基本高数导数 不定积分公式

合集下载

不定积分公式 (2)

不定积分公式 (2)

不定积分小结一、不定积分基本公式二、两个重要的递推公式(由分部积分法可得)易得:n为奇数时,可递推至n为偶数时,可递推至易得可递推至(这是有理函数分解后一种形式的积分的求法,大家可以回顾课本恢复记忆)三、普遍方法(一)换元积分法:第一类换元积分法(凑微分法)这类方法需要敏锐的观察力,即观察出某个函数的导数,这就要求我们熟悉常见函数的导数。

首先我们来看一下最常见的一类有理函数的例子配方可以得到解决。

与例1类似,我们有:接下来举几个我们可能不太熟悉的例子,不容易凑成微分。

至此可以用凑微分法了第二类换元积分法(1)利用三角函数进行代换:换元时必须要注意变量的范围,保证范围的等价性(通过例题体会)例如以下两个基本积分公式利用,这里x可以取到全体实数,那么函数的正负,所以这一点在涉及到开根号的三角函数表达式时尤为重要。

至此,有多种求法,比如说直接用递推公式,见第五页:令一种解法:利用倍角公式可以解出。

(2)倒代换,经常用在分母多项式次数较高的情况下(二)分部积分法查阅教材165页。

求得原函数,其中表示m次多项式。

例xxxe xd)1(2⎰+C xede xxedxxexdedxxedxxedxxedxxexedxxeexdxxxexxxxxxxxxxxxx++=+-+++=+++=+-+=+-+=+-+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰11111111)1(1)1(1)1()1()1(2222(三)特殊函数积分法1、有理函数的不定积分参考教材171页有关有理函数分解定理的说明,比较繁琐,但要掌握。

关键在于将有理函数分解为要求的形式,并会解决分解后的各种函数的积分,其实我们可以将其归结为两种形式:第一页的递推公式:易得可递推至以下几例用于练习有理式的分解和计算:2、三角函数有理式的积分常用技巧:(1)凑微分若m和n都是偶数,利用将其化为同名函数。

若m或n为奇数,则拆开一个凑成微分,然后再化为同名函数,之后再利用(二、)中的递推公式。

(完整版)高数公式大全(费了好大的劲),推荐文档

(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C

大一高数不定积分知识点

大一高数不定积分知识点

大一高数不定积分知识点大一高数课程对于学生来说可能是一门有些困难的课程。

其中,不定积分是高数中的一个重要知识点。

不定积分的概念、性质、计算方法等,都是我们在学习数学的过程中必须要掌握的内容。

接下来,我将就大一高数不定积分的一些知识点进行阐述。

一、不定积分的概念和基本性质不定积分是确定函数的原函数的问题,也称为反导数。

对于函数f(x),它的原函数可以表示为F(x)+C,其中F(x)是f(x)的原函数,C是常数。

不定积分的符号记作∫f(x)dx。

在计算不定积分时,我们可以利用基本性质来简化计算过程。

基本性质包括线性性、换元法、分部积分法和简单函数的积分法则等。

其中,线性性指的是∫(af(x)+bg(x))dx = a∫f(x)dx + b∫g(x)dx,其中a、b为常数;换元法是利用替换变量的方法,将原式进行简化;分部积分法是处理乘积形式的函数积分时常用的方法;简单函数的积分法则是常见的一些函数的积分形式,如幂函数、指数函数、三角函数等。

