初三数学总复习实数的概念及实数的运算
初三数学总复习实数及其运算

数轴是一个连续的、双向的、有顺序的直线,它具有原点、正方向和单位长度 等基本性质。在数轴上,每一个点都对应一个唯一的实数,反之亦然。
02
实数的运算
加法与减法
总结词
理解加法与减法的概念,掌握运算规则
详细描述
加法与减法是实数的基本运算,理解加法与减法的概念是学习实数的基础。加法是指将两个数合并成一个数的运 算,减法是指从一个数中减去另一个数的运算。在运算过程中,应遵循加法和减法的运算法则,即同号数相加或 相减,取相同的符号;异号数相加或相减,取绝对值较大数的符号。
实数的基本性质
实数的加法性质
实数的加法满足交换律和结合律 ,即a+b=b+a和 (a+b)+c=a+(b+c)。
实数的乘法性质
实数的乘法满足交换律、结合律 和分配律,即a*b=b*a、 (a*b)*c=a*(b*c)和 (a+b)*c=a*c+b*c。
实数与数轴
实数与数轴的关系
实数可以与数轴上的点一一对应,即每一个实数都可以在数轴上找到一个唯一 的点来表示,反之亦然。
02
03
04
实数的概念
理解实数的定义,包括有理数 和无理数,以及实数在数轴上 的表示。
实数的运算
掌握实数的四则运算(加、减 、乘、除)和乘方运算,理解 运算的优先级和运算律。
平方根和立方根
理解平方根和立方根的概念, 掌握求平方根和立方根的方法 。
绝对值
理解绝对值的定义,掌握求绝 对值的方法。
练习题解析与解答
数学问题中的实数
总述
在数学问题中,实数可以用来表示未知数、参数或系数等,是解决代数、几何等复杂问题的关键。实 数的性质和运算规则为数学研究提供了基础。
初三上册数学实数知识点总结

初三上册数学实数知识点总结初三上册数学实数知识点总结总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以促使我们思考,是时候写一份总结了。
那么总结应该包括什么内容呢?下面是小编为大家整理的初三上册数学实数知识点总结,欢迎阅读,希望大家能够喜欢。
一、重要概念1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的'和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aa1时,1/aD.积为1。
4.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数-自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。
二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从左到右(如5 C.(有括号时)由小到中到大。
三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab0,(a0,b0),判断a、b的符号。
初三数学总复习(实数)

初三数学总复习数与式 实数(一)知识梳理 一.实数的有关概念 1、实数分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数零负整数有理数实数正分数分数负分数无理数-无限不循环小数------(有限小数和无限循环小数) 注意:无理数有三种类型:(1)、π或者含π的式子;(2)、含有根号且开不尽方的数。
如:等;(3)、无限不循环的小数。
如:2.121121112.。
、3.141141114。
等。
实数还可以分为:正实数、零、负实数;有理数还可以分为:正有理数、零、负有理数。
解题中需考虑数的取值范围时,常常用到这种分类方法。
特别要注意0是自然数。
2、数轴数轴的三要素:原点、正方向和单位长度。
实数与数轴上的点是一一对应的,这种一一对应关系是数学中把数和形结合起来的重要基础。
在数轴上表示的两个数,右边的数总比左边的数大。
3、绝对值 绝对值的代数意义:绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。
数a 的绝对值记着┃a ┃。
4、相反数、倒数只有符号不同的两个数叫做互为相反数【若a+b=0,则a 与b 互为相反数】;数a 的相反数记为-a 【这是求一个数的相反数的方法。
求一个数或式的相反数就是在这个数或式的前面填上一个负号】。
数a (a ≠0)的倒数记为1a。
