贝雷梁钢便桥计算书
贝雷梁便桥计算书

贝雷梁施工便桥设计计算书中铁十一局集团第四工程有限公司二〇一六年三月贝雷梁便桥计算书1、便桥设计依据1.1、设计依据和设计规范《公路桥涵设计通用规范》(JTG D60-2004) 《钢结构设计规范》(GB 50017-2003) 《港口工程荷载规范》(JTJ215-98) 1.2、技术标准1)荷载:按80t 履带吊吊重20t 荷载验算,其中80t 履带吊吊重20t 为栈桥设计的主要荷载。
2)宽度:考虑施工车辆通行需求和经济性因素,按行车道8m 宽布置,每孔跨度12m ,5跨一联。
3)水流力:按流速1.75m/s 考虑。
4)标高:按照设计高潮位+4.75m 设计,栈桥顶面标高设计为+7.0m 。
5)栈桥设计车速:15km/h 。
6)风荷载:工作状态:13.8m/s ;非工作状态:40m/s 。
7)型钢、钢管桩允许应力 抗拉、压 []188.5MPa σ= 抗弯 []188.5w MPa σ= 抗剪 []110MPa τ=单排单层贝雷梁容许弯矩[]788.2M kN m =⋅ 单排单层贝雷梁容许剪力[]245.2Q kN = 2、便桥结构设计 2.1、技术标准(1)设计恒载:栈桥结构自重(2)验算活载:80t履带吊(自重80t+吊重20t)。
10方混凝土罐车栈桥上通行,载重时重量40t 。
总重:400 kN ,轮距:1.8 m,轴距:3.45 m +1.35m前轴重力标准值:60kN,后轴重力标准值:2×170kN前轮着地面积:0.30m×0.20m,后轮着地面积:0.60m×0.20m(3)设计行车速度:15km/h(4)设计使用寿命:5年2.2、便桥结构形式便桥桥面行车道宽度8.0m。
桥面系由上往下依次为10mm组合型花纹钢板,工12.6小纵梁,工22b横向分配梁。
便桥纵梁采用8排单层321型贝雷梁,间距为0.9+1.3m+0.9m+1.3m+0.9m+1.3m+0.9m,贝雷梁跨度12m,采用5跨一联布置,中间设置刚性墩。
跨径12米贝雷钢便桥计算书

目录一工程概况 (2)二、设计依据 (2)三、主要技术标准 (3)四、技术规范 (3)五、主要材料 (3)六、设计要点 (5)七、结构计算内容 (5)八、设计参数 (6)九、厚1cm桥面钢板抗弯、抗剪强度验算 (6)十、横向I14工字钢分配梁检算 (8)十一、贝雷桁纵向抗弯、抗剪检算 (11)十二、桩顶横垫梁(工字钢2I36b)强度验算 (16)十三、钢管桩设计 (19)十四、钢便桥纵向稳定性验算(按简支梁计算) (20)十五、便桥抗9级风稳定性验算 (21)十六、便桥抗水流横向稳定性验算 (22)十七、使用注意事项 (23)南平西芹大桥工程钢便桥及平台计算书一工程概况根据现场勘查并结合桥梁结构类型,西芹大桥主墩1#、2#采用“先堰后桩”施工工艺,即在双壁钢围堰下发后在钢围堰上搭设桩基施工平台,平台半径7.6m,钢围堰与岸侧采用钢便桥相连,南岸引桥3#、4#墩采用搭设钢便桥和桩基水上施工平台进行桥梁施工,根据桥梁走向和墩位位置,南岸钢便桥起点位于南岸现有浆砌护坡坡脚处,终于2#墩墩中心,便桥设置在桥梁上游一侧,在3#墩处拐入2#墩桥墩中心处,长度90米;北岸钢便桥起点位于1#墩河岸原便道处,终于1#墩钢围堰边缘,上下游承台各一个15米长钢便桥;南北岸钢便桥搭设总长度为90+15*2=120米。
临时施工便桥按照永久性进行设计施工,将抗拒五年一遇洪水,便桥钢管桩采用打入岩层,便桥设置顶标高为68.5m(常水位为61m~65m)。
