统1. 代数结构:包括群、环、域等概念。

2. 群的定义和基本概念:群是在一个集合中定义一种二元运算满足结合律、单位元存在和逆元存在的代数结构。

四、组合数学1. 排列、组合和二项式系数:排列是指从n个元素中任选r个进行排序,组合是指从n个元素中任选r个但不考虑排序,二项式系数是指组合数。

2. 生成函数:将组合数与多项式联系起来的一种工具,用于求出某种算法或结构的某些特定函数。

3. 容斥原理:一个集合的容斥原理指在集合的并、交、补之间的关系。

离散数学 树

离散数学 树

离散数学树
离散数学中的树(Tree)是一种常见的图论结构,它是一种无向、连通且没有简单回路的无向图,或者是一个有向连通图,其中每个节点都只有唯一一个父节点(除了根节点)。

树形结构中的每一个节点都可以视为一个子树的根节点,因为它下面连接了若干个子节点,这样就形成了一棵向下生长的树状结构。

树形结构还有一个重要的特点就是它具有很好的递归性质,因为每个节点下面都可以再建立一棵子树,这样就可以逐层递归地构建出整棵树。

在离散数学中,树被广泛应用于算法设计、数据结构以及对计算机网络和信息系统进行建模等领域。

树的深度和广度优先遍历、树的一些基本性质(如高度、度、叶子节点等)以及树的遍历应用在图的搜索算法、排序、哈夫曼编码、抽象语法树等算法中都有广泛的应用。

离散数学7-树

离散数学7-树

(b)
(a)
V5
2
1
V7
8
9
V2
V4
2
3
V8
5
V1
V1
V4
V5
1
3
V7
V6
8
V4
2
V8
5
6
V1
1
V5
6
V7
V6
8
3
V8
5
6
V7
9
V3
(e)
V3
(f)
(g)
22
V2
V3
(h)
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
23
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
成圈。
首先证明T无简单回路。对n作归纳证明。
(i) n=1时,m=n-1=0,显然无简单回路;
(ii)假设顶点数为n-1时无简单回路,现考察顶点数是n的情况:此时至少有一
个顶点v其次数d(v)=1。因为若n个顶点的次数都大于等于2,则不少于n条边,但这与
m=n-1矛盾。
删去v及其关联边得到新图T’,根据归纳假设T’无简单回路,再加回v及其关联
边又得到图T,则T也无简单回路。
再由图的连通性可知,加入任何一边后就会形成圈,且只有一个圈,否则原图
中会含圈。
9
二. 基本定理——证明
证明(4):(3)(4),即证一个无圈图若加入任一边就形成圈,
则该图连通,且其任何一边都是桥。
若图不连通,则存在两个顶点vi和vj,在vi和vj之间没有路,若
加边(vi,vj)不会产生简单回路,但这与假设矛盾。由于T无简单回

山东科技大学 离散数学7-6对偶图与着色7-7 树+复习

山东科技大学  离散数学7-6对偶图与着色7-7 树+复习

7-8 根树及其应用
一、根树
1、有向树 定义7-8.1 如果一个有向图在不考虑边的方向时
是一棵树,那么,该有向图称为 有向树。
2、根树
定义7-8.2 一棵有向树,如果恰有一个 结点的入度为0,其余所有结点的入度都为1, 则称为根树(rooted tree)。 入度为0的结点称为T的树根。 出度为0的结点称为树叶。 出度不为0的结点称为分支点或内点。
7. 设a和b是格<A, ≤>中的两个元素,证明 (1)a∧b=b 当且仅当a∨b=a (2) a∧b < b和a∧b <a 当且仅当a与b是不可比较的 证明: (1)在格中吸收律满足, 则 由a∧b=b, a∨b=a∨(a∧b)=a 反之, 若a∨b=a, 则a∧b= (a∨b)∧b=b (2)若a∧b < b和a∧b <a, 即表明a∧b ≠b和a∧b ≠a, 用反证法: 假设a与b是可比较的, 则 a≤b,a∧b=a,矛盾; b≤a,a∧b=b,矛盾 因此a与b是不可比较的。 反之, a与b是不可比较的, 则a≤b和b≤a均不成立, 即a∧b ≠b和a∧b ≠a 根据∧的定义:a∧b≤a 和 a∧b≤b, 故 a∧b < b和a∧b <a
点中的某一个称为根,其他所有结点被分成有限个
在有向树中,结点的出现次序是没有意义的。 但实际应用中,有时要给出同一级中结点的相对 次序,这便导出有序树的概念。 4、有序数:在根树中规定了每一层上结点的次 序,称为有序树。
为表示结点间的关系,有时借用家族中的术语。
定义 在以v0为根的树中, (1)v1,v2,…,vk称为v0的 儿子,v0称为它们的 父亲。vi,vj 同为一顶点v的儿子时,称它们为兄弟。 (2)顶点间的父子关系的传递闭包称为顶点间