掌握这些基本性质可以帮助我们更好地计算不定积分。

二、基本常用函数的不定积分在大一高数中,我们需要掌握一些基本的函数的不定积分形式。

这些函数包括常数函数、幂函数、指数函数、对数函数、三角函数等。

常数函数的不定积分很简单,就是常数乘以自变量,即∫kdx =kx + C,其中k为常数。

幂函数的不定积分也是比较简单的,例如∫x^n dx =(x^(n+1))/(n+1) + C,其中n为实数,n不等于-1。

指数函数的不定积分形式也是常见的,例如∫e^x dx = e^x + C。

对数函数的不定积分形式则是∫1/x dx = ln|x| + C,其中ln为自然对数。

三、含有三角函数的不定积分三角函数在不定积分中也是常见的。

对于一些基本的三角函数,我们需要记住它们的不定积分形式。

例如∫sinx dx = -cosx + C,∫cosx dx = sinx + C,∫sec^2x dx = tanx + C,等等。

微积分的公式大全

微积分的公式大全

微积分的公式大全1.极限的基本公式:(1)常数规则:lim(c) = c (c 为常数)(2)零规则:lim(0) = 0(3)单位规则:lim(x) = x (x 为自变量)(4)和差规则:lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))(5)乘法规则:lim(f(x) * g(x)) = lim(f(x)) * lim(g(x))(6)除法规则:lim(f(x) / g(x)) = lim(f(x)) / lim(g(x)) (若lim(g(x)) ≠ 0)2.导数的基本公式:(1)常数函数的导数:(c)'=0(c为常数)(2)幂函数的导数:(x^n)' = nx^(n-1) (n 为实数)(3)指数函数的导数:(e^x)'=e^x(4)对数函数的导数:(ln(x))' = 1/x(5)三角函数的导数:(sin(x))' = cos(x)、(cos(x))' = -sin(x)、(tan(x))' = sec^2(x)(6)反三角函数的导数:(arcsin(x))' = 1/√(1-x^2)、(arccos(x))' = -1/√(1-x^2)、(arctan(x))' = 1/(1+x^2)3.基本积分公式:(1)幂函数的积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n ≠ -1)(2)指数函数的积分:∫(e^x)dx = e^x + C(3)对数函数的积分:∫(1/x)dx = ln,x, + C(4)三角函数的积分:∫sin(x)dx = -cos(x) + C、∫cos(x)dx = sin(x) + C、∫tan(x)dx = -ln,cos(x), + C(5)反三角函数的积分:∫(1/√(1-x^2))dx = arcsin(x) + C、∫(-1/√(1-x^2))dx = arccos(x) + C、∫(1/(1+x^2))dx = arctan(x)+ C4.微分中值定理:(1)罗尔定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,并且f(a)=f(b),则存在一个c(a<c<b),使得f'(c)=0。

