2017年南平一中自主招生考试数学学科试卷和答案
2017年实验班自主招生理化考试试卷和答案

2017年南平一中第二批次自主招生(实验班)考试理化学科试卷考试时间:90分钟 满分:100分就读学校: 姓名: 考场号: 座位号: 相对原子质量:H-1 C-12 O-16 Na-23 Mg-24 S-32 Cl-35.5 Ca-40 Fe-56 Zn-65一、选择题(本大题共21小题,每小题2分,共42分。
每小题只有一个正确答案)1.下列说法不.正确的是( ) A .《梦溪笔谈》记载有“热胆矾铁釜,久之亦化为铜”这个过程中发生了置换反应B .《本草纲目》中“冬月灶中所烧柴薪之灰,令人以灰淋汁,取碱浣衣”中的碱是K 2CO 3C .“火树银花”中的焰火实质上是金属元素的焰色反应,属于物理变化D .“春蚕到死丝方尽”中的蚕丝是纤维素,属于高分子化合物2.下列溶液中通入(或加入)括号中的物质,能使溶液的pH 值明显增大的是( )A .稀硝酸(氢氧化钡溶液)B .氢氧化钠溶液(二氧化碳)C .氢氧化钙的饱和溶液(消石灰)D .稀硫酸(氯化钙)3.将下列各组中的物质混合,若每组中最后一种物质足量,充分反应后过滤,则滤纸上留下的不溶物种数最多的是( )①NaOH 溶液、MgCl 2溶液、HNO 3溶液 ②Fe 2(SO 4)3溶液、NaNO 3溶液、Ba(OH)2溶液③CuCl 2溶液、FeCl 3溶液、锌粒 ④NaCl 溶液、AgNO 3溶液、盐酸A .①B .②C .③D .④4.下列有机物无论以何种比例混合,只要混合物的总质量一定,完全燃烧时消耗氧气,生成二氧化碳的质量均保持不变的组合是( )①乙醇 ②乙烷 ③乙酸 ④葡萄糖 ⑤蔗糖(C 12H 22O 11)A .①②B .②③C .③④D .④⑤5.已知溶液显电中性是由于溶液中阳离子所带的正电荷总数与阴离子所带的负电荷总数相等。
现有某溶液中大量存在X 、-24SO 、-Cl 、+4NH 、+3Fe 五种微粒,其微粒个数之比为1:3:4:2:2,试推断X 为( )A .+2BaB .-OHC .-3NOD .+2Mg6. 在配制质量分数为10%的氯化钠溶液的过程中,导致溶液中氯化钠质量分数大于10%的可能原因是( )A .在托盘天平的左盘称取氯化钠前,游码不在零位置就调节天平平衡,后将游码移动得到读数B .用量筒量取水时俯视读数C .配制溶液的烧杯用少量蒸馏水润洗D .氯化钠晶体不纯7. 下列装置所示的实验中,能达到实验目的的是( )A .图1用于分离碘和酒精B .图2用于实验室制取少量CO 2 ,该装置的优点是可控制反应随时发生随时停止C .图3用于检查装置的气密性:将小针筒的活塞下压,若水槽中导管口有气泡生成,说明装置气 密性良好D .图4用于检验病人是否患有糖尿病8.初中化学中几种常见物质之间的相互转化关系如图所示。
2014年福建省南平一中自主招生数学学科试卷(含答案)精要.

2014年福建省南平一中自主招生数学学科试卷考试时间:90分钟 满分100分一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个正确答案)1.若2,4==c b b a ,则cb b a ++的值为( ).A.310 B.311 C.3 D.382.小蒋和小潘两人电脑打字比赛,小蒋每分钟比小潘少打8个字,小蒋打800个字和小潘打880个字所用的时间相等.设小蒋打字速度为x 个/分钟,则下列方程正确的是( ).A.x x 8808800=+ B.x x 8808800=- C.8880800+=x x D.8880800-=x x 3.袋中有6个球(除颜色不同外,其它完全相同),其中白球3个,红球2个,黑球1个,如果从中随机摸出2个球,那么这两个均为白球的概率为( ). A.31 B.41 C.51 D.61 4.方程组2121x y a x y a -=+⎧⎨+=-⎩的解x 、y 满足不等式21x y ->,则a 的取值范围为( ).A.21≥a B.31>a C.32≤a D.23>a 5.在△ABC 中,AB =6,AC =8,BC =10,P 为BC 边上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( ). A.3 B.5 C.4.8 D.2.4 6.已知23-=+b a ,1-=ab ,则)2)(2(b a b a --的值为( ). A.227 B.229 C.427 D.429EABC PFM (第5题图)ABCD(第7题图)7.如图,在四边形ABCD 中,AB=32,CD =2,∠A =∠C =90°, ∠B =60°,则AD 的长为( ). A.233 B.13+ C.3 D.2 8.如图,在平面直角坐标系xoy 中,正方形ABCD 的顶点坐标分别 为A (1,1),B (1,-1),C (-1,-1),D (-1,1),将y 轴上 一点P (0,2)绕点A 旋转180°得到点P 1;将点P 1绕点B 旋转 180°得到点P 2;将点P 2绕点C 旋转180°得到点P 3;将点P 3 绕点D 旋转180°得到点P 4;……重复以上操作,依次得到点 P 1、P 2、P 3、P 4、……,则点P 2014的坐标是( ).A.(0,2) B.(2,0) C.(0,-2) D.(-2,0)9. 函数1121≥<⎪⎩⎪⎨⎧+=x x xx y ,当a y =时,对应的x 有两个不相等的值,则a 的取值范围( ).A.1≥a B.0>a C.20≤<a D.20<<a10.如图,菱形ABCD 的边长为2,∠DAB =60°,点 O 为射线AC 上动点,动圆⊙O 始终与射线AB 相切,研究⊙O 与菱形ABCD 各边交点总个数的情况,以下论述正确的是( ). ①最少有1 个交点; ②最多有6 个交点; ③共有6种不同的情况;④有2个交点时,30<<AO ;⑤有3个交点时. 334=AOA.①②⑤ B.②③⑤ C.①③④ D.②④⑤BA CDP xy O (第8题图)ABCDO(第10题图)二、填空题(本大题5小题,共20分)11.如图是一个包装盒的三视图,则这个包装盒的体积是 3cm . 12.在半径为1的圆中,有两条弦AB 、AC ,其中AB =3, AC =2,则∠BAC 的度数为 .13.一个半径为1cm 的圆在边长为6cm 的正三角形内部任意移动(圆与正三角形的边可以相切),则圆在正三角形内不能 达到部分的面积为 2cm . 14.已知关于x 的二次函数y =14)3(2-++-px p px ,对任意实数x ,函数值y 都为负,则实数p 的取值范围是 .15.对于非负实数x 经“四舍五入”精确到个位的值记为{x },即:当n 为非负整数时,如果2121+<≤-n x n ,则{x }=n ,如:{0.69}=1,{2.3}=2,则下列结论: ①{x }-x =0; ②{57}=1; ③若{x -1}>2,则2.5<x ≤3.5; ④{x +y }={x }+{y }不恒成立; ⑤满足{x }=x 34的x 只有三个非负实数. 其中一定正确的结论有 . (填写序号)三、解答题(本大题5小题,共50分)16.(本题满分5分)()2342112333--⎪⎭⎫⎝⎛-++--π17.