离散数学-第10章 树

离散数学-第10章 树
2023/11/30
避圈法
1
1
2
6
5
2
6
5
3
4
3
4
➢ 由于生成树的形式不惟一,故上述两棵生成树 都是所求的。
➢ 破圈法和避圈法的计算量较大,主要是需要找 出回路或验证不存在回路。
2023/11/30
算法10.2.3
求连通图G = <V, E>的生成树的广度优先搜索算法: (1)任选s∈V,将s标记为0,令L = {s},V = V-
(a)
(b)
(c)
(d)
(e)
2023/11/30
定义10.3.2
一棵非平凡的有向树,如果恰有一个结点的入度为 0,其余所有结点的入度均为1,则称之为根树 (Root Tree)或外向树(Outward Tree)。入度为0的 结点称为根(Root);出度为0的结点称为叶(Leaf); 入度为1,出度大于 0的结点称为内点(Interior Point) ; 又 将 内 点 和 根 统 称 为 分 支 点 (Branch Point)。在根树中,从根到任一结点v的通路长度, 称为该结点的层数(Layer Number);称层数相同的 结点在同一层上;所有结点的层数中最大的称为根 树的高(Height)。
2023/11/30
例10.2.5
利用广度优先搜索算法求下图的生成树。
1(a) 3(e) bd
4(gd1)(a) 3(e) bd
4(gh)
0(a-)
2e(b0)(a-)
h 3(e)
4(jh2e)(b)
h
4(h) j
3(e)
cf 1(a) 2(c)
3(ie1)(ca)
f 2(c)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章树
一、掌握基本概念
树的子树是互不相交的,树可以为空(空树)
非空的树中,只有一个结点是没有前趋的,那就是根。

非空树只有一个树根,是一对多的关系。

叶子结点、结点的度、树的度、结点的层次、树的深度、树的四种表示方法
二、二叉树的定义、特点、五种基本形态
二叉树是有序树,左右子树不能互相颠倒
二叉树中结点的最大度为2,但不一定都是2。

三、二叉树的性质要掌握
性质1:二叉树的第i层上至多有2 i-1(i 1)个结点。

性质2:深度为k的二叉树中至多2k-1个结点。

性质3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。

证明:1)结点总数 n=n0+n1+n2 (n1是度为1的结点数)
2)进入分支总数m(每个结点唯一分支进入) n=m+1
3)m个分支是由非叶子结点射出 m=n1+2n2
性质4:具有n个结点的完全二叉树的深度k为[log2n]+1
四、满二叉树和完全二叉树的区别是什么?
满二叉树一定是完全二叉树,但是完全二叉树不一定是满二叉树。

深度为k的二叉树,最少有k个结点,最多有2k-1
深度为k的完全二叉树,最少有2k-1-1+1个结点,最多有2k-1
五、二叉树的存储结构(可以通过下标找结点的左右孩子)
1.顺序存储结构适用于满二叉树和完全二叉树。

(其缺点是必须把其他二叉树补成完全二叉树,从上到下,从左到右依次存储在顺序存储空间里,会造成空间浪费)
2.二叉链表存储结构(其优点是找左孩子和右孩子方便,但缺点是找父节点麻烦)
lchild Data rchild
(重点)
3. 三叉链表存储结构
不仅找其左、右孩子很方便,而且找其双亲也方便
六、遍历的概念是什么?
七、二叉树的遍历有三种:前序(先序、先根)遍历、中序(中序、中根)遍历、后序(后序、后根)遍历
1.给出一棵二叉树,要会二叉树的三种遍历
2.给出两种遍历(必须有中序遍历),要求会画该二叉树。