钢钢便桥作为施工时汽车运输道路及吊机移动道路,水上平台作为桥梁下部施工时工作平台。
施工便桥设置在桥梁上游侧。
钢便桥桥面宽度按照5.5m布置,采用厚1.0cm的钢板作为行车道板,桥面板下为间距30cm横向工字钢(I14)分配梁,分配梁下为纵向主梁,纵向主梁用三组6片贝雷桁架。
由于桥址所在地质均为裸岩,钢管桩植入难度大,便桥基础采用底宽3m、顶宽1.5m、长7m C25素混凝土中支墩基础,其中G2#、G3#支墩考虑到所处地势较高,水流较缓,基础上立Φ630mm×10mm钢管桩作为支撑,每个墩使用双排2×2=4根钢管桩。
跨径12米贝雷钢便桥计算书

跨径12米贝雷钢便桥计算书跨径12米贝雷钢便桥计算书一、便桥概况纵向施工便道途经铁场排洪渠及沙河时,采用贝雷钢便桥跨越,车俩单向通行。
单孔设计最大跨径12m,桥面宽度为6m。
钢便桥结构型式见下图:便桥桥墩处自下而上依次采用的主要材料为:壁厚10㎜、直径800㎜钢管桩基础2根→1000*1000*10mm钢垫板→2根20a型工字钢(双拼)下横梁→双排单层321贝雷片(2榀4片)纵梁→25a型工字钢横向分配梁→22a型槽钢桥面(卧放满铺)。
钢管桩中心间距为350㎝,桩间采用2根壁厚6㎜、直径630㎜钢管作为支撑联结;20a型工字钢(双拼)下横梁每根长度为530㎝;2榀贝雷梁横向中心间距为350㎝,每榀贝雷片横向顶面采用支撑架(45㎝)联结,底面两侧用2段槽钢固定在工字钢下横梁上;25a型工字钢横向分配梁间距为75㎝,每根长度为600㎝;桥面系22a型槽钢间净距4㎝,横向断面布置23根。
二、计算依据及参考资料1、《公路桥涵设计通用规范》(JTG D60-2004);2、《公路桥涵地基与基础设计规范》(JTG D63-2007);3、《公路桥涵钢结构及木结构设计规范》(JTJ 025-86);4、《公路桥涵施工技术规范》(JTJ 041-2000);5、《公路桥涵施工手册》(交通部第一公路工程总公司主编);6、从莞高速公路惠州段第二合同段两阶段施工图设计;7、本合同段相关地质勘探资料;三、主要计算荷载1、汽车-20 重车;2、自重50吨履带式起重机+吊重15吨(便桥施工期作业机械荷载);3、结构自重;四、结构受力验算(一)、22a型槽钢桥面板(按简支计算,跨径L=0.75m)1、材料相关参数:Iy =157.8㎝4,Wy=28.2㎝3,iy=2.23㎝;容许抗弯应力f=215 MPa,容许抗剪应力fy=125 MPa,E=206×103MPa;自重24.99㎏/m,截面积31.84㎝2。
2、荷载情况:“汽-20”重载,轴距1.4m,单轴重14吨,半边轮组重7吨;汽车冲击系数取1.3;单个轮胎宽度为20㎝,单侧一组轮胎宽度为60㎝,单侧轮组面与3片槽钢接触;轮组作用在跨中弯矩最大,轮组作用在临近支点处剪力最大。
贝雷梁钢便桥检算书(6.30)

便桥检算方案拟定:全桥共两跨,桥跨组合3.5m+3.5m,采用3.5米预制混凝土板梁,桥面宽度为6米,便桥限载为50t。
1号墩及0、2号台均为实体墩、扩大基础。
边梁宽1.35m,中梁宽1.5m。