(本题满分5分)解关于x 的方程:mx -2=3m +5x4cm10cm主视图 左视图俯视图(第11题图)B C D E OA (第18题图)18. (本题满分10分)在Rt △ABC 中,∠C =90°,点O 在AB 上,以O 为圆心,OA 的长为半径的圆分别交AC ,AB 于点D 、E ,且BD 为⊙O 的切线, (1)求证:△ADE ∽△BCD ;(2)若BC =4,BD =5,求sin A 的值.19.(本题满分15分)如图,在一个坡度i =1︰7的斜坡面BD 上,架设两根高度均为10米的电杆DC 和BA ,水平距离DE 为14米,电线在空中架设时,A 、C 两端挂起的电线下垂近似成抛物线2981x y =形状,在竖直方向上,求下垂电线与坡面的距离MF 的最小值.20.(本题满分15分)定义:一条直线平分三角形的面积称这条直线为三角形的“等积线”,平分三角形的周长称这条直线为三角形的“等周线”,已知在直角坐标系中,点O 为坐标原点,A (4,3),B (4,-3).(1)过点A 是否存在直线l ,既是△AOB 的“等积线”又是“等周线”,请说明理由. (2)当点P 在线段OA 上,点Q 在线段OB 上,直线PQ 为△AOB 的“等周线”,求Q P y y -; (3)当点M 在线段OB 上,点N 在线段AB 上,直线MN 既是△AOB 的“等积线”又是“等周线”,①求OM 的长;②平面上是否还有既是△AOB 的“等积线”,又是“等周线”的直线?若有,请画出所有情况的示意图.A B C D E (第19题图2) A xyAxyA xyOO OPN-14321-15432-14321-15432-14321-15432111A C D EB ED (第19题图1) MF2014年福建省南平一中自主招生数学学科评分标准一、选择题(本大题共10小题,每小题3分,共30分)1.A ;2.C ;3.C ;4.B ;5.D ;6.A ;7.D ;8.C ;9.D ;10.B .二、填空题(本大题5小题,共20分)11.3240;12.75°或15°;13.(π-33);14.109-<p ;15.②④⑤ 三、解答题(本大题5小题,共50分)16.(本题满分5分)解:原式=()()42381231----+……………………2分=42383231+---+ ……………………4分 =6- ……………………5分17.(本题满分5分)解: 235+=-m x mx()235+=-m x m ……………………2分(1)当5≠m 时,523-+=m m x ; ……………………4分(2)当5=m 时,此方程无解. ……………………5分18. (本题满分10分) (1)证明:连接DE 、OD ∵BD 为⊙O 的切线 ∴OD ⊥BD∴∠BDO =90° …………………1分 ∵∠BDC +∠BDO +∠ODA =180° ∴∠BDC +∠ODA =90° ∵OD =OA ∴∠A =∠ODA …………………2分 ∴∠BDC +∠A =90° ∵∠C =90°∴∠BDC +∠CBD =90°∴∠A =∠CBD ………………4分 ∵AE 为⊙O 的直径BC DEOA∴∠EDA =90°=∠C ……………………5分 ∴△ADE ∽△BCD ……………………6分 (2)在Rt △BCD 中,BC =4,BD =5∴3162522=-=-=BC BD CD ………………7分∴sin ∠CBD =53=BD CD ……………………8分 ∵ ∠A =∠CBD ∴sin A =sin ∠CBD =53……………………10分 19.(本题满分15分)解:如图,以点A 为原点建立坐标系,……………………1分∵DC =BA =10米∴点B 的坐标为(0,-10)∵斜坡的坡度i =1︰7,DE =14米 ∴BE =2米∴点D 的坐标为(14,-12)点C 的坐标为(14,-2) ……………4分设抛物线AC 的解析式为bx x y +=2981, 直线BD 的解析式为n mx y +=代入点的坐标可确定解析式为:x x y 729812-=;1071--=x y ……………10分设抛物线上任一点M (M x ,M M x x 729812-), 如右图过点M 作x 轴的垂线交BD 于F , 则点F 的坐标为(M x ,1071--M x ) ∴()21979811071981107172981222+-=+-=++-=-=M M M M M M F M MF x x x x x x y y y ………………13分 ∴下垂的电线与坡面的最近距离为219米. ………………15分ABCDE xyMF说明:(1)若以D 为原点建立平面直角坐标系,则抛物线AC 的解析式为109812+=x y ,直线BD 的解析式为x y 71-=; (2)若以C 为原点建立平面直角坐标系,则抛物线AC 的解析式为2981x y =,直线BD 的解析式为1071--=x y ; (3)若以E 为原点建立平面直角坐标系,则抛物线AC 的解析式为12729812+-=x x y ,直线BD 的解析式为271+-=x y ; (4)若以B 为原点建立平面直角坐标系,则抛物线AC 的解析式为10729812+-=x x y ,直线BD 的解析式为x y 71-=. 20.(本题满分15分)解:(1)不存在. …………………1分若直线AC 平分△AOB 的面积,那么S △AOC =S △ABC两个三角形高相等, …………………3分 ∴OC =BC ,∵AO ≠AB ,∴AO +OC ≠BC +BA∴不存在. …………………4分(2)易得直线OA 的解析式为x y 43=,直线OB 的解析式为x y 43-=.…5分 设点P (4t ,3t ),则OP =5t∵直线PQ 为△AOB 的“等周线” ∴OQ =8-5tA B x y (第20题图1)A B x y (第20题图2) A B xy (第20题图3) O CO O P Q M N -3-2-14321-15432-3-2-14321-15432-3-2-14321-15432111∴Q (t t 3524,4532+--) ……………………7分 从而524=-Q P y y ……………………8分(3)①设N (4,k ),则NB =k +3∵直线MN 为△AOB 的“等周线” ∴MB =8-(k +3)=5-k ∴OM =OB -MB =k设M (k 54,k 53-)……………………10分 ∵12=∆AOB S ,直线MN 为△AOB 的“等积线” ∴6=∆MNB S ……………………11分 ∴()6544321=⎪⎭⎫ ⎝⎛-+k k 解得0,221==k k从而2=OM 或0=OM ………13分②如下图所示,共有三条既是△AOB 的“等积线”,又是“等周线”的直线,它 们分别是l 1、l 2和x 轴. ……………………15分 说明:在示意图中,少画l 1和x 轴不扣分,少画l 2和多画不得分.-3-2-14321-154321 ABxyOl 2l 1。
南平一中自主招生数学试题及答案