【这是求倒数的方法,若一个数是小数,求它的倒数时先将这个小数化为分数再求倒数】,若ab =1,则a 与b 互为倒数。
相反数以及倒数都是成对出现的,零的相反数是零,零没有倒数。
5、非负数2a a 、、(a ≥0)形式的数都表示非负数。
||()()()a a a a a a =>=-<⎧⎨⎪⎩⎪0000②非负数的性质:几个非负数的和(积)仍是非负数;几个非负数的和等于零,则必定每个非负数都同时为零。
6、负整数指数幂、零指数幂:1(0)p p a a a-=≠;01(0)a a =≠。
7、实数大小的比较:两个实数比较大小:正数大于零和一切负数;零大于一切负数;两个负数,绝对值大的数较小。
中考必考实数知识点总结

中考必考实数知识点总结一、实数的概念实数是指包括有理数和无理数在内的所有数的集合。
有理数是指可以用分数表示的数,而无理数则是指不能用分数表示的数。
这两种数的集合统称为实数集。
在实数集中,有理数和无理数的性质有所不同。
有理数具有如下性质:有理数的加法、减法、乘法、除法运算封闭;有理数的加法和乘法满足交换律、结合律、分配律;有理数有加法和乘法单位元;有理数的加法有逆元。
而无理数则没有这些性质,它们通常以无限循环小数或者无限不循环小数的形式表示,例如π、√2等。
实数集是一个非常大的集合,其中包含了所有的数,因此实数的概念是数学中的一个基本概念。
二、实数的性质1. 实数的大小比较实数有着天然的大小比较关系,可以通过大小比较运算符来进行比较。
实数的大小比较主要是通过大小关系符号(大于、小于、大于等于、小于等于)来进行。
对于任意的实数a和b,有以下性质:(1)反身性:a ≥ a,a ≤ a(2)反对称性:如果a ≤ b且b ≤ a,则a = b(3)传递性:如果a ≤ b且b ≤ c,则a ≤ c这些性质在实数的大小比较中起着重要的作用,为我们提供了判断实数大小关系的依据。
2. 实数的运算性质实数的运算性质主要包括加法、减法、乘法、除法的性质。
实数的加法和乘法满足交换律、结合律、分配律,实数的除法有着特殊的性质。
(1)加法交换律:对于任意的实数a和b,有a + b = b + a(2)加法结合律:对于任意的实数a、b和c,有(a + b) + c = a + (b + c)(3)乘法交换律:对于任意的实数a和b,有a * b = b * a(4)乘法结合律:对于任意的实数a、b和c,有(a * b) * c = a * (b * c)(5)分配律:对于任意的实数a、b和c,有a*(b+c) = a*b + a*c(6)实数的除法:对于任意的实数a和b,如果b≠0,则存在唯一的实数c,使得a = b * c实数的运算性质是我们进行实数运算的基础,了解这些性质有利于我们掌握实数的运算规则,从而正确进行实数的运算。
初三数学复习实数知识点梳理

初三数学复习实数知识点梳理实数是数系中的一种数,包括整数、有理数和无理数。
在初三数学中,实数是一个重要的考点。
为了帮助同学们复习实数知识点,下面对实数相关的概念、性质和运算进行了梳理和总结。
一、实数的分类实数可以分为有理数和无理数两类。
有理数指的是可以表示为两个整数的比值(分数)的数,而无理数指的是无法表示为两个整数的比值的数。
二、实数的表示方法1. 小数表示法有限小数:有限位数的小数,例如0.5、0.25等。
无限循环小数:有一段数字循环出现的小数,例如0.3333...、0.6666...等。
无限不循环小数:没有一段数字循环出现的小数,例如π、√2等。
2. 分数表示法分数表示法是将一个数表示为两个整数的比值。
例如,3/4表示三除以四的结果。
3. 开方表示法开方表示法是用根号√来表示一个数的平方根。
例如,√9表示9的平方根,结果为3。
三、实数的性质1. 有理数的性质:(1)有理数可以进行四则运算,包括加法、减法、乘法和除法。
(2)有理数的乘积仍然是有理数。
(3)有理数的和、差、积和商都是有理数,除非被除数为零。
2. 无理数的性质:(1)无理数与有理数相加、相减、相乘、相除的结果通常是无理数。
(2)无理数与无理数相加、相减、相乘、相除的结果通常是无理数。
3. 实数的比较:实数之间可以进行大小的比较,可以使用大小符号来表示。
例如,对于任意的两个实数a和b,如果a大于b,则记作a > b;如果a小于b,则记作a < b;如果a等于b,则记作a = b。
四、实数的运算1. 实数的加法:实数的加法满足交换律和结合律,即对于任意的实数a、b、c,有:(1)交换律:a + b = b + a(2)结合律:(a + b) + c = a + (b + c)2. 实数的减法:实数的减法可以看作是加法的逆运算,即a - b = a + (-b),其中- b表示b的相反数。