梁高均为0.4 m,梁体采用C30钢筋混凝土一、荷载分析:(一)恒载:板梁自重:(折算为集中荷载)1、边梁:q1 =1.2×0.4×1.35×3.5 ×25=56.7KN2、中梁:q2 =1.2×0.4×1.5×3.5×2.5 =63KN(二)活载:1、双50 t2、作用于单片梁上为:25 t3、作用于墩台处为:50×2=100 t(三)荷载内力分析1.恒载内力分析:(1)边梁:q1 =56.7KNM max=49.7 KN mQ max= 28.4 KN(2)中梁:q2 =63KNM max=55.2 KN mQ max= 31.5 KN2. 活载内力分析:作用于单片梁上荷载为250 KN :荷载作用于跨中为最:M max =218.8 KNm荷载作用于梁端为最:Q max = 250 KN3、荷载组合分析:恒载+活载:(1)边梁: M max =49.7+218.8=268.5 KN mQ max =28.4+250=278.4 KN(2)中梁:M max =55.2+218.8=274 KN mQ max =31.5+250=281.5 KN二、板梁检算:(一)配筋计算:1、受压钢筋:(1)边梁:)'0('')20(1M s a h s A y f xh bx c f -+-≤α268.5×106≤1.0×11.9×1350×(400/2×0.8)×(350-160/2)+ 300×A ‘S ×(350-50)A ‘S ≥-4727㎜2说明不需要配置受压钢筋,可按构造配筋。
贝雷梁计算书1.19-426

新建铁路青岛至荣城城际铁路工程蒙沙河施工便桥计算书计算:复核:审核:中铁一局青荣城际铁路工程项目经理部一分部2010年12月青荣项目跨蒙沙河施工便桥计算书一、工程概况青荣城际铁路五沽河特大桥位于即墨市境内,起讫里程为DK64+004.20~DK73+706.80,全长9702.6米。
五沽河特大桥跨域五沽河和蒙沙河两条河流。
蒙沙河系五沽河的支流,属季节性河流,平时流水量较小,最大流速约为1米/秒。
正桥桥址处河道宽132米,正常时节最大水深3~4m,两侧河堤比正常水位高1.5~2m,河两岸边地势平坦,均为耕地。
根据设计和图纸资料显示,桥位河床表面为0.5~1m厚的淤积层,下为2~3m厚的粉质粘土覆盖层;其次为泥质砂岩,强度在400KPa。
由于蒙沙河是一条季节性河流,为此充分考虑到雨季的防洪需求,在穿越此河时采用高架桥形式。
为不缩窄行洪断面,设计桥长不小于现有两堤堤距,桥梁底高程不低于现有堤顶高程,采用贝雷梁组合的钢架梁结构形式(详见附图)。
桥跨布置为“11-12m+1-9m”十跨贝雷梁组合的简支梁。
基础采用υ426×10mm钢管桩,为加强基础整体性,每排桥墩的钢管均采用[16b号槽钢设置剪刀支撑连接成整体,每个墩采用双排钢管每排2根钢管,形成板凳桩,增加便桥的稳定性;墩顶横梁采用双Ⅰ40b工字作为钢支撑,钢支撑上横向布置4组贝雷片做纵梁,每组两片,横向每1.5m间距采用10号槽钢加工支撑架连成整体;贝雷梁上铺设Ⅰ20a工字钢分配梁,间距0.3m,桥面系铺10mm花纹防滑钢板,桥面净宽4.5m。
根据现实需要,栈桥承载力满足:50t履带吊吊重20t在桥面行走和40t混凝土搅拌运输车、60t满载施工车辆行走,按100t荷载检算。
车辆通行时计算采用荷载冲击系数1.2及偏载系数1.2。
钢管桩按承压桩和摩擦桩组合设计。
计算采用跨度12m计算。
二.钢便桥设计验算钢便桥长度141m,设置11孔-12m+1孔-9m,6孔一联,钢便桥总宽5.5m,桥面净宽4.5m,计算跨径为12m。
跨径12米贝雷钢便桥计算书

跨径12米贝雷钢便桥计算书一、便桥概况纵向施工便道途经铁场排洪渠及沙河时,采用贝雷钢便桥跨越,车俩单向通行。
单孔设计最大跨径12m,桥面宽度为6m。
钢便桥结构型式见下图:便桥桥墩处自下而上依次采用的主要材料为:壁厚10㎜、直径800㎜钢管桩基础2根→1000*1000*10mm钢垫板→2根20a型工字钢(双拼)下横梁→双排单层321贝雷片(2榀4片)纵梁→25a型工字钢横向分配梁→22a型槽钢桥面(卧放满铺)。