数 学 试 题(满分:100分 考试时间:90分钟)一、选择题(每小题3分,共10题,在给出的四个选项中,只有一项是符合题目要求的) 1.已知6,5==+xy y x ,则=+22y x ( )A. 1B. 13C. 17D. 252.已知圆锥的底面半径为9㎝,母线长为30㎝,则圆锥的侧面积为( ) A .π270cm 2 B .π360cm 2 C .π450cm 2 D .π540cm 23.代数式5432--x x 的值等于7,则5342--x x 的值为( )A. 7B. 12C. 1D. -14.x 、y 都是正数,并且成反比,若x 增加了p ﹪,设y 减少的百分数为q ﹪,则q 的值为( ) A.1001%p p + B. 100%p C. 100p p + D. 100100pp+5.下列命题:①若0=++c b a ,则042≥-ac b ;②若c a b +>,则一元二次方程02=++c bx ax 有两个不相等的实数根; ③若c a b 32+=,则一元二次方程02=++c bx ax 有两个不相等的实数根;④若042≥-ac b ,则二次函数c bx ax y ++=2的图象与坐标轴的公共点的个数是2或3.正确命题的个数有( )A.1B.2C.3D.4 6.一个几何体是由一些大小相同的小正方块摆成的,其俯视图 与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个7.如图,∠ACB =60○,半径为2的⊙0切BC 于点C ,若将⊙O 在CB上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为( )A .π2B .π4C .32D .4俯视图 主视图(第6题图)第7题图BAc o8.父亲每天都爱带报纸去上班,父亲离开家的时间记为x ,送报人来的时间记为y ,若00:830:7≤≤x ,00:800:7≤≤y ,则父亲能拿不到报纸上班的概率为( )A.41B.31C.21D. 439.在平面直角坐标系中,已知点A (4-,0),B (2,0),若点C 在一次函数221+-=x y 的图象上,且△ABC 为直角三角形,则满足条件的点C 有( ) A .1个B .2个C .3个D .4个10.如图,AB 为半⊙O 的直径,C 为半圆弧的三等分点,过B ,C 两点的02=++c bx ax 半⊙O 的切线交于点P ,若AB 的长是2a ,则P A 的长是( )A. a 25 B.a 7 C. a 22 D.a 3二、填空题(每小题4分,共5小题) 11.分解因式:2242x x -+= .12.从一副扑克牌中取出的两组牌,一组为黑桃1、2、3,另一组为方块1、2、3,分别随机地从这两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和是奇数的概率是 .13.对于实数b a 、定义一种运算“*”为:a b a b a )(+=*,则关于x 的方程0)(=**x m x )1(-≠m 的解是_________________.14.如图,在菱形ABCD 中,AE ⊥BC ,E 为垂足,若cosB 54=, EC =2,P 是AB 边上的一个动点,则线段PE 的长度的 最小值是__________.15.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),则结论:①2AF =;②5BF =;③5OA =;④3OB =中,正确结论的序号是 .ABO PC(第10题图)A BCDE PxyOA FB P (第15题图)三、解答题(6小题,满分50分) 16.(本题满分5分)计算:02)1(60tan 1132++︒---x + ︒-45cos 21417.(本题满分5分)先化简,再求值2113,124x x x x x x -++⎛⎫-÷ ⎪++-⎝⎭其中21x =- 18.(本题满分10分)某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300元时,按该次购物全额9折优惠;超过300元的其中300元部分仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,则小丽应该付款多少元? 19.(本题满分15分,第(1)小题6分,第(2)小题3分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y .(1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长.20. (本题满分15分,第(1)小题4分,第(2)小题5分,第(3)小题6分)如图,Rt △ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP=AQ .点D ,E 分别是点A ,B 以Q ,P 为对称中心的对称点, HQ ⊥AB 于Q ,交AC 于点H .当点E 到达顶点A 时,P ,Q 同时停止运动.设BP 的长为x ,△HDE 的面积为y . (1)求证:△DHQ ∽△ABC ;(2)求y 关于x 的函数解析式并求y 的最大值; (3)当x 为何值时,△HDE 为等腰三角形?A B EF C D O (第19题图1) A B E F C DO (第19题图2) (第20题)DEQB ACPH稿纸数学试题参考答案一、选择题(每小题3分,共10题,在给出的四个选项中,只有一项是符合题目要求的)题号 1 2 3 4 5 6 7 8 9 10 答案BADCBCCADB二、填空题(每小题4分,共5小题)11.2)1(2-x ; 12.94; 13.1,0221+-==m m x x ;14.532; 15.①②③.三、解答题(共5小题,共50分) 16.(本题满分5分)解:原式=222231)13(13-++--+ … ………3分 =3+2 ………………………………………5分17.解:原式=()()()()()()()212131222x x x x x x x x -+-++÷+++-=()()()()()2222122123x x x x x x x x x +--+++-+++=()()()()()322123x x x x x x -++-+++=21x x --+ …………4分 把21x =-代入上式得:原式=2122332122112-----==--+ …………5分18.(本题满分为10分)解:因为100×0.9=90<94.5<100,300×0.9=270<282.8,所以有两种情况:设小美第二次购物的原价为x 元,则(x -300)×0.8+300×0.9=282.8解得,x =316………………………………………………………………4分 情况1:小美第一次购物没有优惠,第二次购物原价超过300元 则小丽应付(316+94.5-300)×0.8+300×0.9=358.4(元)………7分 情况2:小美第一次购物原价超过100元,第二次购物原价超过300元; 则第一次购物原价为:94.5÷0.9=105(元)所以小丽应付(316+105-300)×0.8+300×0.9=362.8(元).……10分 19.(本题满分15分,第(1)小题6分,第(2)小题3分,第(3)小题6分) 解:(1)连结OC ,∵AC 是⊙O 的弦,OD ⊥AC ,∴OD =AD . …………………1分 ∵DF //AB ,∴CF =EF ,∴DF =AE 21=)(21OE AO +. ………………………2分 ∵点C 是以AB 为直径的半圆的中点,∴CO ⊥AB . …………………………3分 ∵EF =x ,AO =CO =4,∴CE =2x ,OE =421642222-=-=-x x OC CE .