3. 实数的乘法:实数的乘法满足交换律和结合律,即对于任意的实数a、b、c,有:(1)交换律:a × b = b × a(2)结合律:(a × b) × c = a × (b × c)4. 实数的除法:实数的除法可以看作是乘法的逆运算,即a ÷ b = a × (1/b),其中1/b 表示b的倒数。
中考数学:第一讲-实数的相关概念和运算.doc

中考数学总复习第一讲实数的相关概念与运算主要考点:1. 实数的概念及分类;2. 相反数、绝对值和倒数;3. 平方根、算术平方根和立方根;4. 科学记数法和有效数字;5. 实数大小比较及无理数的估算;6. 实数的运算。
考点一、实数的概念及分类理:可以理解为“规则”有理数:有规则的数,有限小数或无限循环小数(为什么只说小数,因为任何一个 整数都可以表示成小数的形式,如7=7.0)。
任何一个有理数总可以写成p/q 的形式,其中p 、q 是互质的整数,这是有理数的重 要特征。
无理数:没有规则的数,即无限且不循环小数。
无理数的判定1 •实数的分类「正有理数j「有理数2零实数2i 负有理数’「正无理数] i无理数彳匚负无理数-有限小数和无限循环小数无限不循环小数(正实数 实数0i 负实数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如侖,逅等;(2)有特定意义的数,如圆周率兀,或化简后含有兀的数,如片+8等;(3)有特定结构的数,如0.141141141…等;(4)某些三角函数,如sin60°等。
【特别提醒】判断一个实数是有理数还是无理数不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
不能看到仃或三角函数就认为是无理数,如口° , sin30°-个数是不是无理数关键在于不同形式表示的数的最终结果是不是无限不循环小数。
2 •正负数的意义我们把如零上温度、高于海平面高度等记为正数,而把与它相反意义的量,如零下温度、低于海平面高度等记为负数.【特别提醒】考试屮一定不要忘了“0”,既不是正数,也不是负数。
3擞轴规定了原点、正方向和单位长度的宜线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
【中考真题】1.(2017-湖北荆门)在实数■年,厲,兀,近中,是无理数的是(C )A.-yB.V9C.7TD.V82.(2017-湖北黄石)下列各数是有理数的是(A )A.-|B.V2C.V3D.兀3.(2017 •四川成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数•若气温为零上10 °C记作+10 °C,则-3 °C表示气温为(B )A.零上3 °CB.零下3 °CC.零上7 °CD.零下7 °C考点二.实数的相反数、绝对值和倒数1・相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数 是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为 相反数,则有a+b=O, a= - b,反之亦成立。
中考实数知识点总结归纳
中考实数知识点总结归纳一、实数的概念1. 实数的定义实数是指可以用在数轴上表示的数,包括有理数和无理数。
有理数是指可以表示为两个整数的比值的数,包括整数和分数。
无理数是指不能表示为两个整数的比值的数,如π和√2等。
2. 实数的性质(1)实数具有传递性,即若a>b,b>c,则a>c。
(2)实数具有传递性,即若a>b,则a+c>b+c。
(3)实数具有传递性,即若a>b且c>0,则ac>bc。
3. 实数的分类(1)有理数:可以表示为有限或无限循环小数的数。
(2)无理数:不能表示为有限或无限循环小数的数。
(3)整数:包括正整数、负整数和0。
(4)分数:可以表示为两个整数的比值的数。
二、实数的运算1. 实数的加法(1)同号实数相加,绝对值加起来,符号不变。
(2)异号实数相加,绝对值差,正负号取绝对值大的数的符号。
2. 实数的减法(1)a-b = a+(-b)(2)减负得正,减正得负。
3. 实数的乘法(1)同号实数相乘,绝对值相乘,结果为正。
(2)异号实数相乘,绝对值相乘,结果为负。