钢管桩中心间距为350㎝,桩间采用2根壁厚6㎜、直径630㎜钢管作为支撑联结;20a型工字钢(双拼)下横梁每根长度为530㎝;2榀贝雷梁横向中心间距为350㎝,每榀贝雷片横向顶面采用支撑架(45㎝)联结,底面两侧用2段槽钢固定在工字钢下横梁上;25a型工字钢横向分配梁间距为75㎝,每根长度为600㎝;桥面系22a型槽钢间净距4㎝,横向断面布置23根。
二、计算依据及参考资料1、《公路桥涵设计通用规范》(JTG D60-2004);2、《公路桥涵地基与基础设计规范》(JTG D63-2007);3、《公路桥涵钢结构及木结构设计规范》(JTJ 025-86);4、《公路桥涵施工技术规范》(JTJ 041-2000);5、《公路桥涵施工手册》(交通部第一公路工程总公司主编);6、从莞高速公路惠州段第二合同段两阶段施工图设计;7、本合同段相关地质勘探资料;三、主要计算荷载1、汽车-20 重车;2、自重50吨履带式起重机+吊重15吨(便桥施工期作业机械荷载);3、结构自重;四、结构受力验算(一)、22a型槽钢桥面板(按简支计算,跨径L=0.75m)1、材料相关参数:Iy =157.8㎝4,Wy=28.2㎝3,iy=2.23㎝;容许抗弯应力f=215 MPa,容许抗剪应力fy=125 MPa,E=206×103MPa;自重24.99㎏/m,截面积31.84㎝2。
2、荷载情况:“汽-20”重载,轴距1.4m,单轴重14吨,半边轮组重7吨;汽车冲击系数取1.3;单个轮胎宽度为20㎝,单侧一组轮胎宽度为60㎝,单侧轮组面与3片槽钢接触;轮组作用在跨中弯矩最大,轮组作用在临近支点处剪力最大。
贝雷梁钢栈桥设计计算书

1、工程概况本栈桥工程为广西北海金滩14K㎡场地施工用辅助通道。
设计宽度8米,设计长度1755.6米,跨径采用15米。
2、结构验算2.1 验算依据(1)《公路桥涵施工技术规范》(JTG/T F50-2015)(2)《公路钢结构桥梁设计规范》(JTG D64-2015)(3)《公路桥涵设计通用规范》(JTGD60-2015)(4)《公路桥涵地基与基础设计规范》(JTG D63-2007)(5)《公路桥涵钢结构设计规范》(GB50017-2003)(6)《建筑桩基技术规程》(JGJ94-2008)(7)《钢管桩施工技术规程》(YBJ233-1991)(8)《桥梁施工图设计文件》(9)《广西北海金滩14K㎡场地岩土勘察报告》2.2 荷载参数作用于栈桥的荷载分为恒荷载及可变荷载。
恒荷载主要为栈桥结构自重,可变验算荷载为设计荷载:55t渣土运输车。
2.2.1 恒载由计算程序自动考虑。
2.2.2 可变荷载(1)55 吨渣土运输车渣土运输车共3 轴,其具体尺寸如下图,前轮着地面积为0.3×0.2m,后轮着地面积为0.6×0.2m。
单轮最大设计荷载为5.5t。
55吨渣运输车轴距布置图(单位:mm)2.3 荷载工况按最不利的原则考虑以下控制工况:(1)验算控制工况考虑栈桥实际情况,单跨长度为15m,同一跨内最多布置两辆重车,贝雷梁、桥面系验算控制工况为:工况1:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于标准贝雷梁段;工况2:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于通航口加强弦杆贝雷梁段;2.4 结构材料1、钢弹性模量E=2.1×105 mpa;剪切模量G=0.81×105 mpa;密度ρ=7850 Kg/m;线膨胀系数α=1.2×10-5;泊松比μ=0.3;抗拉、抗压和抗弯强度设计值f d =190MPa;抗剪强度设计值fvd=110MPa;2、贝雷梁中各杆件理论容许应力:抗拉、抗压和抗弯强度设计值fd=200MPa;抗剪强度设计值fvd=120MPa。