…4分∴42)424(2122-+=-+=x x y . 定义域为2≥x . ……………………6分 (2)当点F 在⊙O 上时,联结OC 、OF ,EF =421==OF CE ,344822=-=OE …………………7分∴DF =)(21OE AO +=2+442-=2+23. …………………………9分(3)当⊙E 与⊙O 外切于点B 时,BE =FE .∵222CO OE CE =-, ∴,4)4()2(222=+-x x 032832=--x x ,∴=1x 3744+,=2x 舍去(3744-) ………………………………10分 ∴DF =37214)37448(21)(21+=++=+BE AB . …………………11分当⊙E 与⊙O 内切于点B 时,BE =FE .∵222CO OE CE =-,∴,4)4()2(222=--x x 032832=-+x x ,∴=1x 3744+-,=2x 舍去(3744--). ……………………………12分∴DF =37214)37448(21)(21-=+--=-BE AB . ……………………13分当⊙E 与⊙O 内切于点A 时,AE =FE .∵222CO OE CE =-,∴,4)4()2(222=--x x 032832=-+x x ,∴=1x 3744+-,=2x 舍去(3744--).……………………………14分∴DF =327221-=AE . ………………………………………………15分 20.本题满分15分,第(1)小题4分,第(2)小题5分,第(3)小题6分)(1)∵A 、D 关于点Q 成中心对称,HQ ⊥AB ,∴C HQD ∠=∠=90°,HD =HA ,∴A HDQ ∠=∠,∴△DHQ ∽△ABC .……………4分(2)①如图1,当5.20≤<x 时,ED =x 410-,QH =x A AQ 43tan =∠,此时x x x x y 4152343)410(212+-=⨯-=.当45=x 时,最大值3275=y .……………6分②如图2,当55.2≤<x 时,ED =104-x ,QH =x A AQ 43tan =∠,此时x x x x y 4152343)104(212-=⨯-=.当5=x 时,最大值475=y .……………8分∴y 与x 之间的函数解析式为⎪⎩⎪⎨⎧≤<-≤<+-=).55.2(41523),5.20(4152322x x x x x x yy 的最大值是475. ……………9分(3)①如图1,当5.20≤<x 时,若DE =DH ,∵DH =AH =x A QA 45cos =∠, DE =x 410-,∴x 410-=x 45,2140=x . 显然ED =EH ,HD =HE 不可能; ……………11分 ②如图2,当55.2≤<x 时,DHQE BACP(图1)HQD EPB AC (图2)若DE =DH ,104-x =x 45,1140=x ; ……………12分 若HD =HE ,此时点D ,E 分别与点B ,A 重合,5=x ;……………13分 若ED =EH ,则△EDH ∽△HDA ,∴AD DH DH ED =,x xx x 24545104=-,103320=x . ……………14分 ∴当x 的值为103320,5,1140,2140时,△HDE 是等腰三角形. ……………15分。
2017年重点中学自主招生适应性考试数学试卷及答案(2)

2017年重点中学自主招生适应性考试数学试卷满分:120分 时间:90分钟 2017.3一、选择题(本题有10个小题,每小题3分,共30分) (1)如果一元一次不等式组⎩⎨⎧>>a x x 3的解集为x >3,则a 的取值范围是 A .a >3 B .a ≥3 C .a <3 D .a ≤3 (2)若实数x 满足12223-=++x x x ,则9932x x x x ++++ =A .1-B .0C .1D .99(3)如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为a 克,再称得剩余电线的质量为b 克,那么原来这卷电线的总长度是A .a b 1+米B .(a b +1)米C .(a+b a +1)米D .(b a +1)米(4)若实数n 满足2)45()46(22=-+-n n ,则代数式)45)(46(n n --的值是A .1-B .21-C .21D .1(5)已知方程2(21)10x k x k +++-=的两个实数根12,x x 满足1241x x k -=-,则实数k的值为 A .—3,0 B .1,43-C .1,13- D .1,0 (6)如图,矩形AOBC 的面积为16,反比例函数xky =的图象经过矩形的对角线的交点P ,则反比例函数的解析式是A .x y 1= B .x y 2=C .x y 4=D .x y 8= (7)设213a a +=,213b b +=,且a b ≠,则代数式3311ba +的值为A .24-B .18-C .18D .24 (8)当x 分别取值201,191,181,…31,21,1,2,3,…,18,19,20时,计算代数式2211x x +-的值,将所得的结果相加,其和等于 A .-20 B .0 C .1 D .20(9)如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为A .32B .4C .πD .2π(10)方程813222=++y xy x 的整数解(,)x y 的组数为A .7B . 6C .5D .4二、填空(本题有7个小题,其中11题6分,其余每小题4分,共30分) (11)直接写出下列关于x 的方程的根:①015722=-+x x ; ②24)3)(2)(1(=+++x x x x ; ③41122=+++x x xx ;④01)2(2=+--+a x a x ; (12)已知三个数a 、b 、c 的积为负数,和为正数,且x =aa +bb +cc +abab +acac +cb bc,则ax 3+bx 2+cx +1=_________.(13)若化简16812+---x x x 的结果为52-x ,则x 的取值范围是 . (14)如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________. (15)若实数a 、b 满足b >a >0,且ab b a 422=+,则ba b a +-= . (16)若实数b a ,满足0111=+--ba b a ,则=+ab b a 22. (17)桌面上有三颗球,相互靠在一起。
中考数学试卷精选合辑补充52之3自主招生考试数学试题及参考答案

