第4课时 图形与几何(2) (2)

合集下载

新人教版数学六年级下册总复习《图形与几何》课件(知识点全面)

新人教版数学六年级下册总复习《图形与几何》课件(知识点全面)

这些计算公式是怎样推导出来的?它们之间有什么联系?
长方形和正方形是用面积单 位量出来的。
平行四边形转化成长方形。
两个完全相同的三角形或梯形 都可以拼成平行四边形。
利用割补、转化的方 法来推导图形的面积 公式。
长方形的面积是研究其它图形面积的基础。
9.三角形三边的关系
4cm
7cm
13cm
三角形其中两条线段的和大于第三条线段时,这样的三条 线段才能组成一个三角形。
30cm
上升的水的体积就是马铃薯的体积。
在方格纸上分别画出从不同方向看到左边立体图形 的形状图。
正面
左面
上面
连一连。
一个蓄水池(如下图),长10米,宽4米,深2米。 (1)蓄水池占地面积有多大?
10×4 = 40(平方米) 答:占地面积是40平方米。 (2)在蓄水池的底面和四周抹上水泥,抹水泥的面积有多大? 10×4 +(4×2+2×10)×2= 96(平方米)
三角形
锐角三角形 直角三角形
等腰三角形
(三个角都是 (有一个角是直角) 不等边三角形 (两条边相等)
锐角) 钝角三角形
(三条边都 等边三角形 不相等) (三条边都相等)
(有一个角是钝角)
1.平面图形的分类
四边形的分类
平行四边形 长方形
正方形
四边形 梯形
等腰梯形 直角梯形
2.直线、射线和线段
名称
相同点
比例尺 1∶20000
2.辨认方向
在平面图中确定方位,通常是上北、下南、左西、右东。

西北
东北
西

西南

东南
3.根据方向和距离,确定物体位置的一般步骤。

六年级下册数学整理和复习图形与几何第2课时平面图形的认识与测量(2)PPT

六年级下册数学整理和复习图形与几何第2课时平面图形的认识与测量(2)PPT
=2×3.14×16
2 m =100.48(米) 答:这条道路的面积是188.4平方米,
外沿周长是100.48米。
6.草地上有一间房子,占地形状是边长4米的正方形。
一只羊被拴在房子的外墙角处,已知栓羊的绳子长6
米,这只羊能吃到草的面积是多少平方米?
如图,羊能吃到草的面积由三个扇形组成。
2m
3.14×62×-34 +3.14×(6-4)2×-12
6
6 a
h b
10.5
周长:6×2+10.5+7.5=30(m)
面积: (6+10.5)×6÷2 =16.5×6÷2 =49.5(m2)
1.计算下面各图形的周长和面积。(单位:m)
周长: 3.14×6÷2+6+5×2
6
=9.42+ 6 +10
=25.42(m)
面积: 3.14×(6÷2)2÷2 +5×3
平面图形的面积计算公式 圆的面积=圆周率×半径的平方 把一个圆分成若干份,剪拼成一个近似的长方形, 这个长方形的长相当于圆周长的一半,宽相当于 圆的半径。
r
πr
平面图形的面积计算公式
长方形的面积=长×宽 S=ab 正方形的面积=边长×边长 S=a2
平行四边形的面积=底×高 S=ah 三角形的面积=底×高÷2 S=ah÷2
x cm
梯形面 积减扇 形面积
扇形面积 减三角形 面积
(10+x)×10÷2=107 10+x=21.4 x=11.4
答:x的值是11.4。
课后作业
01 课后练习第6题。 02 相关练习。
a
把正方形看作长和宽相等的长方形。 a
平行四边形的面积=底×高
通过割补、平移转化为长方形。

人教版初中数学七年级上册第四章 几何图形初步 几何图形 教学课件 立体图形与平面图形形(第2课时)