4. 实数的除法(1)a÷b = a×(1/b)5. 实数的乘方(1)乘方运算:a的n次方 = a × a × ... × a (n个a相乘)(2)指数规律:a的m次方 × a的n次方 = a的m+n次方6. 实数的开方(1)开方运算:√a表示使得x²=a的数x。
(2)开方的性质:非负数的平方根是已知的,即√a²=|a|。
三、实数的表示1. 小数的表示(1)有限小数:十进制小数表示法中,小数部分有限位数的小数。
(2)无限循环小数:十进制小数表示法中,小数部分有限位数,但有循环节的小数。
2. 分数和百分数的表示(1)分数:a/b = a÷b(2)百分数:表示数或者分数乘以100后的结果。
3. 实数的化简(1)约分:将一个分数的分子和分母同时除以一个正整数。
中考复习实数知识点总结
中考复习实数知识点总结1. 实数的定义实数是可以用小数表示的数,包括有理数和无理数。
有理数是可以写成两个整数的比值的数,无理数是不能写成两个整数的比值的数。
实数包括整数、分数和无限小数。
2. 实数的分类实数分为有理数和无理数。
有理数包括整数、分数和有限小数,无理数包括无限不循环小数。
3. 实数的性质(1)实数的四则运算实数的加减乘除满足交换律、结合律和分配律。
(2)实数的大小比较实数之间可以进行大小比较,根据大小关系可以定义出实数的大小顺序。
(3)实数的绝对值实数a的绝对值,记作|a|,是a到原点的距离。
如果a≥0,则|a|=a;如果a<0,则|a|=-a。
4. 有理数的加减乘除(1)有理数的加减法同号两数相加,取绝对值相加,正负号和原数相同;异号两数相加,取绝对值相减,正负号取绝对值大的数的符号。
(2)有理数的乘法同号两数相乘,结果为正;异号两数相乘,结果为负。
(3)有理数的除法两个非零有理数相除,可以化为乘法,即a÷b=a乘以1/b。
5. 无理数的性质无理数是不能写成两个整数的比值的数,无理数的小数形式为无限不循环小数。
无理数的加减乘除运算同样也满足交换律、结合法和分配律。
6. 实数的小数表示实数可以用小数表示,根据小数的循环性质,可以分为有限小数和无限循环小数。
有限小数是指小数部分有限位数,无限循环小数是指小数部分无限循环。
7. 实数的应用实数在日常生活中有着广泛的应用,比如在金融、科学、工程等领域,实数都有着重要的应用。
比如在金融中,实数用来表示货币的价值;在科学中,实数用来表示物理量的大小等等。
8. 实数的练习(1)计算:(-5)×(-3)、(-4)+5、(-3)-7;(2)判断:-2/3与2/3的大小关系;(3)简化:(-6)÷(-3);(4)解方程:x-12=20。
9. 实数的注意点(1)在计算实数的加减乘除时,要注意正负数的加减乘除规则;(2)对于无理数的计算,要注意小数的无限循环性质;(3)实数在应用中要注意单位的转换,比如货币的转换等。
最新中考数学知识点复习大全专题:实数的有关概念及运算
基本方法归纳: 判断一个数是不是有理数, 关键是看它是不是有限小数或无限循环小数; 判 断一个数是不是无理数,关键在于看它是不是无限不循环小数. 注意问题归纳:在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:
(1)开方开不尽的数,如
7 , 3 2 等;
(2)有特定意义的数,如圆周率
π π,或化简后含有 π的数,如 3 +8 等;
? 解读考点 知识点
专题 01 实数的有关概念及运算
名师点晴
实 数的 分类
1.有理数 2.无理数
实 数的 有 关概 念
1.相反数、倒数、绝对值 2.科学计数法、近似数 3.实数的非负性
实 数的 运 算和 大 小比 较
1.实数的估算 2.实数的大小比较 3.实数的运算
会根据有限小数和无限循环小数判定一个数是有理数
)
1 x x2
x x2 1
A. x
B.
x
【答案】 C. 【解析】
x2 x 1
C.
x
1 x2 x D. x
1 x
x2 1
1 4
x2 x 1
试题分析:∵ 0 x 1,令 2 ,那么
4 , x ,∴
x .故选 C.
考点:实数大小比较.
2015
6.( 2015 绵阳)若 a b 5 2a b 1 0 ,则 b a
)
A .﹣ 3
B.0
C.5
D.3
【答案】 A .
2 3,则
考点:实数大小比较.
8.( 2015 荆门) 64 的立方根是(
)
A . 4 B .±4 【答案】 A .
C. 8
D .±8
【解析】
试题分析:∵ 4 的立方等于 64,∴ 64 的立方根等于 4.故选 A .