AB QO xyA B CE FO第一中学自主招生考试数学试题一、选择题(本大题共8小题,每小题4分,满分32分)1. 若M =3x 2-8xy +9y 2-4x +6y +13(x ,,y 是实数),则M 的值一定是( ). (A ) 零 (B ) 负数 (C ) 正数 (D )整数2.已知sin α<cos α,那么锐角α的取值范围是 ( )(A )300 <α<450 (B ) 00 <α<450 (C ) 450 <α<600 (D ) 00 <α<900 3.已知实数a 满足2008a -2009a -a ,那么a -20082值是 ( ) (A )2009 (B ) 2008 (C ) 2007 (D ) 2006 4.如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式b ca-的值等于( ). A .43-(B )6- (C )43(D )6 5.二次函数2y ax bx c =++的图象如图所示,)2,(n Q 是 图象上的一点,且BQ AQ ⊥,则a 的值为( ).A .13- (B )12- (C )-1 (D )-26.矩形纸片ABCD 中,AB =3cm ,BC =4cm ,现将纸片折叠压平,使A 与C 重合, 设折痕为EF ,则重叠部分△AEF 的面积等于( ).A .73757375...881616B C D7.若a b ct b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( )(A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限(D )第三、四象限8.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC 的长等于( ) (A ) 12(B ) 16(C ) 3(D ) 82 二、填空题(本大题共7小题,每小题4分,共28分)9.已知012=--x x ,那么代数式123+-x x 的值是_____.10.已知z y x ,,为实数,且3,5=++=++zx yz xy z y x ,则z 的取值范围为______. 11.已知点A (1,3),B (5,-2),在x 轴上找一点P ,使│AP -BP │最大,则满足条件的点P 的坐标是____________. 12.设,,,321x x x … ,2007x 为实数,且满足321x x x …2007x =321x x x -…2007x =321x x x -…2007x =…=321x x x …20072006x x -=1,则2000x 的值是___________. 13.对于正数x ,规定f (x )= x1x+, 计算f (1001)+ f (991)+ f (981)+ …+ f (13)+ f (12)+ f (1)+ f (2)+ f (3)+…+f(98)+f(99)+f(100)=__________.BA C M NPEF Q DG 14.如果关于x 的方程()012122=++++a x a x 有一个小于1的正数根,那么实数a 的 取值范围是________.15.在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是_________________.三、解答题:16. (本小题10分) 某超市去年12月份的销售额为100万元,今年2月份的销售额比今年1月份的销售额多24万元,若去年12月份到今年2月份每个月销售额增长的百分数相同.求:(1)这个相同的百分数;(2)2月份的销售额.17.(本小题13分)如图,AB ∥CD 、AD ∥CE ,F 、G 分别是AC 和FD 的中点,过G 的直线依次交AB 、AD 、CD 、CE 于点M 、 N 、P 、Q ,求证:MN +PQ =2PN .18.(本小题13分)如图,已知点P 是抛物线2114y x =+上的任意一点,记点P 到x 轴距离为1d ,点P 与点(0,2F )的距离为2d(1)证明1d =2d;(2)若直线PF 交此抛物线于另一点Q (异于P 点), 试判断以PQ 为直径的圆与x 轴的位置关系,并说明理由.19.(本小题14分)如图,已知∆ABC 中,AB =a ,点D 在AB 边上移动(点D 不与A 、B 重合),DE //BC ,交AC 于E ,连结CD .设S S S S ABC DEC ∆∆==,1. (1)当D 为AB 中点时,求S S 1:的值; (2)若AD x S Sy ==,1,求y 关于x 的函数关系式 及自变量x 的取值范围; (3)是否存在点D ,使得S S 114>成立? 若存在,求出D 点位置;若不存在,请说明理由.20.(本小题10分)已知42++=m m y ,若m 为整数,在使得y 为完全平方数的所有m 的值中,设m 的最大值为a ,最小值为b ,次小值为c .(注:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数.) (1)求c b a 、、的值;(2)对c b a 、、22一个数不变,这样就仍得到三个数.再对所得三个数进行如上操作,问能否经过若干次上述操作,所得三个数的平方和等于2008?证明你的结论.答案一、选择题:CBAABDAB 二、填空题:9.2;103131≤≤-z ;11_(13,0)12. 1,或253±-;13.__9921;14. 211-<<-a15. _3<r ≤4或r =2.4三、解答题:16.(1)100(x +1)2=100(x +1)+24 . x =0.2 =20%.(2) 2月份的销售额:100×1.22=144万元. .17、延长BA 、EC ,设交点为O ,则四边形OADC 为平行四边形. ∵ F 是AC 的中点,∴ DF 的延长线必过O 点,且31=OG DG . ∵ AB ∥CD ,∴ DNANPN MN =.∵ AD ∥CE , ∴ DN CQ PN PQ =.∴ +PN MN =PN PQ DN AN DN CQ +=DN CQ AN +. 又 =OQ DN 31=OG DG ,∴ OQ =3DN . ∴ CQ =OQ -OC =3DN -OC =3DN -AD ,AN =AD -DN , 于是,AN +CQ =2DN ,∴ +PN MN =PN PQ DNCQAN +=2,即 MN +PQ =2PN . 18.(1)证明:设点),(00y x P 是2114y x =+上的任意一点,则200104x y =+>,∴10d y =.由勾股定理得2d =PF =20044x y =-,∴201d y d ===.(2)解:①以PQ 为直径的圆与x 轴相切.取PQ 的中点M ,过点P 、M 、Q 作x 轴的垂线,垂足分别为'P 、C 、'Q , 由(1)知,','PP PF QQ QF ==,∴''PP QQ PF QF PQ +=+=. 而MC 是梯形''PQQ P 的中位线,∴MC =21(PP ’+QQ ’)=21(PF +QF )=21PQ . ∴以PQ 为直径的圆与x 轴相切. 19、解:(1) DE BC D AB //,为的中点,21==∆∆∴AC AE AB AD ABC ADE ,∽.∴==S S AD AB ADE ∆()214S S AE EC ADE ∆11==, ∴411=S S . (2) ∵ AD =x ,y SS =1,∴ x xa AD DB AE EC S S ADE -===△1. BACMN P EFQDGO又∵ 222ax AB AD S S ADE ==△⎪⎭⎫ ⎝⎛,∴ S △ADE =22a x ·S ∴ S 1=⎪⎭⎫ ⎝⎛-x x a 22axS ∴ 221a ax x S S +-=, 即y =-x a21+x a 1自变量x 的取值范围是:0<x <a .(3)不存在点D ,使得S S 114>成立. 