人教版初中数学七年级上册第四章 几何图形初步 几何图形 教学课件 立体图形与平面图形形(第2课时)
人教版 数学 七年级 上册
4.1 几何图形
4.1.1 立体图形与平面图形 (第2课时)
导入新知
题西林壁 ——苏轼
横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中.
导入新知
【想一想】“横看成岭侧成峰”一句中,蕴含了怎样的数学 道理?
素养目标
3.在平面图形和立体图形互相转换的过程中,初 步建立空间观念.
2. 知道一些简单的立体图形的展开图.
1. 初步体会从不同的方向观察同一个物体可能 会看 到不同的平面图形,能识别简单物体从正面看、从 左面看、从上面看的平面图形.
探究新知 知识点 1 从不同方向看同一个物体
他们为什么会出现争执?
这是数字“9”。 这是数字“6”。
探究新知 如图,把茶壶放在桌面上,那么下面五幅图片分别
是从哪个方向看得到的?
从正面看 从右面看 从左面看 从后面看别是从什么方向看的?
1
背面
2
顶部
3
4
正面
5右

左 侧
探究新知 排一排
一辆汽车从小明的面前经过,小明拍摄了一组照片. 请按照汽车被摄入镜头的先后顺序给下面的照片编号, 并与同伴进行交流.
探究新知
从左面看
巩固练习
分别画出圆柱体、圆锥及球体的从正面、左面、上面 看到的图形.
巩固练习
从正面看 从左面看
从上面看
探究新知
知识点 2 立体图形的展开图
将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?
友情提示: 沿着棱剪,展开后是 一个平面图形.
探究新知
正方体的展开图
1
2
34
5
6
7
8

人教版六年级数学 下册第6单元《整理和复习》2图形与几何【全单元】课件

人教版六年级数学 下册第6单元《整理和复习》2图形与几何【全单元】课件
12、用圆规画一个周长12.56厘米的圆,圆规两脚之间 的距离是( 2 )厘米,所画圆的面积是( 12.56 ) 平方厘米。
13、圆的半径扩大3倍,直径扩大( 3 )倍,周长扩 大(3 )倍;面积扩大( 9 )倍。
14、小铁环直径6分米,大铁环直径8分米。小铁环和大 铁环半径的比是( 3:4 );周长的比是( 3:4 ); 面积的比是( 9:16 )。如果它们滚过相同的路程, 则转动的圈数的比是( 3:4 )。
(二)复习平面图形的特点及关系
提问:我们先复习平面图形。那对于这些平面图形你又有哪些了解 呀?那这样吧,你可以结合这几个问题,先自己想一想,再和 小伙伴商量商量,建议大家做好相应的记录。如果有困难可以 向老师举手示意。
课件出示: (1)直线、射线和线段有什么联系和区别?同一平面内的两条直
线有哪几种位置关系? (2)我们学过哪些角?在放大镜下看角,它的大小会变化吗? (3)关于三角形,你知道些什么? (4)关于平行四边形,你知道些什么? (5)圆与上面的平面图形有什么不同?圆有哪些特点?
监控:长、正方体的棱长总和 长方体、正方体和圆柱的表面积 长方体、正方体、圆柱和圆锥的体积、容积
(教师随着学生的发言在黑板上梳理出表格)
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
立体图形 棱长总和 表面积
体积(容积)
长方体
正方体
圆柱
圆锥
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
课件出示:
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
提问9:这些图形有没有一个共同的体积计算公式呢? (长方体、正方体和圆柱的体积都可以用底面积乘高,圆锥的体积再 乘 1 即可。)

六年级下册数学第六单元2图形与几何第4课时 解决问题(1)-冀教版(含答案)

六年级下册数学第六单元2图形与几何第4课时  解决问题(1)-冀教版(含答案)

第4课时解决问题(1)1.认真填一填。

(1)一块梯形广告牌的下底是8米,上底是5米,高是下底的一半,它的面积是()平方米。

(2)做一节长是1米、底面直径是2分米的圆柱形铁皮烟囱,至少要用铁皮()平方分米。

(3)小明家挖了一个长为6 m、宽为5 m、深为2 m的长方体地窖,这个地窖占地()m2。

(4)中国某民间慈善组织向发生地震的雅安地区捐赠了一批圆锥形帐篷,它的底面半径是5米,高是2.4米。

这个帐篷里面的空间是()。

(5)把一个棱长为10 cm的正方体钢坯锻造成高和宽都是5 cm的长方体钢坯,长方体钢坯的长是()cm。

2.仔细选一选。

(1)车轮转动一周,所行的路程是车轮的()。

A.直径B.周长C.面积D.半径(2)把一块长为12.56米、宽为6.28米的长方形铁皮卷成一个圆筒,再配上一个底面做成水桶,要使做成的水桶的容量尽可能大,应该()。

