计数器和移位寄存器设计仿真实验报告
移位寄存器实验报告结果

一、实验目的本次实验的主要目的是通过搭建移位寄存器实验电路,验证移位寄存器的逻辑功能,并了解其在数字系统中的应用。
实验内容包括:移位寄存器的基本原理、实验电路搭建、实验现象观察和结果分析。
二、实验原理移位寄存器是一种具有移位功能的寄存器,它可以实现数据的串行输入和串行输出。
在时钟脉冲的作用下,移位寄存器中的数据可以依次左移或右移。
根据移位寄存器存取信息的方式不同,可分为串入串出、串入并出、并入串出、并入并出四种形式。
本实验选用的是4位双向通用移位寄存器,型号为74LS194或CC40194。
74LS194具有5种不同操作模式:即并行送数寄存、右移、左移、保持及清零。
其逻辑符号及引脚排列如图1所示。
图1 74LS194的逻辑符号及其引脚排列三、实验电路搭建1. 电路元件准备:74LS194芯片、电阻、电容、二极管、连接线等。
2. 电路搭建:按照图1所示,将74LS194芯片的引脚与电阻、电容、二极管等元件连接,形成移位寄存器实验电路。
3. 电源连接:将电源正负极分别连接到电路板上的VCC和GND端。
四、实验现象观察1. 实验现象一:串行输入,并行输出。
(1)将74LS194的SR端接地,SL端接高电平,S1、S0端接高电平,CR端接地。
(2)使用串行输入端输入数据,观察并行输出端的数据变化。
(3)实验现象:当输入串行数据时,并行输出端依次输出对应的数据。
2. 实验现象二:并行输入,串行输出。
(1)将74LS194的SR端接地,SL端接高电平,S1、S0端接低电平,CR端接地。
(2)使用并行输入端输入数据,观察串行输出端的数据变化。
(3)实验现象:当输入并行数据时,串行输出端依次输出对应的数据。
3. 实验现象三:左移、右移操作。
(1)将74LS194的SR端接地,SL端接高电平,S1、S0端分别接高电平和低电平,CR端接地。
(2)观察移位寄存器中的数据在时钟脉冲的作用下左移或右移。
(3)实验现象:在时钟脉冲的作用下,移位寄存器中的数据依次左移或右移。
北京科技大学数电实验四 Quartus II集成计数器及移位寄存器应用

北京科技大学实验报告学院:高等工程师学院专业:自动化(卓越计划)班级:自E181姓名:杨威学号:41818074 实验日期:2020 年5月26日一、实验名称:集成计数器及其应用1、实验内容与要求(1)用74161和必要逻辑门设计一个带进位输出的10进制计数器,采用同步置数方法设计;(2)用两个74161和必要的逻辑门设计一个带进位输出的60进制秒计数器;2、实验相关知识与原理(1)74161是常用的同步集成计数器,4位2进制,同步预置,异步清零。
引脚图功能表其中X。
3、10进制计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数输出QD、QC、QB、QA,进位输出RCO,显示译码输出OA、OB、OC、OD、OE、OF、OG2)计数范围:0000-10013)预置数值:00004)置数控制端LDN:计数到1001时输出低电平5)进位输出RCO:计数到1001时输出高电平画出如下状态转换表:CP QDQCQBQA0 00001 00012 00103 00114 01005 01016 01107 01117 10009 100110 0000(2)原理图截图仿真波形如下功能验证表格CLRN QD QC QB QA RCO0 0 0 0 0 01 0 0 0 1 01 0 0 1 0 01 0 0 1 1 01 0 1 0 0 01 0 1 0 1 01 0 1 1 0 01 0 1 1 1 01 1 0 0 0 01 1 0 0 1 11 0 0 0 0 04、60进制秒计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数十位输出QD2、QC2、QB2、QA2和计数个位输出QD1、QC1、QB1、QA1,进位输出RCO2)计数范围:0000 0000-0101 10013)预置数值:0000 00004)置数控制端LDN1(个位):计数到0101 1001时输出低电平5)清零端CLRN2(十位):计数到0110时输出低电平6)ENT:个位计数到1001时输出高电平7)进位输出RCO:计数到1001时输出高电平画出如下状态转换表CP QD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA10 0000 0000 20 0010 0000 40 0100 00001 0000 0001 21 0010 0001 41 0100 00012 0000 0010 22 0010 0010 42 0100 00103 0000 0011 23 0010 0011 43 0100 00114 0000 0100 24 0010 0100 44 0100 01005 0000 0101 25 0010 0101 45 0100 01016 0000 0110 26 0010 0110 46 0100 01107 0000 0111 27 0010 0111 47 0100 01118 0000 1000 28 0010 1000 48 0100 10009 0000 1001 29 0010 1001 49 0100 100110 0001 0000 30 0011 0000 50 0101 000011 0001 0001 31 0011 0001 51 0101 000112 0001 0010 32 0011 0010 52 0101 001013 0001 0011 33 0011 0011 53 0101 001114 0001 0100 34 0011 0100 54 0101 010015 0001 0101 35 0011 0101 55 0101 010116 0001 0110 36 0011 0110 56 0101 011017 0001 0111 37 0011 0111 57 0101 011118 0001 1000 38 0011 1000 58 0101 100019 0001 1001 39 0011 1001 59 0101 100160 0000 0000 (2)设计原理图截图(3)实验仿真仿真波形:仿真结果表:5、实验思考题:(1)总结任意模计数器的设计方法。
移位寄存器实验报告