理由:假设存在点D ,使得S S 114>成立,那么S S y 11414>>,即. ∴-21ax 2+a 1x >41,∴(a 1x -21)2<0 ∵(a 1x -21)2≥ ∴x 不存在,即不存在点D ,使得S S 114>成立.20.(1)设224k m m =++(k 为非负整数),则有0422=-++k m m ,由m 为整数知其△为完全平方数(也可以由△的公式直接推出), 即22)4(41p k =--(p 为非负整数),得,15)2)(2(=-+p k p k 显然:p k p k ->+22,所以21521k p k p +=-=⎧⎨⎩或2523k p k p +=-=⎧⎨⎩,解得7=p 或1=p ,所以12p m -±=,得:1,0,4,34321-==-==m m m m ,所以1,4,3-=-==c b a .(2)因为222222a b a b c a b c ++=+++-,即操作前后,这三个数的平方和不变, 而2223(4)(1)2008+-+-≠.所以,对c b a 、、进行若干次操作后,不能得到2008.(本资料素材和资料部分来自网络,仅供参考。
福建省南平市第一中2018年第二批次自主招生(实验班)考试数学学科试卷含答案

2018年南平一中第二批次自主招生(实验班)考试数学学科试卷考试时间:90分钟 满分100分就读学校: 姓名: 考场号: 报名号:1.21)2(--m m 化简后的结果为( ) A.2-m B.m -2 C.m --2 D.2--m2.式子||||||||abc abc c c b b a a +++的所有可能值的个数为( ) A. 2个 B. 3个 C. 4个 D. 无数个3.某班开展课外选修课活动,班级的50名学生可在音乐、美术、体育三门选修课中选择,每位学生至少选择一门,选择音乐的有21人,选择美术的有28人,选择体育的有16人,既选择音乐又选择美术的有7人,既选择美术又选择体育的有6人,既选择体育又选择音乐的有5人,则三项都参加的人数为( )A. 2B. 3C. 4D. 54.已知二次函数622--=x x y ,当4≤≤x m 时,函数的最大值为2,最小值为7-,则满足条件的m 的取值范围是( )A.1≤mB.12<<-mC.12≤<-mD.12≤≤-m 5.适合13≤--yx yx ,且满足方程13=+y x 的x 的取值范围是( ) A.410<≤x B.4121<≤-x C.410≤≤x D.4121≤≤-x 6.已知B A 、两点在一次函数x y =的图象上,过B A 、两点分别作y 轴的平行线交双曲线)0(2>=x xy 于N M 、两点,O 为坐标原点。
若AM BN 3=,则229ON OM -的值为( )A. 8B. 16C. 32D. 36 7.在N M BAC ABC Rt 、,中,︒=∠∆90是BC 边上的点,MN CN BM 21==,如果8=AM ,6=AN ,则MN 的长为( )A.104B.102C.1023D.108.将正奇数按如图所示的规律排列下去,若有序实数对),(m n 表示第n 排,从左到右第m 个数,如)2,4(表示奇数15,则表示奇数2017的有序实数对是( )A.)19,44(B.)26,45(C.)19,45(D.)27,45(9.如图,在矩形ABCD 中,过点B 作AC BF ⊥,垂足为F ,设n CF m AF ==,,若CD CF 2=,则mn的值为( )A.222+B.123+C.132+D.152-10.已知正整数b a 、满足5350≤+≤b a ,8.079.0<<ba,则a b -等于( ) A. 4 B. 5 C. 6 D. 7二、填空题(本大题4小题,每小题3分,共12分)11.函数3172--+--=x x x y 的最大值为 .12.如图,在平行四边形ABCD 中,4===BD BC AB ,N M 、分别是CD AD 、上的动点(含端点),︒=∠60MBN ,则线段MN 的长的取值范围是 .13.毕业季将至,宿舍的四位同学每人写了一张明信片放进纸盒,准备毕业时每个人随机抽取一张,则每个人都拿到的是别人的明信片的概率是 .14.如图,直线AB 和AC 与圆O 分别相切于C B 、两点,P 为圆上一点,且点P 到BC AB 、的距离分别为6和4,则点P 到AC 的距离为 .三、解答题(本大题5小题,共58分)15.(10分)(1)计算:︒+++-+-30cos 2323|323|)3(0π(2)因式分解:65223+--x x x第一排 第二排 第三排 第四排7 (13)15 178 193 51 91116.(10分)(1)已知有理数b a ,满足2234102)2(+-=-+b a ,求b a ,的值; (2)解方程2989=---x xx x17.(12分)已知21,x x 是一元二次方程0122=++-k kx kx 的两个实数根; (1)若k x x x x 8)2)(2(2121-=--成立,求实数k 的值; (2)是否存在整数k ,使2112x x x x +的值为整数?若存在,求出k 的值;若不存在,请说明理由。
南平一中2018年实验班第一批次自主招生数学物理面试初试试卷

南平一中2018年实验班第一批次自主招生面试初试试卷考试时间:90分钟 总分:120分就读学校 姓名 考场号 座位号第二部分 数学、物理试题本部分试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),在第Ⅰ卷中每小题给出的四个选项中,只有一项是符合题目要求的。
第1-6题每小题4分,第7-10题每小题5分,共44分。
在第Ⅱ卷中,第11-15题为填空题,每小题5分,只需写出最后答案;第16-19题为解答题,解答题时请写出必要的文字说明、方程式和重要的演算步骤。
只写出最后答案的不得分。
第Ⅰ卷(选择题)1.如图所示,重为500N 的甲、乙两同学,分别静止于水平地面的台秤P 、Q 上,他们用手分别竖直牵拉一只弹簧秤的两端,稳定后弹簧秤的示数为10N ,若弹簧秤的质量不计,下列说法正确的是( ) A .台秤Q 的读数为480N B .台秤P 的读数为510NC .两台秤的读数之和为980ND .甲受到的拉力大于10N ,乙受到的拉力小于10N2.如图所示,AB 长为6m ,传送带以s m v /1=的速度向左(逆时针)运动时,有一木块在水平力F 的作用下以s m v /4=的速度向右匀速运动,则木块从A 端滑到B 端所需的时间t 为( ) A .s t 2.1= B .s t 5.1=C .s t 2=D .s t 6=3.足够长的斜面上物块ABC 的上表面AB 光滑水平,AC 面光滑竖直,AB=80cm ,AC=60cm 。
大小忽略不计的小球放在物块水平表面A 处,现物块以速度v =0.25m/s 沿固定斜面匀速下滑,则( ) A .小球与物块一起沿斜面下滑B .小球受到的重力大于支持力C .小球的运动轨迹是一条曲线D .4s 后小球与斜面接触4.如图所示,已知定值电阻R 1=12 Ω,滑动变阻器R 2的阻值范围为0~10 Ω,现将它们接入电压U=12V 的电路中,以下说法正确的是( )A .R 2=10Ω时,R 2消耗的功率最大B .滑片从最左端移到最右端的过程中R 2的功率先增大后减少C .滑片从最左端移到最右端的过程中R 2的功率与电路总功率的比值先增大后减小D .滑片从最左端移到最右端的过程中R 的功率与电路总功率的比值先减小后增大5.某学习小组在研究光的折射定律后发现:光从空气进入某一种介质时,不仅发生折射,而且入射角i 的正弦值与折射角r 的正弦值的比值为一定值,物理上把这比值叫做该介质的折射率n ,即rin sin sin =。