A.以12.56米为底面周长,6.28米为高B.以6.28米为底面周长,12.56米为高C.以上都可以(3)一块正方形草地,边长为4米,一条对角线的两个顶点处各有一棵树,树上各拴一只羊,绳长都为4米,两只羊都能吃到草的草地的面积是()平方米。

A.6.28B.9.12C.12.56(4)如右图,用丝带捆扎一个礼品盒,打结处长25厘米,要捆扎这个礼品盒,准备()分米的丝带比较合理。

A.10B.15C.20D.24.53.一辆自行车轮胎的外直径是64厘米,如果平均每分钟转60周,那么通过一座长为1200米的桥,大约需要多少分钟?(结果保留整数)4.一个圆柱底面半径为2分米,如果把其底面分成许多相同的扇形,然后沿着圆柱半径的竖直方向一一切开,拼成一个与它等底等高的近似长方体,长方体的表面积比圆柱的表面积增加了24平方分米。

原来圆柱的表面积是多少平方分米?5.梁师傅有一个工具箱(如下图所示),工具箱的下半部分是棱长为20 cm的正方体,上半部分是圆柱的一半,请你算出它的体积和表面积。

六年级数学下册试题 一课一练《图形与几何--立体图形的认识与测量(二)》-人教版(含答案).doc

六年级数学下册试题 一课一练《图形与几何--立体图形的认识与测量(二)》-人教版(含答案).doc

《图形与几何--立体图形的认识与测量(二)》一、计算题1.求如图图形的表面积.(单位:厘米)2.有一个半圆柱如图,已知它的底面直径是20厘米,高是8厘米,求它的表面积.3.仔细观察下面图形的特点,然后用较简便的方法求出这个图形的体积:(单位:厘米)4.图形计算求立体图形的体积。