跨径72米贝雷钢便桥计算书

钢便桥受力计算书 (1)1.1概述 (1)1.2计算范围 (1)1.3主要计算荷载 (1)1.4便桥主要控制计算工况 (1)1.5计算过程(手算) (1)§1.5.1活载计算 (2)§1.5.2桥面板计算 (2)§1.5.3 I12.6工字梁纵梁计算 (2)§1.5.4 I25a工字梁横梁计算 (3)§1.5.5 贝雷主梁计算 (5)§1.5.6 2根I32b桩顶横梁计算 (6)6电算复核 (7)第1页钢便桥受力计算书1.1概述根据本便桥施工荷载要求,参照《公路桥涵设计通用规范》(JTGD60-2004)及《港口工程荷载规范》(JTJ254一98)。
由于本便桥使用时间较短,受自然条件影响较小,所以直接计算工作状态下荷载,风、雨等影响条件忽略。
便桥承受的荷载为自重、车辆荷载。
1.2计算范围计算范围为便桥的基础及上部结构承载能力,主要包括:桥面板→I12.6工字梁纵梁→I25a工字梁横梁→顺桥向贝雷梁→横桥向I32b工字钢→钢管桩。
1.3主要计算荷载恒载:结构自重;活载:9立方混凝土罐车荷载;冲击系数:汽车(1.1)荷载组合:1、恒载+汽车荷载1.4便桥主要控制计算工况①跨径为12m 钢便桥在活载工况下的整体刚度、强度和稳定性; 1.5计算过程(手算)本便桥主要供混凝土罐车、各种小型农用车走行,因而本便桥荷载按9立方米混凝土罐车荷载分别检算。
本便桥恒载主要为型钢桥面系、贝雷梁及墩顶横梁等结构自重。
并按以下安全系数进行荷载组合:恒载1.2,活载1.3。
根据《公路桥涵钢结构及木结构设计规范》规定:临时结构容许应力可提高1.3(组合Ⅰ)、1.4(组合Ⅱ~Ⅴ)。
本便桥弯曲容许应力取MPa 2031454.1=⨯,容许剪应力取MPa 119854.1=⨯。
§1.5.1活载计算活载控制设计为9m3砼运输车(按车与载总重35t 计),参考国内混凝土运输车生产厂家资料及规范汽车-20级荷载布置,单辆砼运输车荷载为3个集中荷载70kN 、140kN 和140kN ,轮距为4.0m 、1.4m ,计入冲击系数1.1后,其集中荷载为77kN 、154kN 和154kN 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
峃口隧道钢栈桥计算书
1、工程概况
本施工便桥采用321型单层上承式贝雷桁架,栈桥0#桥台与老56省道相连,6#桥台位于峃口隧道起点位置,横跨泗溪。
便桥孔跨布置为10m+5*15m,全长85米,桥面净宽6米,人行道宽度,纵向坡度+3%,桥面至河床面净高10米,至水面净空为米(图 1 为钢栈桥截面图)。
钢栈桥桥面系主体结构由δ=10 mm 花纹钢板、I10 工字钢纵梁(间距 m)、I20 工字钢横梁(长,间距 m)组成。
桥面板与工字钢采用手工电弧焊焊接连接,桥面系布置于贝雷桁梁之上,与贝雷桁梁之间用U 型螺栓固定。
贝雷桁梁由贝雷片拼制而成,横向设置6片,间距,贝雷片之间采用角钢支撑花架连接成整体。
本桥基础为明挖基础,基础为7××的钢筋砼,扩大基础必须坐落于河床基岩上,且基础顶标高低于河床。
基础上部墩身均采用φ630 mm(δ=8 mm)钢管,采用双排桩横桥向各布置 2 根,钢管桩之间由平联、斜撑连接。