八、了解引入线索(中序、先序、后序)二叉树的原因是什么?
九、会在二叉树上画先序线索化、中序线索化、后序线索化。

在线索二叉树的格式中,可以找到任意结点的直接后继。

(错)
在线索二叉树中,如果某结点的右孩子为空,那么可以找到该结点的直接后继。

(对)
在线索二叉树中,如果某结点的左孩子为空,那么可以找到该结点的直接前趋。

(对)十、树.森林和二叉树的相互转换
树转换成二叉树后,转换后的二叉树根的右子树为空。

十一、森林的遍历(只有先序遍历和后序遍历)
先序遍历一棵树,相当于先序遍历该树所对应的二叉树。

后序遍历一棵树,相当于中序遍历该树所对应的二叉树。

十二、赫夫曼树(又称最优二叉树或哈夫曼树)、赫夫曼树编码
1. 赫夫曼树中,权越大的叶子离根越近,其形态不唯一,但是WPL带权路径长度一定是最小。

2.一定要会构造哈夫曼树,在构造好的哈夫曼树上会构造哈夫曼编码。

(认真看题目要求)第6章算法设计题
1.已知二叉树中的结点类型用BiTNode表示,被定义描述为:
Typedef struct BiTNode {
TElemType data ;
struct BiTNode * LChild , *RChild;
} BiTNode,*BiTree;
其中data为结点值域,LChild和RChild分别为指向左、右孩子结点的指针域,编写出求一棵二叉树高度的算法。

Int BTreeHeight(BiTree BT){
if (BT==NULL) return 0;
else {
h1=BTreeHeight(BT->LChild);
h2=BTreeHeight(BT->RChild);
if (h1>h2) return(h1+1);
else return( h2+1);
}
}
2.已知二叉树中的结点类型用BiTNode表示,被定义描述为:
Typedef struct BiTNode {
TElemType data ;
struct BiTNode * LChild , *Rchild;
} BiTNode,*BiTree;
BiTree T;
其中data为结点值域,LChild和RChild分别为指向左、右孩子结点的指针域,编写算法,求出二叉树中2度结点个数。

int degree2nodenum(BiTree T)
{if (T){
if(T->lchild!=NULL &&T->child!=NULL)
count++;
leafnodenum(l->lchild);
leafnodenum(l->rchild);
}
return count;
}
3.已知二叉树中的结点类型用BiTNode表示,被定义描述为:
Typedef struct BiTNode {
TElemType data ;
struct BiTNode * LChild , *RChild;
} BiTNode,*BiTree;
BiTree T;
其中data为结点值域,LChild和RChild分别为指向左、右孩子结点的指针域,写一算法,求出二叉树中的叶子结点个数。

void BTreeLeaf (BiTree BT)
{
if(BT)
{
if(BT-> LChild==NULL && BT->RChild==NULL) count++;
BTreeLeaf (BT->LChild); // 访问左子树
BTreeLeaf (BT->RChild); // 访问右子树
}
}
或下面算法均可
编写递归算法,计算二叉树中叶子结点的数目。

int LeafCount_BiTree(Bitree T)//求二叉树中叶子结点的数目
{
if(!T) return 0; //空树没有叶子
else if(!T->lchild&&!T->rchild) return 1; //叶子结点
else return Leaf_Count(T->lchild)+Leaf_Count(T->rchild);//左子树的叶子数加上右子树的叶子数
}//LeafCount_BiTree
4.PPT上的三种遍历递归算法和课本上P131先序递归创建二叉链表。

5. 给定一棵二叉树,其根指针为root。

试写出求二叉树结点数目的算法(递归算法或非递归算法)。

【提示】采用递归算法实现。

int count(BiTree t){
if (t==NULL)
return 0;
else
return count(t->lchild)+count(t->rchild)+1;
}
6. 以二叉链表为存储结构,写一算法交换各结点的左右子树。

【分析】
依题意,设t 为一棵用二叉链表存储的二叉树,则交换各结点的左右子树的运算基于后序遍历实现:交换左子树上各结点的左右子树;交换右子树上各结点的左右子树;再交换根结点的左右子树。

【算法】
void Exchg(BiTree *t){
BinNode *p;
if (t){
P=(*t)->lchild;
(*t)->lchild=(*t)->rchild;
(*t)->rchild=p;
Exchg(&((*t)->lchild));
Exchg(&((*t)->rchild));
}
}
7. 已知一棵二叉树采用二叉链表结构存储,每个结点的值为整数类型。

要求:给出相应的语言描述,在此基础上设计计算二叉树中所有结点值之和的算法。

typedef struct link
{int data;
struct link * lchild;
struct link * rchild;
} bitnode , *bitree ;
void sum(bitree *bt,int &s)
{
if(bt!=0) {s=s+bt->data; sum(bt->lchild,s); sum(bt->rchild,s);}
}
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

相关文档
最新文档