单位(分米)5.如图,将三个高都是1米,底面半径分别是1.5米、1米、0.5米的3个圆柱体组成一个物体.①求这个物体的体积?②求这个物体的表面积?6.如图这只工具箱的下半部是棱长为20cm的正方体,上半部是圆柱体的一半.算出它的表面积和体积.7.求下列物体的体积.二、解决问题1.用塑料绳捆扎一个圆柱形的蛋糕盒(如图,单位:厘米),打结处正好是底面圆心,打结用去绳长25厘米.扎这个盒子至少用去塑料绳多少厘米?在它的整个侧面贴上商标和说明,这部分的面积是多少平方厘米?2.砌一个圆柱形的水池,底面直径6米,深3米.在池的周围和底面抹上水泥,每平方米用水泥5千克,大约要用水泥多少千克?(得数保留整千克数)3.一根圆柱形水管,横截面的半径是5厘米,长是1.2米,做100节这样的水管要铁皮多少平米?4.把一个长12厘米,宽6厘米的长方形纸板沿长旋转一周,得到一个圆柱体,这个圆柱体的侧面积是多少?5.如图,是用塑料薄膜覆盖的蔬菜大棚,长16米,横截面是一个直径2米的半圆.(1)这个大棚的种植面积是多少平方米?(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?6.在下面两个空容器中,将甲容器注满水,再倒入乙容器,这时乙容器中的水深多少cm?7.如图是一个直角三角形.AC边上的高是多少厘米?(请先在图中画出高,并计算)再算一算,以AC为轴旋转一周形成的立体图形的体积是多少立方厘米?8.如图,ABCD是直角梯形,以AB为轴将梯形旋转一周,得到一个立体图形,这个立体图形的体积是多少立方厘米?9.把一块棱长为8厘米的正方体铁块熔铸成一个底面半径是10厘米的圆锥形铁块,这个圆锥形铁块的高度是多少?10.一个底面半径是6厘米的圆柱形玻璃器皿里装有一部分水,水中浸没着一个高9厘米的圆锥体铅锤.当铅锤从水中取出后,水面下降了0.5厘米.这个圆锥体的底面积是多少平方厘米?( 取3.14)11.如图:在长方体容器内装有水,已知容器内壁底面长为25厘米,宽为20厘米,现把小圆柱体和小圆锥体浸没于水中,水面上升了2厘米.如果圆锥和圆柱的底面积相等高也相等,圆维的体积是多少?12.一个酸奶瓶(如图),它的瓶身呈圆柱形(不包括瓶颈),容积是32.4立方厘米.当瓶子正放时,瓶内酸奶高为8厘米,瓶子倒放时,空余部分高为2厘米.请你算一算,瓶内酸奶体积是多少立方厘米?13.有甲、乙两只圆柱形玻璃杯,其内直径依次是18厘米、12厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?14.有一个高8厘米,容量为50毫升的圆形容器A,里面装满了水,现把长16厘米的圆柱B 垂直放入,使B的底和A的底面接触,这时一部分水从容器中溢出,当把B从A拿走后,A中的水的高度只有6厘米,求圆柱体B的体积是多少?15.有一种容器,瓶颈以下部分呈圆柱形,内有水550mL.现在容器中装有一些水,正放时水的高度为25cm,倒放时空余部分的高度为5cm.问:容器的容积是多少毫升?在水面上,16.在底面长60厘米、宽40厘米的长方形鱼缸中竖直放入一个圆柱体氧气泵,有16其余被水浸没.此时水位比放入前上升了2厘米,氧气泵的体积是多少立方厘米?17.如图所示,某机器零件中间是一个棱长为2厘米的正方体,两边各是圆柱体的一半,求这个零件的表面积和体积.18.小明把一块橡皮泥揉成圆柱形,切成三块(如图),表面积增加了50.24平方厘米,切成四块(如图),表面积增加了96平方厘米,这块橡皮泥的体积是多少立方厘米?19.将一个圆锥从顶点沿底面直径切开,其表面积比原来增加了60平方厘米,如果圆锥的高是6厘米,则圆锥的体积是多少立方厘米?20.把3个长6厘米,底面积相等的圆柱体拼成一个大圆柱,表面积减少了18.84立方厘米,拼成的大圆柱的体积是多少立方厘米?21.一个底面周长是43.96厘米,高为8厘米的圆柱,沿着高切成两个同样大小的半圆柱体,表面积增加了多少?22.把一个圆柱按如图1沿直径方向切成两个半圆柱,表面积增加240cm,按图2方式切成两个圆柱,表面积就会增加225.12cm,求这个圆柱的体积.23.如图所示,把底面周长18.84厘米,高10厘米的圆柱切成若干等分,拼成一个近似的长方体.这个长方体的底面积、表面积和体积各是多少?24.一段体积是52.8立方分米的圆柱木料,切削成一个最大的圆锥体,削去部分的体积是多少立方分米?25.一个正方体木块棱长为2dm,把它切削成一个最大的圆锥体.求这个圆锥体与原来正方体的体积比是多少?26.一个底面直径是4厘米的圆锥如图,从顶点沿着高将它切成两半后,表面积增加了24平方分米.这个圆锥的体积是多少平方厘米?27.把一个棱长为6dm的正方体铁块放入一个圆柱形容器内,完全浸没后水面上升了4cm,如果把一个圆锥形铅块放入圆柱容器中,完全浸没后水面上升了1.5cm,求这个圆锥形铅块的体积.28.有甲乙两只圆柱形水桶,甲水桶的底面半径是8cm.乙水桶的底面半径是6cm.甲水桶里没有水,乙水桶里有水且高度是25cm,现把乙水桶里的水倒一部分给甲水桶,使两只水桶里的水的高度一样.求这时甲水桶里有水多少立方厘米?29.一个圆柱形水桶里放入一段半径5厘米的圆钢,把它全部放入水中,桶里的水面上升了9厘米,如果把水中的圆钢提起,使它露出水面8厘米,那么桶里的水面就下降4厘米,求圆钢的体积.(π取3.14)30.一个圆柱形水桶,底面半径为20cm,里面盛有80cm深的水,现将一个底面周长为62.8cm的圆锥形铁块完全浸没在水中,水面上升了1.圆锥形铁块的高度是多少?(π取3.14)1631.圆柱的底面半径和高都是2厘米,把它浸入一个均匀水槽内的水中,量得水位上升了1厘米.