钢管桩顶设双I32 工字钢分配梁。
本桥基础设计为明挖基础,基础采用C25钢筋砼,钢管桩位于砼基础上与预埋钢板焊接牢固,在此不做计算。
图1 钢栈桥截面图(单位:mm)
2、计算目标
本计算的计算目标为:
1)确定通行车辆荷载等级;
2)确定各构件计算模型以及边界约束条件;
3)验算各构件强度与刚度。
3、计算依据
本计算的计算依据如下:
[1] 黄绍金, 刘陌生. 装配式公路钢桥多用途使用手册[M]. 北京: 人民交通出版社,2001
[2] 《钢结构设计规范》(GB 50017-2003)
[3] 《公路桥涵设计通用规范》(JTG D60-2004)
[4] 《公路桥涵钢结构及木结构设计规范》(JTJ025-86)
4、计算理论及方法
本计算主要依据《装配式公路钢桥多用途使用手册》(黄绍金,刘陌生着.北京:人民交通出版社,)、《钢结构设计规范》(GB 50017-2003)、《公路桥涵设计通用规范》(JTG D60-2004)、《公路桥涵钢结构及木结构设计规范》(JTJ025-86)等规范中的相关规定,通过MIDAS/Civil 2012结构分析软件计算完成。
5、计算参数取值
设计荷载
5.1.1 恒载
本设计采用Midas Civil 建模分析,自重恒载由程序根据有限元模型设定的截面和尺寸自行计算施加。
5.1.2 活载
根据《公路桥涵设计通用规范JTG D60-2004》,汽车荷载按公路-Ⅰ级荷载
计算,公路-Ⅰ荷载如图2:
图2 公路-Ⅰ级荷载图
程序分析时,汽车活载作为移动荷载分析,采用车道面加载。
为确保行人车辆安全,桥面右侧护栏外侧增设人行道宽度,桥面宽度取值6m ,车轮距为 m 。
汽车限速15 km/h 通过,通行的冲击系数由程序根据设定参数自动计算考虑,在“移动荷载分析控制”中,临时钢栈桥结构基频取值 Hz ,根据《公路工程技术标准》(JTG B01-2014)规定,冲击系数为u=。
Ⅰ
20工字钢@75cm
321型贝雷梁双I32承重梁
联结系平联预埋钢板钢筋混凝土基础
加劲板10mm花纹钢板
护栏
Ⅰ10工字钢@30cm 人行道
桥面宽度
图3 桥面车道布置图
主要材料设计指标
根据《钢结构设计规范》(GB 50017-2003)和《装配式公路钢桥多用途使用手册》(黄绍金,刘陌生着.北京:人民交通出版社,),主要材料设计指标如下:
6 计算分析
计算模型及边界条件设置
图4 为钢栈桥Midas 分析模型图。
其中,桩基础采用梁单元,桥面板采用板单元。
图4 分析模型
边界条件设置如下:
(1)桥面系构件连接:桥面板与I10 工字钢纵梁、纵梁与I20 工字钢横梁均采用共节点连接,横梁与贝雷桁梁采用仅受压弹性连接,连接刚度按经验取值100 kN/mm。
由于存在仅受压弹性连接,模型对桥面板进行三处约束,各处约束自由度分别为:(Dx,Dy,Rz);(Dx,Rz);(Dy,Rz)。
(2)其余构件连接:贝雷桁梁与2I32 工字钢分配梁采用弹性连接,分配梁与钢管桩采用共节点连接。
钢管桩桩底按锚固模拟,约束Dx、Dy、Dz、Rx、
Ry、Rz。
计算结果分析
由于Midas 计算结果中,桥面系构件总体变形与贝雷桁梁变形一致,导致桥面系构件变形输出结果远大于实际变形,另外再考虑到桥面系构件跨度均较小,故结果分析中桥面系构件仅以强度满足要求进行控制;贝雷桁梁、分配梁结果分析中以强度、刚度均满足要求进行控制。
6.2.1 桥面板计算结果
图5 为桥面板强度计算结果。
由图可以看出桥面板最大应力为:
σ = <f = 215MPa
故桥面板设计满足安全要求。
图5 桥面板强度
6.2.2I10 工字钢纵梁计算结果
图6 为I10 工字钢纵梁强度计算结果。
由图可以看出I10 工字钢最大应力为:
σ = <f = 215MPa
故I10 工字钢纵梁设计满足安全要求。
图6 I10工字钢纵梁强度
6.2.3I20 工字钢横梁计算结果
图7 为I20 工字钢横梁强度计算结果。
由图可以看出I20 工字钢最大应力为:
σ = 193MPa <f = 215MPa
故I20 工字钢横梁设计满足安全要求。
图7 I20工字钢横梁强度
6.2.4 贝雷桁梁计算结果
(1)贝雷桁梁强度
图8 为贝雷桁梁强度计算结果。
由图可以看出贝雷桁梁最大应力为:
σ = 249MPa <f = 273MPa
故贝雷桁梁强度设计满足安全要求。
图8 I20贝雷梁强度
(2)贝雷桁梁刚度
图9 贝雷梁刚度
图9 为贝雷桁梁刚度计算结果。
由图可以看出贝雷桁梁最大变形为:
f = 15.4mm <[v] = l / 400 = 37.5mm
故贝雷桁梁刚度满足安全要求。
2I32 工字钢分配梁计算结果
(1)分配梁强度
图10I32工字钢分配梁强度
图10 为I32 工字钢分配梁强度计算结果。
由图可以看出工字钢最大应力为:
σ = <f = 215MPa
故I32 工字钢分配梁强度设计满足安全要求。
(2)分配梁刚度
图11I32工字钢分配梁刚度
图11 为I32 工字钢分配梁刚度计算结果。
由图可以看出分配梁最大变形为:
f = 2.86mm <[v] = l / 400 = 11.25mm
故分配梁刚度满足安全要求。
6.2.6钢管桩计算结果
(1)钢管桩支反力
图12钢管桩支反力
图13 为钢管桩支反力计算结果。
由图可以看出中墩钢管桩最大支反力为:
F = ;
(2)钢管桩强度计算
图13钢管桩强度
图14 为钢管桩强度计算结果。
由图可以看出钢管桩最大应力为:
σ = <f = 215MPa
故钢管桩强度设计满足安全要求;钢管桩最大应力位于与分配梁连接处,为局部承压应力,其余处应力值范围为:~ MPa。
(3)钢管桩稳定性计算
钢管桩外露高度为5 m,横向采用[10 槽钢连接,纵向未连接,自由高度取5 m。
计
算时钢管桩按一端自由,一端固定考虑。
最大钢管桩反力为:F 中=495 kN
=2h=2×5=10 (m)
计算长度:l
截面面积:A =
回转半径:i =
/ i =1000 / =
长细比:λ = l
查《钢结构设计规范》,可知轴心压杆容许长细比为:[λ ]=150;稳定系数:φ= ,故有:
λ?????[λ?] ??150
[σ] = [N]/A mφ= 495×103 / ×102×
=<f=215 MPa
综上,钢管桩稳定性设计满足安全要求。
6.2.8 栈桥整体计算结果
表2 栈桥各构件计算结果汇总表
7 、施工注意事项
由于现场施工中存在一些模拟计算中无法考虑到的不确定因素,如自然原因或人为原因造成的临时荷载等,为了尽可能的与模拟条件一致,确保施工安全,须注意以下事项:
1. 桥面板与纵梁采用间断焊接连接,横梁两端与贝雷桁梁采用U 型螺栓连接固定,中间段与贝雷桁梁不连接。
2. 贝雷桁梁与底分配梁采用角钢焊接限位固定措施,防止左右偏移扭转。
3. 临时钢栈桥中支点处贝雷桁梁采用[16 槽钢竖撑加强,并确保槽钢上下端与贝雷桁梁上下弦杆密贴。
4. 分配梁安设在钢管桩槽口内,并且两侧及底部采用薄钢板与钢管焊接固定。
5、实际施工中,钢栈桥桥跨间距按15m/跨进行施工。