移位寄存器实验报告移位寄存器和计数器的设计实验室:实验台号:日期:专业班级:姓名:学号:一、实验目的1. 了解二进制加法计数器的工作过程。
2. 掌握任意进制计数器的设计方法。
二、实验内容(一)用D触发器设计左移移位寄存器(二)利用74LS161和74LS00设计实现任意进制的计数器设计要求:以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)。
三、实验原理图1.由4个D触发器改成的4位异步二进制加法计数器(输入二进制:11110000)2.测试74LS161的功能3.熟悉用74LS161设计十进制计数器的方法。
①利用置位端实现十进制计数器。
②利用复位端实现十进制计数器。
四、实验结果及数据处理1.左移寄存器实验数据记录表要求:输入二进制:111100002.画出你所设计的任意进制计数器的线路图(计数器从零开始计数),并简述设计思路。
8进制利用复位法实现8进制计数器,8=1000B,将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。
五、思考题1. 74LS161是同步还是异步,加法还是减法计数器?答:在上图电路中74LS161是异步加法计数器。
2. 设计十进制计数器时将如何去掉后6个计数状态的?答:通过置位端实现时,将Q0、Q3 接到与非门上,输出连接到置位控制端。
当Q3=1,Q2=0,Q1=0,Q0=1,即十进制为9时,与非门输入端Q0、Q3同时为高电平,位控制端为低电位,等到下一个CP上升沿到来时,完成置数,全部置为0。
3. 谈谈电子实验的心得体会,希望同学们提出宝贵意见。
答:通过这学期的电子实验,我对电子电路有了更加深入地了解。
初步了解了触发器、寄存器、计数器等电子元件的使用。
将理论与实践相结合,更加深入的了解了电子技术,学到了很多,对这学期的电子实验十分满意。
Multisim数电仿真移位寄存器

4位移位寄存器仿真一、实验目的:1. 熟悉移位寄存器的工作原理及调试方法。
2. 掌握用移位寄存器组成计数器的典型应用。
二、实验准备:移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
本实验选用的4位双向通用移位寄存器,型号为74LS194,其逻辑符号及引其中,3D 、2D 、1D 、0D 为并行输入端;3Q 、2Q 、1Q 、0Q 为并行输出端;R S 为右移串行输入端;L S 为左移串行输入端;1S 、0S 为操作模式控制端;R C 为直接无条件清零端;CP 为时钟脉冲输入端。
74LS194有5种不同操作模式:并行送数寄存;右移(方向由3Q →0Q );左移(方向由0Q →3Q );保持及清零。
1S 、0S 和R C 端的控制作用如表3.10.1所示。
表3.10.1:移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或并行数据转换为串行数据等。
把移位寄存器的输出反馈到它的串行输入端,就可进行循环移位,如图3.10.2所示。
把输出端0Q 和右移串行输入端R S 相连接,设初始状态3Q 2Q 1Q 0Q =1000,则在时钟脉冲作用下,3Q 2Q 1Q 0Q 将依次变为0100→0010→0001→1000→……,可见,它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。
图3.10.2电路可以由各个输出端输出在时间上有先三、计算机仿真实验内容:1.逻辑功能验证: (1). 并行输入:1). 从电子仿真软件Multisim7基本界面左侧左列真实元件工具条的“TTL ”元件库中调出74LS194;从“Basic ”元件库中调出单刀双掷开关8只;从“Source ”元件库中调出Vcc 和地线,将它们放置在电子平台上。
四位移位寄存器的设计和仿真