再把一个底面直径为6厘米的圆锥浸入水中,水位又上升了4.5厘米.求圆锥的高.32.在一个底面积为34平方厘米的圆柱形容器中,放入等底等高的一根圆柱形物体和一个圆露出水面,圆锥完全浸没,圆锥的体积是多少立方厘锥形物体,水面上升10厘米,圆柱有15米?33.一个圆柱形木块按图甲中的方式切成形状、大小相同的四块,表面积增加了296cm;按图乙中的方式切成形状、大小相同的三块,表面积增加了250.24cm.若把它削成一个最大的圆锥,体积减小多少立方厘米?34.如图,在密封的容器中装有一些水,水面距底部的高度是10cm.如果将这个容器倒过来,你能求出这时水面距底部的高度是多少厘米吗?答案一、计算题1.解:23.142015 3.14(202)2 3.141015⨯⨯+⨯÷⨯+⨯⨯942628471=++2041=(平方厘米)答:这个图形的表面积是2041平方厘米.2.解:23.142082 3.14(202)208⨯⨯÷+⨯÷+⨯251.2314160=++725.2=(平方厘米)答:它的表面积是725.2平方厘米.3.解:224143.14()9 3.14()9232⨯⨯+⨯⨯⨯,13.1449 3.14493=⨯⨯+⨯⨯⨯, 113.0437.68=+, 150.72=(立方厘米); 答:这个图形的体积是150.72平方厘米.4.解:223.14[(202)(102)]15⨯÷-÷⨯3.14[10025]15=⨯-⨯3.147515=⨯⨯3532.5=(立方分米), 答:这个立体图形的体积是3532.5立方分米.5.解:(1)2223.14(1.510.5)1⨯++⨯,3.14(2.2510.25)=⨯++,3.14 3.5=⨯,10.99=(立方米), 答:这个物体的体积是10.99立方米.(2)大圆柱的表面积:23.14 1.522 3.14 1.51⨯⨯+⨯⨯⨯,14.139.42=+,=(平方米),23.55中圆柱侧面积:2 3.1411 6.28⨯⨯⨯=(平方米),小圆柱侧面积:2 3.140.51 3.14⨯⨯⨯=(平方米),这个物体的表面积:23.55 6.28 3.1432.97++=(平方米);答:这个物体的表面积是32.97平方米.6.解:表面积:23.1420202 3.141020205⨯⨯÷+⨯+⨯⨯,=÷+⨯+⨯,12562 3.141004005=++,6283142000=(平方厘米);2942体积:2⨯⨯÷+⨯⨯,3.14102022020203.141002028000=⨯⨯÷+,=+,31408000=(立方厘米);11140答:它的表面积是2942平方厘米,体积是11140立方厘米.7.解:2⨯÷⨯+÷3.14(42)(57)2=⨯⨯÷3.144122=⨯3.1424=(立方厘米),75.36答:图中物体的体积是75.36立方厘米.二、解决问题1.解:(1)15850825⨯+⨯+,=++,12040025=(厘米),545面积:3.145015⨯⨯,15715=⨯,=(平方厘米);2355答:扎这个盒子至少用去塑料绳545厘米,在它的整个侧面贴上商标和说明,这部分的面积是2355平方厘米.2.解:需要抹水泥的面积是:2⨯÷+⨯⨯,3.14(62) 3.1463=⨯+,3.14956.52=+,28.2656.52=(平方米),84.78⨯≈(千克),84.785424答:大约要用水泥424千克.3.解:5厘米0.05=米,⨯⨯⨯⨯3.140.052 1.2100=⨯⨯⨯3.140.1 1.2100=⨯0.3768100=(平方米);37.68答:做100节这样的水管至少需要37.68平方米的铁皮.4.解:3.146212⨯⨯⨯,6.28612=⨯⨯,=⨯,37.6812=(平方厘米),452.16答:这个圆柱体的侧面积是452.16平方厘米.5.解:(1)16232⨯=(平方米)答:这个大棚的种植面积是32平方米.(2)2⨯⨯÷+⨯÷3.142162 3.14(22)=+50.24 3.14=(平方米)53.38答:覆盖在这个大棚上的塑料薄膜约有53.38平方米.6.解:1124⨯=(厘米)3答:乙容器中的水深4厘米.7.解:AC边上的高:如图:862210⨯÷⨯÷4810=÷4.8=(厘米)21 3.14 4.8103⨯⨯⨯ 1 3.1423.04103=⨯⨯⨯ 241.152=(立方厘米)答:以AC 为轴旋转一周形成的立体图形的体积是241.152立方厘米.8.解:如下图:2213.1428 3.142(85)3⨯⨯-⨯⨯⨯- 13.1448 3.14433=⨯⨯-⨯⨯⨯ 100.4812.56=-87.92=(立方厘米), 答:这个立体图形的体积是87.92立方厘米.9.解:38512=(立方厘米)23512(3.1410)⨯÷⨯1536314=÷4.89≈(厘米)答:这个圆锥形铁块的高大约是4.89厘米.10.解:容器水下降的体积:23.1460.5⨯⨯3.14360.5=⨯⨯56.52=(立方厘米);圆锥的底面积:1÷⨯56.52(9)3=÷56.523=(平方厘米);18.84答:这个圆锥体的底面积是18.84平方厘米.11.解:圆锥和圆柱的体积和:⨯⨯=(立方厘米);2520210001000(13)÷+=÷10004=(立方厘米),250答:圆锥体的体积是250立方厘米.12.解:8210+=(厘米),8⨯=(立方厘米),32.425.9210答:瓶内酸奶体积是25.92立方厘米.13.解:22⨯÷⨯÷÷÷3.14(182)2 3.14(122)=⨯÷81236=(厘米)4.5答:这时乙杯中的水位上升了4.5厘米.14.