中考复习之—实数的概念及其运算
中考复习之——实数的概念及其运算一、实数的分类:实数有理数 整数 正整数0负整数 分数 正分数负分数 有限小数或无限循环小数 无理数 正无理数负无理数 无限循环小数 与π有关的数:如−2π等 有根号但开方开不尽的数: 7, 53等 有规律但不循环的无限小数,如1.010010001…等 二、基本概念:1.相反数:a 的相反数是 ,x+y 的相反数是 ,m-n 的相反数是 。
注:相反数等于本身的数是0.2.倒数:乘积为1的两个数互为倒数,注:0没有倒数,倒数等于本身的数是±1.3.绝对值:数轴上表示数a 的点到原点的距离叫做这个数的绝对值。
注:正数的绝对值是它本身,0的绝对值还是0,负数的绝对值等于它的相反数。
a = a (a >0)0(a =0)−a (a <0)4.科学记数法:把一个数写成a ³10n(其中1≤ a <10)的形式,叫做科学记数法。
①绝对值大于10的数,n= 。
②绝对值小于1的数,n= 。
5.近似数:一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。
注:科学记数法或含单位的大数的精确度要看最后一个有效数字的实际数位。
如25.7万精确到 位;3.75³108精确到 位。
6.常见的非负数: a ,a 2,a 4, a (二次根式中a ≥0)等。
注:如果几个非负数的和等于0,那么这几个非负数都等于0。
如 x +1+(y −2017)2=0,则x y = .7.实数的幂运算: 幂的运算 同底数幂的乘法:a m a n =am+n ,a m+n =a m a n 同底数幂的除法:a m ÷a n =a m −n ,a m −n =a m ÷a n 幂的乘方: a m n =a mn ,a mn = a m n 积的乘方: ab n =a n b n ,a n b n = ab n零次幂:a 0=1 a ≠0 →如20=1,(−3)0=1,(3−π)0=1等 负指数次幂:a −n =1n a ≠0 →如3−1=1 ,(−5)−2 =1 ,(−1)−1=−2,(−1)−2=9等 8.实数的大小比较:①正数>0,负数<0,正数>负数;②两个负数,绝对值大的数反而小;③差值比较法:a-b >>b;;a-b <<b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学第一轮总复习
第一讲实数的概念及实数的运算
(一):【知识梳理】 1.实数的有关概念
(1)有理数: 和 统称为有理数。
(2)无理数: 小数叫做无理数。
(3)实数: 和 统称为实数。
(4)实数和 的点一一对应。
(5) 实数的分类
①按定义分: ②按符号分:
实数(
)
(
)0()
()()(
)⎧
⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩
; 实数(
)(
)()0()(
)(
)
⎧⎧⎨⎪⎩⎪⎪
⎨⎪
⎧⎪⎨⎪⎩⎩
(6)相反数:只有 不同的两个数互为相反数。
若a 、b 互为相反数,则 。
(7)数轴:规定了 、 和 的直线叫做数轴。
(8)倒数:乘积 的两个数互为倒数。
若a (a≠0)的倒数为1a
. 。
(9)绝对值:
=a
2.科学记数法、近似数和有效数字
(1)科学记数法:把一个数记成±a×10n
的形式(其中1≤a<10,n 是整数) (2)近似数是指根据精确度取其接近准确数的值。
取近似数的原则是“四舍五入”。
(3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。
3.实数的运算顺序:在同一个算式里,先 、 ,然后 ,最后 .有括号 时,先算 里面,再算括号外。
同级运算从左到右,按顺序进行。
4.实数的大小比较
5.零指数幂和负指数幂:当a ≠0时a 0
=____;当a ≠0时且n 为整数时,a -n
=(a
1
)n
6.三个重要的非负数: 二:【经典考题剖析】 例1 ①a 的相反数是-1
5
,则a 是_______。
(3-2)的倒数是_______,相反数是______. ②.数a ,b 在数轴上的位置如图所示: 化简2
()
()||
a a
b a b a b -+--.
a b
③去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约______________________.
例2 下列实数
227、sin60°、3
π、)0、3.14159、 -
3
、(-2( )
个
A .1
B .2
C .3
D .4
例3 计算:(1)(3-1)0
+1
13-⎛⎫ ⎪
⎝⎭
-0.1259×89
-
)
5(-2
; (2) (1) 30cos )3
1(31-+--
(304sin 45(3)4︒+-π+- (4)1
20114520104-⎛⎫
-++︒+ ⎪⎝⎭
三:【课后训练】
1、一个数的倒数的相反数是11
5 ,则这个数是()
A .65
B .56
C .-65
D .-5
6
2、一个数的绝对值等于这个数的相反数,这样的数是( ) A .非负数 B .非正数 C .负数 D .正数
3. 有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人
B .9人
C .10人
D .11人
4. 若a 的相反数是最大的负整数,b 是绝对值最小的数,则a +b=___________.