XXX2017年自主招生考试数学试题 Word版含答案

XXX2017年自主招生考试数学试题 Word版含答案1.XXX2017年面向全省自主招生考试《科学素养》测试数学试卷一、选择题(本大题共8小题,每小题5分,共40分)1.已知$a=\frac{5+35-3}{5-35+3}$,$b=$,则二次根式$a^3b+ab^3+19$的值是()A、6.B、7.C、8.D、92.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()begin{cases}4x\geq3(x+1)\\2x-<a\end{cases}$A、$\frac{3}{452}$B、$\frac{1}{993}$C、$\frac{1}{452}$ D、$\frac{1}{165}$3.已知一次函数$y=kx+b$的图像经过点(3,0),且与坐标轴围成的三角形的面积为6,满足条件的函数有()A、2个B、3个C、4个D、5个4.若实数$a\neq b$,且a、b满足$a^2-8a+5=0$,$b^2-8b+5=.$则A、-20.B、2.C、2或20.D、2或205.对于每个非零自然数n,抛物线$y=x-\frac{b-1}{a-1}$的值为$\frac{2n+1}{n(n+1)}$,其中$x+$与x轴交于A$_n$、B$_n$以及A$_{2017}$、B$_{2017}$的值是()表示这两点间的距离,则A、$\frac{2017}{2016}+\frac{2018}{2017}$B、$\frac{2016}{2017}+\frac{2018}{2017}$ C、$\frac{2016}{2017}+\frac{2017}{2016}$ D、$\frac{2017}{2016}+\frac{2017}{2016}$6.已知$a,b,c$是$\triangle ABC$的三边,则下列式子一定正确的是()A、$a^2+b^2+c^2>ab+bc+ac$B、$\frac{a+bc}{a+b+1c+1}c$ D、$a^3+b^3>c^3$7.如图,从$\triangle ABC$各顶点作平行线$AD\parallel EB\parallel FC$,各与其对边或其延长线相交于D,E,F.若$\triangle ABC$的面积为1,则$\triangle DEF$的面积为()A、3.B、3C、D、28.半径为2.5的圆$\odot O$中,直径AB的不同侧有定点C和动点P,已知$A、$\frac{169}{25}$B、$\frac{32}{43}$C、$\frac{3}{4}$ D、$\frac{5}{6}$二、填空题(本大题共7小题,每小题5分,共35分)9.若分式方程$\frac{x-a}{x+1}=a$无解,则$a$的值为_________满足$a<1$,则方程$\frac{x-a}{x+1}=a$的解为$x=\frac{a}{1-a}$,当$a\geq1$时,分母$x+1$始终大于分子$x-a$,方程无解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年南平一中第二批次自主招生(实验班)考试数学学科试卷考试时间:90分钟 满分100分就读学校: 姓名: 考场号: 座位号:一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个正确答案)1.实数r q p 、、在数轴上的位置如图,化简()()()222r q q p p r p +++--+的值为( )A. p r -2B. p -C. q p 23--D. r p 23+- 2.已知a 为实常数,则下列结论正确的是( )A. 关于x 的方程a x a =的解是1±=xB. 关于x 的方程a x a =的解是1=xC. 关于x 的方程a x a =的解是1=xD. 关于x 的方程()11+=+a x a 的解是1±=x 3.抛物线)0(2≠++=a c bx ax y 的对称轴为直线1-=x ,图象如图 所示,给出以下结论:①ac b 42>;②0>abc ;③02=-b a ; ④039>+-c b a ;错误的结论的个数为( )A. 0B. 1C. 2D. 34.设方程012)1(2=+++x x k 的两根为1x 、2x ,若2121221x x x x +≥+⋅, 则满足条件的整数k 的值有( )A. 无数个B. 0,1,2--C. 0,1-D. 0,2- 5.如图,平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将ABE ∆向上翻折,点A 正好落在CD 上的点F ,若FDE ∆的周 长为29,FCB ∆的周长为51,则FC 的长为( ) A . 9 B. 10 C. 11 D. 126.已知b a ,都是实数且0111=--+b a b a ,则ab的值为( ) A .251--或251+- B. 251-或251+ C. 251- D. 251+- 第3题图第5题图7.如图,在ABC Rt ∆中,BC AC ⊥,过C 作AB CD ⊥,垂足为D , 若3=AD ,2=BC ,则ABC ∆的内切圆的面积为( ) A .π B. ()π324- C. ()π13- D. π28.已知x 是正整数,则当函数2901--=x y 取得最小值时x 的值为( )A. 16B. 17C. 18D. 19 9.观察下列数的规律: ,8,5,3,2,1,1,则第9个数是 ( ) A. 21 B. 22 C. 33 D. 3410.如图,在四边形ABCD 中,︒=∠135B ,︒=∠120C ,3=AB ,61+=AD ,22=CD ,则BC 边的长为 ( )A . 22-B.215- C. 23 D. 22二、填空题(本大题4小题,每小题3分,共12分)11.关于x 的方程()()()0,1121122≠≠-+=--+mn n m x x mnx n x m 的解为 12.甲、乙、丙三人在一起做“剪子、布、锤子”游戏,约定每个人在每一个回合中只能随机出“剪子、布、锤子”中的一个,那么在一个回合中三个人都出“锤子”的概率是13.矩形ABCD 中,4=AB ,3=AD ,将该矩形按照如图所示位置放置在直线AP 上,然后不滑动的转动,当它转动一周时(1A A →)叫做一次操作,则经过5次这样的操作,顶点A 经过的路线长等于14.在ABC ∆中,5==AC AB ,54cos =B ,若以M 为圆心,17为半径的圆经过C B 、两点,则线段AM 的长等于第7题图第10题图三、解答题(本大题5小题,共58分)15.(本题满分7分)将下列式子因式分解: (1)22a a x x -++ (2)233+-x x16.(本题满分9分)(1)化简xx 111111+-+;(2)已知111242+=++a x x x ,用含a 的式子表示12+x x.17.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+-≤-=02022x kx x x kx y ,其中k 为实数.