解:圆形容器A的底面积:÷=(平方厘米);508 6.25溢出水的体积,即放入容器A的圆柱B的体积:6.25(86)⨯-,=⨯,6.252=(毫升);12.5圆柱体B的体积是:12.5816÷⨯,=⨯,12.52=(立方厘米);25答:圆柱体B 的体积是25立方厘米.15.解:根据题意画示意图如下:解:550[25(255)]÷÷+550[2530]=÷÷55506=÷ 3660()cm =3660660cm =毫升答:容器的容积是多少毫升660毫升.16.解:160402(1)6⨯⨯÷-548006=÷ 648005=⨯ 5760=(立方厘米)答:氧气泵的体积是5760立方厘米.17.解:3.1422224⨯⨯+⨯⨯12.5616=+28.56=(平方厘米);23.14(22)2222⨯÷⨯+⨯⨯3.14128=⨯⨯+6.288=+14.28=(立方厘米); 答:这个零件的表面积是28.56平方厘米,体积是14.28立方厘米.18.解:根据题意得250.24412.56()cm ÷=50.244 3.14÷÷12.56 3.14=÷24()cm =422=⨯所以半径是2厘米.9682÷÷122=÷6=(厘米)12.56675.36⨯=(立方厘米)答:这块橡皮泥的体积是75.36立方厘米.19.解:圆锥的底面直径:6022610÷⨯÷=(厘米); 圆锥的体积:21 3.14(102)63⨯⨯÷⨯ 1 3.142563=⨯⨯⨯ 157=(立方厘米), 答:这个圆锥的体积是157立方厘米.20.解:18.844(63)÷⨯⨯,4.7118=⨯,84.78=(立方厘米), 答:拼成的大圆柱的体积是84.78立方厘米.21.解:底面直径:43.96 3.1414÷=(厘米),1482224⨯⨯=(平方厘米), 答:表面积增加了224平方厘米.22.解:圆柱的底面积:25.12212.56÷=(平方厘米),底面半径的平方:12.56 3.144÷=,因为2的平方是4,所以圆柱的底面半径是2厘米,圆柱的高:402(22)2045÷÷⨯=÷=(厘米),体积:23.1425⨯⨯,3.1445=⨯⨯,62.8=(立方厘米), 答:这个圆柱的体积是62.8立方厘米.23.解:底面半径是:18.84 3.1423÷÷=(厘米)底面积是:23.14328.26⨯=(平方厘米)表面积是:218.8410 3.14321032⨯+⨯⨯+⨯⨯188.456.5260=++304.92=(平方厘米)体积是:23.14310⨯⨯3.1490=⨯282.6=(立方厘米)答:这个长方体的底面积是28.26平方厘米,表面积是304.92平方厘米,体积是282.6立方厘米.24.解:252.835.23⨯=(立方分米)答:削去部分的体积是35.2立方分米.25.解:21 3.14(22)2:(222)3⨯⨯÷⨯⨯⨯1 3.1412:83=⨯⨯⨯ 6.28:24=628:2400=157:600=. 答:这个圆锥体与原来正方体的体积比是157:600.26.解:24平方分米2400=平方厘米2400224÷⨯÷120024=⨯÷600=(厘米)21 3.14(42)6003⨯⨯÷⨯ 1 3.1446003=⨯⨯⨯ 3.14800=⨯2512=(立方厘米)答:这个圆锥的体积是2512立方厘米.27.解: 1.56664⨯⨯⨯ 1.52164=⨯ 81=(立方分米)答:这个圆锥形铅块的体积是81立方分米. 28.222:86625x x πππ⨯+⨯=⨯⨯64363625x x πππ+=⨯1003625x ππ=⨯1001003625100x ππππ÷=⨯÷9x =23.14891808.64⨯⨯=(立方厘米); 答:这时甲水桶里有水1808.64立方厘米.29.解:设圆钢的高为h 厘米,圆钢体积23.14578.5V h h =⨯⨯=水桶底面积78.59h =÷因为下降的水的体积=水面上圆钢的体积 2(78.59)4 3.1458h ÷⨯=⨯⨯, 478.5 3.142589h ⨯=⨯⨯, 43.14200(78.5)9h =⨯÷⨯, 4628(78.5)9h =÷⨯,18h =,圆钢体积23.14578.5181413V h =⨯⨯=⨯=(立方厘米). 答:这段圆钢的体积是1413立方厘米.30.解:设圆锥形铁块的高是x 厘米 2211(62.8 3.142)20(80)316x ππ⨯÷÷⨯⨯=⨯⨯⨯, 10020003x ππ=, 60x =;答:圆锥形铁块的高是60厘米.31.解:23.14221⨯⨯÷3.14421=⨯⨯÷25.12=(平方厘米)225.12 4.53[3.14(62)]⨯⨯÷⨯÷339.12[3.149]=÷⨯12=(厘米)答:圆锥的高是12厘米.32.解:放入等底等高的一根圆柱形钢材和一个圆锥以后,水面上升10厘米, 增加体积:3410340⨯=(立方厘米),由圆柱体和圆锥体体积公式知:等低等高的圆柱体积是圆锥体积的3倍, 设圆锥体体积为x ,则圆柱体体积为3x ,13(1)3405x x -+=, 173405x =, 100x =;答:圆锥的体积是100立方厘米.33.解:50.24412.56÷=(平方厘米)设圆柱底面半径为r 厘米23.1412.56r ⨯=23.14 3.1412.56 3.14r ⨯÷=÷24r =因为224=所以2r =96826÷÷=(厘米)112.566(1)3⨯⨯- 212.5663=⨯⨯ 50.24=(立方厘米)答:体积减小50.24立方厘米.34.解:高6厘米的圆锥容器中水倒入等底的圆柱容器中高是632÷=(厘米)+-2(106)=+246=(厘米),答:如果将这个容器倒过来,这时水面距底部的高度是6厘米.。