以往的软件版本已经不能对更小尺寸工艺下的电路进行设 计和仿真,而采用Tanner13此软件,可以进行更小尺寸工 艺下的电路的设计和仿真。因此,应用此软件可以把握时 代科技前沿,可以对更小模型进行研究。
内容提纲
研究课题的意义
设计过程
仿真过程 结论
设计过程
1、首先使用S-Edit生成CMOS反相器的电 路图和符号图。
其功能表如下所示:
输入 D 1 1 1 1 0 0 0 0
现态
次态
注
CP Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 连续输入4个1
↓
0000
1000
↓
1000
1100
↓
1100
1110
↓
1110
1111
↓
1111
0111
连续输入4个0
↓
0111
0011
↓
0011
0001
↓
0001
0000
2、功耗分析
4、最高频率的分析
移位寄存器的最大的工作频率可以通过下面的公式进行计算,此公式的计算 需要知道上升时间和下降时间,其公式为:
f 1 ton toff
四位CMOS移位寄存器的关于上升时间和下降时间的分析我们可以得出,上升时间 为0.65ns,而且下降时间为0.77ns,从而通过此公式得到其最大的工作的频率为 f=1/0.65ns+0.77ns=704 MHZ。这是在空载下的最高工作频率。
寄存器实验实验报告

寄存器实验实验报告一. 引言寄存器是计算机中重要的数据存储器件之一,用于存储和传输数据。
通过对寄存器进行实验,我们可以更好地理解寄存器的工作原理和应用。
本实验旨在通过设计和测试不同类型的寄存器,深入掌握寄存器的各种功能和操作。
二. 实验设计本实验设计了两个寄存器的实验,分别为移位寄存器和计数器寄存器。
1. 移位寄存器实验移位寄存器是一种特殊的串行寄存器,它能够实现对数据位的移位操作。
本实验设计了一个4位的移位寄存器,分别使用D触发器和JK触发器实现。
实验步骤如下:1) 首先,根据设计要求将4个D或JK触发器连接成移位寄存器电路。
2) 确定输入和输出端口,将输入数据连接到移位寄存器的输入端口。
3) 设计测试用例,输入测试数据并观察输出结果。
4) 分析实验结果,比较不同触发器类型的移位寄存器的性能差异。
2. 计数器寄存器实验计数器寄存器是一种能够实现计数功能的寄存器。
本实验设计了一个二进制计数器,使用T触发器实现。
实验步骤如下:1) 根据设计要求将多个T触发器连接成二进制计数器电路。
2) 设计测试用例,输入计数开始值,并观察输出结果。
3) 测试计数的溢出和循环功能,观察计数器的行为。
4) 分析实验结果,比较不同计数器位数的性能差异。
三. 实验结果与分析在实验过程中,我们完成了移位寄存器和计数器寄存器的设计和测试。
通过观察实验结果,可以得出以下结论:1. 移位寄存器实验中,无论是使用D触发器还是JK触发器,移位寄存器都能够正确地实现数据位的移位操作。
而使用JK触发器的移位寄存器在性能上更加优越,能够实现更复杂的数据操作。
2. 计数器寄存器实验中,二进制计数器能够准确地实现计数功能。
通过设计不同位数的计数器,我们发现位数越多,计数范围越大。
综上所述,寄存器是计算机中重要的存储器件,通过实验我们深入了解了寄存器的工作原理和应用。
移位寄存器和计数器寄存器都具有广泛的应用领域,在数字电路设计和计算机系统中起到了重要作用。
寄存器实验报告

一、实验目的1. 理解寄存器在计算机系统中的作用和重要性。
2. 掌握通用寄存器组的设计方法和应用。
3. 通过实验,加深对寄存器读写操作的理解。
二、实验原理寄存器是计算机中用于临时存储数据和指令的存储单元,它具有数据存取速度快、容量小、易于控制等特点。
在计算机系统中,寄存器用于存放指令、数据、地址等,是CPU执行指令的重要基础。
三、实验内容1. 通用寄存器组实验(1)实验目的:了解通用寄存器组的用途、结构和工作原理。
(2)实验内容:- 观察通用寄存器组(如AX、BX、CX、DX等)的内部结构;- 学习寄存器读写操作的基本指令(如MOV、ADD、SUB等);- 通过编程,实现寄存器之间的数据交换和运算。
(3)实验步骤:- 使用C语言编写程序,实现寄存器之间的数据交换和运算;- 在计算机上编译并运行程序,观察实验结果。
2. 移位寄存器实验(1)实验目的:了解移位寄存器的结构、工作原理和应用。
(2)实验内容:- 观察移位寄存器(如74LS194)的内部结构;- 学习移位操作指令(如SHL、SHR等);- 通过编程,实现数据的串行/并行转换和构成环形计数器。
(3)实验步骤:- 使用C语言编写程序,实现数据的串行/并行转换和构成环形计数器;- 在计算机上编译并运行程序,观察实验结果。
3. 寄存器仿真实验(1)实验目的:通过仿真软件,加深对寄存器读写操作的理解。
(2)实验内容:- 使用Proteus仿真软件,搭建寄存器实验电路;- 观察寄存器读写操作时,内部信号的变化;- 分析实验结果,验证寄存器读写操作的正确性。
(3)实验步骤:- 在Proteus软件中搭建寄存器实验电路;- 编写测试程序,观察寄存器读写操作时,内部信号的变化;- 分析实验结果,验证寄存器读写操作的正确性。
四、实验结果与分析1. 通用寄存器组实验通过实验,我们了解了通用寄存器组的结构和工作原理,掌握了寄存器读写操作的基本指令。
实验结果表明,寄存器读写操作可以有效地提高程序执行速度。
移位寄存器实验心得(精品5篇)