(1)当0=k 时,在所给的网格内做出该函数图象的简图,并利用图象求0>x 时,函数的最大值;(2)当k 变化时,探究函数图象与x 轴的交点个数.18.(本题满分12分)如图①,正方形ABCD 的边长为7, ADB ∠的角平分线DE 交AB 与点E .(1)求AEBE的值; (2)若P 在线段BD 上运动,如图②,当BP 为何值时,AP EP +的值最小.第18题图① 第18题图② 第18题备用图19.(本题满分18分)如图①,抛物线()02<+=a c ax y 与y 轴交于点A ,与x 轴交于C B 、两点(点C 在x 轴正半轴上),ABC ∆为等腰直角三角形,且面积为4. 现将抛物线沿BA 方向平移,平移后的抛物线过点C 时,与x 轴的另一个交点为E ,其顶点为F ,对称轴与x 轴的交点为H . (1) 求c a 、的值;(2) 连接CF OF 、,求证:FCE OFE ∠=∠;(3) 在y 轴上是否存在点P ,当以PE 为直径的圆交直线FH 于点Q 时,以点E Q P 、、为顶点的三角形与EOP ∆全等,若存在,求点P 的坐标;若不存在,请说明理由.第19题图① 第19题图② 第19题备用题2017年南平一中第二批次自主招生(实验班)考试数学学科答案一、选择题(每小题3分,共30分。
每小题只有一个正确答案)二、填空题(每小题3分,共12分) 11. n m nm x -+=12. 271 13. π30 14. 2或4 三、解答题15. (本题满分7分)解:(1)22a a x x -++=()()a x a x -++1…………………………………………… 3分(2)解法一:()()122223333---=+--=+-x x x x x x x x ……………… 5分()()[]()2)1(21)1()1(2122-+-=-+-=---=x x x x x x x x x …6分()()212+-=x x …………………………………………………………7分解法二:()()()211232223--+-=+-+-x x x x x x x x ………………… 5分()()212-+-=x x x ……………………………………………………6分()()212+-=x x …………………………………………………………7分16.(本题满分9分).解:(1)()1111111111111=-+=+-+=+-+x x x x x xx …………………………………………… 3分 (2)由111242+=++a x x x 得0≠x ,且11122+=++a xx ∴a x x =+221…………………………………………………………………… 5分 22111222+±=++±=⎪⎭⎫ ⎝⎛+±=+∴a x x x x x x ……………………… 7分∴221112++±=+=+a a xx x x…………………………9分 (结论没有有理化扣1分) 17. (本题满分12分)(1)能够正确通过描点画出函数图象给4分当0>x 时,函数的最大值为1……………………………6分 (2)结合图象可知:1>k 或0<k 时,函数图象与x 轴有1个交点………8分0=k 或1=k 时,函数图象与x 轴有2个交点………10分 10<<k 时,函数图象与x 轴有3个交点……………12分18. (本题满分12分) 解:(1)延长CB 与DE ,交于点F ,…………………………………………………… 1分 FC AD //,∴EFB ADE ∠=∠………………………………………………2分 又BDE ADE ∠=∠,∴EFB BDE ∠=∠∴BF BD =………………………3分 ADE ∆∽BFE ∆…………………………………………………………………4分∴2===ADBDAD BF AE BE …………………………………………………………6分(2)连接AC ,则AC 与BD 互相垂直平分 连接EC 交BD 于P ,则PC AP =∴EC PC EP AP EP =+=+,此时AP EP +的值最小…… 8分 设x BP =BEP ∆ ∽DCP ∆,DCBEDP BP =∴由(1)知,2=AE BE ,∴122+=DCBE…………………10分∴12227+=-xx ,解得224-=x ………………… 11分∴当224-=BP 时,AP EP +的值最小。
…………… 12分 19.解:(1) 抛物线()02<+=a cax y 与y 轴交于点A ,∴()0,,0>c c A ,则c OA =,ABC ∆为等腰直角三角形,∴c OC OB OA ===,∴4221=⋅⋅c c ,解得2=c (舍负根)………………2分 ∴()0,2C ,22+=ax y ,将()0,2C 代入22+=ax y 中,得024=+a ,得21-=a 综上:21-=a ,2=c …………………………………3分 (2)设直线AB 的解析式为b kx y +=,将)2,0(A 、)0,2(-B 代入得⎩⎨⎧=+-=022b k b 解得⎩⎨⎧==21b k则直线AB 的解析式为2+=x y ………………………………………………………4分 设)2,(+t t F , 抛物线沿BA 方向平移,平移后的抛物线过点C 时,顶点为F , ∴可设平移后抛物线的解析式为()2212++--=t t x y 将()0,2C 代入得()022212=++--t t 解得61=t ,02=t (舍去)……………5分 ∴平移后抛物线的解析式为()86212+--=x y ,∴)8,6(F ………………………6分∴108622=+=OF ……………………………………………………………… 7分对称轴与x 轴的交点为H ,∴HE CH =,从而2,6==OC OH ,∴10=OE …………………………………………………8分∴OF OE =,∴OFE FEO ∠=∠…………………………………………………9分 又 FE FC =,∴FEO FCE ∠=∠∴FCE OFE ∠=∠…………………………………………………………………10分(3)假设存在点P 满足题意以PE 为直径的圆交直线FH 于点Q ,∴QE PQ ⊥……………………………11分︒=∠90POE ,若以点E Q P 、、为顶点的三角形与EOP ∆全等, 则有10==EO EQ 或者10==EO PQ …………………………12分设()m P ,0,()n Q ,6,分两种情况:① 若10==EO EQ ,4610=-=HE ,∴222104=+n ,∴842=n ,解得212±=n ,此时()212,6±Q …………13分过P 作⊥PK 直线FH ,垂足为K ,则()2226m n PQ -+=由PQ OP =,则有()2226m n m -+=,化简得60=mn ,∴7211060±==n m ∴⎪⎪⎭⎫⎝⎛±72110,0P …………………………………………………………………14分 ② 若10==EO PQ ,则OP QE =,∴()⎪⎩⎪⎨⎧=+=-+)2(4)1(106222222mn m n (2)代入(1)得m m n 102-=………………16分代入(2)得252=m ,解得5±=m ∴()5,0±P ………………………………17分综上,存在满足条件的点P ,坐标为⎪⎪⎭⎫⎝⎛±72110,0或()5,0±………………18分。