《图形与几何》教学课件ppt(共13张PPT)

《图形与几何》教学课件ppt(共13张PPT)
北师大年夜 版五年级下册总温习
图形与多少 何
第一页,共13页。
回忆 与交换
1.对于 长方体跟 正方体,你都学会了哪些常识 ? 2.下面哪个平面开展 图折叠后所围成的图形是正方体?说 一说你是怎样 揣摸 。




第二页,共13页。
回忆 与交换
3.距离 阐明1cm3,1dm3,1m3各有多大年夜 ,1L,1mL的 谁大年夜 概 有多少 。
〔1〕0.3×0.18×0.2=0.0108〔m3〕
0.0108×1.5=0.0162〔m3〕
〔2〕40× 0.0162 =0.648〔m3〕 0.648×365=〔m3〕
第十三页,共13页。
的意义
体积:10×6×5=300(cm3 )
长、宽、高。
把下面的长方体、正方体与对应的开展 图连起来。
表面积:2×(10×6+6×5正+1方0×5体)=的280(cm2有) 8个顶点;6个面都是相等的正方形;1 2条棱的长
相交于同一顶点的三条棱的长度分别叫作长方体的长、宽、高。
长方体 特征 度都相等。 长方体、正方体的体积=底面积×高,用字母表示为V=Sh。
6.一块正方体石料的棱长为6dm。这块石料的体积是多少 破 方分米?假如1dm3石料的品质 是2.7kg,这块石料的品质 是 多少 千克?
体积:6×6×6=216〔dm3 〕 品质 :216×2.7=583.2〔kg〕 7.有一排长方体的储物柜,共占地0.84m2,储物柜高0.75m。 这排储物柜的体积是多少 破 方米?
面积
正方体的表 正方体的棱长和=棱长×1 2
面积
第五页,共13页。
回忆 与交换
长方体 (二)
长方体、正 方体的体积 计算公式