5.已知
x y y x -=-,4,3x y ==,则()3
x y +=
6.光年是天文学中的距离单位,1光年大约是9500000000000km ,用科学计数法表 示 (保留三个有效数字)
7. . 已知(x-2)2
=0,求xyz 的值
8. 回答下列问题:
①数轴上表示2和5的两点之间的距离是_____,数轴上表示-2和-5的两点之间的距离是____,数
轴上表示1和-3的两点之间的距离是______.
②数轴上表示x 和-1的两点A 和B 之间的距离是________,若|AB|=2,那么x=_________. ③当代数式|x+1|+|x -2| 取最小值时,相应的x 的取值范围是_________. 9.已知:2+
23=22×23,3+38=32×38,4+
244
4,1515=⨯ 255552424+=⨯,…,若10+b a =102×b a
符合前面式子的规律,则a+b=________.
10.近似数0.030万精确到 位,有 个有效数字,用科学记数法表示为 万 11. 下列说法中,正确的是( )
A .|m|与—m 互为相反数
B 11互为倒数
C .1998.8用科学计数法表示为1.9988×102
D .0.4949用四舍五入法保留两个有效数字的近似值为0.50
12.在
(
0022sin 4500.2020020002273
π⋅⋅⋅、、、、
这七个数中,无理数有( )
A .1个;
B .2个;
C .3个;
D .4个 13下列命题中正确的是( )
A .有理数是有限小数
B .数轴上的点与有理数一一对应
C .无限小数是无理数
D .数轴上的点与实数一一对应
13当0<x <1时,21
,,
x x x
的大小顺序是( ) A .
1x <x <2x ;B .1x <2x <x ;C .2x <x <1x ;D .x <2x <1x
14.现规定一种新的运算“※”:a ※b=a b
,如3※2=32
=9,则1
2
※3=( )
A .18;
B .8;
C .16;
D .32
15.计算
(1) -32÷(-3)2
+|- 1
6
|×(-( 2)3(2-3)×3
278-(-
2)0
+tan600
-│3-2│
(3)220)145(sin --3tan30010
0221()(2001tan 30)(2)
316--++-⋅(4)│-12│÷(-12+23-14-56)
16.已知x 、y 是实数,2690,3,.y y axy x y a -+=-=若求实数的值
17. 已知a 与 b 互为相反数,c 、d 互为倒数,x 的绝对值是2的相反数的负倒数,y 不能作除数,求
2002200120001
2()2()a b cd y x
+-++的值.
18. 观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,……这些等式反映出自然数间的某种规律,设n 表示自然数,用关于n 的等式表示出来
19*. 已知非负数a ,b ,c 满足条件a +b =7,c -a =5,设S =a +b +c 的最大值为m ,最
小值为n ,则m -n = .
20. a 、b 在数轴上的位置如图所示,且a
>
b ,化简a a b b a
-+--
21在数学活动中,小明为了求
12
+
234
11112222n
+++的值(结果用n 表示),
设计如图(1)所示的几何图形. (1)请你利用这个几何图形求1
2
+
23411112222n
+++的值为_______.
22.如图,在直角坐标系中,矩形ABCD 的边AD 在y 轴正半轴上,点A 、C 的坐标分别为(0,1)、(2,4).点P 从点A 出发,沿A →B →C 以每秒1个单位的速度运动,到点C 停止;点Q 在x 轴上,横坐标为点P 的横、纵坐标之和.抛物线c bx x y ++-
=2
4
1经过A 、C 两点.过点P 作x 轴的垂线,垂足为M ,交抛物线于点R .设点P 的运动时间为t (秒),△PQR 的面积为S (平方单位). (1)求抛物线对应的函数关系式.(2分) (2)分别求t=1和t=4时,点Q 的坐标.(3分)
(3)当0<t ≤5时,求S 与t 之间的函数关系式,并直接写出S 的最大值.(5分)
0b
a。