移位寄存器实验心得(精品5篇)移位寄存器实验心得篇1以下是一篇移位寄存器实验心得:移位寄存器实验心得移位寄存器是数字电路中的一个基本组件,它可以在一个有限位的寄存器中存储数据,并可以通过移位操作将数据向左或向右移动。
在本次实验中,我们通过使用移位寄存器来实现一个简单的计数器,并通过对移位寄存器的操作来实现其他功能。
在实验中,我们首先使用了一个4位二进制移位寄存器来实现计数器。
我们通过输入不同的数值,并使用移位操作来控制计数器的计数方式。
通过观察实验结果,我们发现计数器的计数方式与我们所输入的数值和移位操作有关。
接着,我们使用移位寄存器来实现了一个简单的LED显示电路。
我们将移位寄存器中的数据通过一个数码管显示出来,从而实现了LED显示的功能。
在这个实验中,我们学习了如何将数字转换成二进制码,并将其存储在移位寄存器中,然后通过数码管将数据显示出来。
最后,我们使用移位寄存器来实现了一个简单的电子琴电路。
我们将移位寄存器中的数据通过一个电子琴模拟出来,从而实现了电子琴的功能。
在这个实验中,我们学习了如何将数字转换成二进制码,并将其存储在移位寄存器中,然后通过电子琴将数据模拟出来。
通过这次实验,我们不仅学习了移位寄存器的基本原理和操作方法,还加深了对数字电路的理解和认识。
同时,我们也学会了如何将理论知识与实际操作相结合,提高了我们的动手能力和解决问题的能力。
移位寄存器实验心得篇2在进行移位寄存器实验的过程中,我不仅对移位寄存器有了更深入的理解,还掌握了一些实际操作技巧。
以下是我对这次实验的心得体会。
首先,实验开始前,我对于移位寄存器的工作原理感到困惑。
但是在实验过程中,我逐渐明晰了其工作机制。
移位寄存器是一种具有存储功能的电子元件,可以将数据从高位移至低位或低位移至高位,从而实现数据的传递和存储。
这一过程让我对电子元件的工作原理有了更深入的了解。
在实验过程中,我遇到了一些问题,例如在编程时出现了错误。
但是,通过查阅相关资料和反复试验,我逐渐找到了解决问题的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四典型时序电路的功能测试与综合仿真报告
15291204 张智博
一.74LS290构成的24位计数器
方法:第一片74290的Q3与第二片的INB相连,R01,R02相连,INA,R91,R92悬
空构成24位计数器。
50Hz,5v方波电压源提供时钟信号,用白炽灯显示输出信号。
实验电路:
001011,001100,010001,010000,010010,010011,010100,011000,011001,011010,011011,011100,100000,100001,100010,100011,100100,最终又回到000000,实现一次进位。
二.74LS161构成的24位计数器
方法:运用多次置零法
用两片74LS161构成了24位计数器,两片计数器的时钟信号都由方波电压源提供,第一片芯片的Q3和第二片芯片的Q0通过与非门,构成两个74LS161的LOAD信号,第一片的CO接第二片的ENT,其他ENT和ENP接Vcc(5v)。
输出接白炽灯。
电路图:
实验现象:以下为1—24的计数过程
三.74LS194构成的8位双向移位寄存器
方法:通过两片194级联,控制MA,MB的值,来控制左右移动
实验电路由两片74LS194芯片构成。
两个Ma接在一起,两个Mb接在一起,第一片的Dr,第二片的Dl,分别通过开关接到Vcc(5v)上。
第一片的Q3接到第二片的Dr,第二片的Q0接到第一片的Dl。
8个输出端分别接白炽灯。
实验电路:
实验现象:
右移:
接通Ma,Dr后,D0到D7全部为0,白炽灯从00000000变为10000000,11000000,
左移:
接通Mb,Dl后,D0到D7全为0,白炽灯由00000000变为00000001,00000011,。