2022秋六年级数学上册 总复习第4课时 圆形与几何(2)作业 北师大版

2022秋六年级数学上册 总复习第4课时 圆形与几何(2)作业 北师大版

本文由一线教师精心整理,word 可编辑
1 / 1 第4课时 圆形与几何(2)
一、填空。

1.小亮站在路灯下,他离路灯越远.影子越( );离路灯越近,影子越( )。

2.大、小两个圆的半径比是2∶1,则它们的面积比是( ),小圆的面积比大圆少( )%。

3.半圆的周长是20.56cm ,这个半圆的半径是( )cm 。

二、选择。

1.从正面观察
,所看到的图形是。

A. B. C. 2.林叔叔驾驶小汽车在公路上行驶,前方有两座建筑物,下面说法正确的是( )
A.小汽车行驶到A 时,林叔叔能看到建筑物乙
B.小汽车行驶到B 时,林叔叔能看到建筑物乙
C.小汽车行驶到A 和B 时,林叔叔都能看到建筑物乙
三、一辆大巴的车轮半径是45cm ,车身长13m ,现在要通过一座长1400m 的隧道,这辆大巴的车轮至少要转
多少圈车身才能完全通过隧道?
四、下面是从正面和左面看到的一个由小正方体搭成的立体图形的形状,这个立体图形最多有几个小正方体
组成?最少有几个小正方体组成?
答案:
一、1.长 短 2. 4∶1 75 3. 4 二、1. B 2. A 三、1400+13=1413(m)=141300(cm) 141300÷(2×3.14×45)=500(圈)
答:这辆大巴的车轮至少要转500圈车身才能完全通过隧道。

四、最多10个 最少6个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9单元总复习
第4课时图形与几何(2)
【教学内容】
课本第117页的第3题
【教学目标】
1.进一步理解轴对称图形的特征,能利用轴对称原理设计简单的图案。

2.了解物体旋转后的变化,能按照指定的旋转角度画出旋转后的图形位置。

【教学过程】
一、知识梳理
1.图形的变换。

(1)轴对称
①什么是轴对称图形?对称轴左右两边完全一样的图形是轴对称图形吗?
②画对称轴。

③说一说,对称轴左右两边图形的关系。

(2)旋转。

①什么是旋转现象?
②旋转图形有什么特征和性质?
二、巩固练习
完成课本第117页第3题。

(1)说一说左图可以通过可以通过怎样的变换得到右图。

(2)右图中绿色部分占整个图案的几分之几?红色部分占整个图案的几分之几?红色部分比绿色部分多占整个图案的几分之几?
四、课堂小结
师:通过本节课的学习,你有什么收获?(学生交流)
【板书设计】
图形与几何
2.图形的变换
(1)轴对称(2)旋转
【教学反思】
本课时复习内容为图形的变换。

这个内容学生或多或少都接触过,再加上有前面的教学。

所以本课时复习时可采取知识回顾与练习相结合的方式进行,注意在进行知识回顾时应让学生自己回答,教师可画图予以引导,最后师生要一起完成课本的习题,以达到复习巩固的效果。

相关文档
最新文档