大一上高数知识点总结公式

大一上高数知识点总结公式

大一上高数知识点总结公式本文旨在对大一上学期学习的高等数学知识点进行总结,并列出相关公式。

以下是各个知识点的概述及相关公式:1. 函数与极限函数概念:函数是一种关系,它将一个集合的元素对应到另一个集合的元素。

函数的表示:y = f(x), 其中 f(x) 表示函数的表达式,x 表示自变量,y 表示因变量。

极限概念:函数在某点无限逼近某值的过程。

极限的表示:lim(x→a) f(x) = L, 表示当 x 无限逼近 a 时,f(x)无限逼近 L。

2. 导数与微分导数概念:函数在某点的变化率,表示函数曲线在该点附近的切线斜率。

导数的表示:f'(x) 或 dy/dx,表示函数 f(x) 关于自变量 x 的导数。

微分概念:函数在某点附近的值变化量与自变量变化量的乘积。

微分的表示:df = f'(x)dx,其中 df 表示微分,dx 表示自变量的变化量。

3. 积分学不定积分概念:函数的反导数,表示函数的原函数。

不定积分的表示:∫f(x)dx,其中∫ 表示积分,f(x) 表示被积函数,dx 表示自变量。

定积分概念:表示函数在某区间上的面积或弧长。

定积分的表示:∫[a,b]f(x)dx,其中 [a,b] 表示积分区间,f(x) 表示被积函数,dx 表示自变量。

4. 一元函数的应用极值与最值:函数在某个区间内取得的最大值或最小值。

求解极值的方法:通过函数的导数和二阶导数来判断函数的极值点。

应用题目:涉及到求最值和极值问题,如优化问题、最大最小值问题等。

5. 多元函数与偏导数多元函数概念:函数有多个自变量的情况下,称之为多元函数。

偏导数概念:多元函数在某个自变量上的变化率。

偏导数的表示:∂f/∂x,其中∂f/∂x 表示函数 f(x,y,...) 关于 x 的偏导数。

6. 重要公式总结(1)导数的基本公式:- 常数函数导数为零:d/dx(c) = 0- 幂函数导数:d/dx(x^n) = nx^(n-1)- 指数函数导数:d/dx(e^x) = e^x- 对数函数导数:d/dx(ln(x)) = 1/x- 三角函数导数:- d/dx(sin(x)) = cos(x)- d/dx(cos(x)) = -sin(x)- d/dx(tan(x)) = sec^2(x)(2)常用积分公式:- 幂函数积分:∫x^n dx = x^(n+1)/(n+1) + C- 指数函数积分:∫e^x dx = e^x + C- 对数函数积分:∫1/x dx = ln|x| + C- 三角函数积分:- ∫sin(x) dx = -cos(x) + C- ∫cos(x) dx = sin(x) + C- ∫tan(x) dx = -ln|cos(x)| + C通过对大一上高等数学知识点的总结,我们可以更好地掌握和应用这些知识。

高数上册归纳公式篇(完整)

高数上册归纳公式篇(完整)

精心整理公式篇目录一、函数与极限1.常用双曲函数2.常用等价无穷小3.两个重要极限二、导数与微分1.常用三角函数与反三角函数的导数公式2.n阶导数公式3.4.参数方程求导公式5.微分近似计算三、微分中值定理与导数的应用1.一阶中值定理2.高阶中值定理3.部分函数使用麦克劳林公式展开4.曲率四、定积分1.部分三角函数的不定积分2.几个简单分式的不定积分五、不定积分1.利用定积分计算极限2.积分上限函数的导数3.牛顿-4.三角相关定积分5.6.1.2.3.七、微分方程1.可降阶方程2.变系数线性微分方程3.常系数齐次线性方程的通解4.二阶常系数非齐次线性方程(特定形式)的特解形式5.特殊形式方程(选)一、函数与极限1.常用双曲函数(sh(x).ch(x).th(x))2.常用等价无穷小(x→0时)3.两个重要极限二、导数与微分1.常用三角函数与反三角函数的导数公式(凡是“余”求导都带负号)2.n 阶导数公式特别地,若n =λ3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较函数的0阶导数可视为函数本身4.参数方程求导公式5.微分近似计算(x ∆很小时)(注意与拉格朗日中值定理比较)常用:(三、微分中值定理与导数的应用1.一阶中值定理()(x f 在],[b a 连续,),(b a 可导)罗尔定理(端点值相等()(f a f =拉格朗日中值定理柯西中值定理(0)('≠x g ≠0)2.)n R 为余项(ξ在x 和0x 之间)令00=x ,得到麦克劳林公式3.部分函数使用麦克劳林公式展开(皮亚诺型余项)4.曲率四、不定积分1.部分三角函数的不定积分2.几个简单分式的不定积分五、定积分1.利用定积分计算极限2.积分上限函数的导数推广得3.牛顿-莱布尼茨公式和积分中值定理(1)牛顿-莱布尼茨公式(微积分基本公式)(2)积分中值定理函数)a上可积[bf在],(x,a上的平均值f在][b(xf称为))(ξ4.三角相关定积分三角函数系的正交性5.典型反常积分的敛散性(1)无穷限的反常积分推论1(2)瑕积分(无界函数的反常积分)推论2Convergence:收敛,Divergence:发散6.Γ函数(选)(1)递推公式:推论:(2)欧拉反射公式(余元公式)六、定积分的应用1.平面图形面积(1)直角坐标:由曲线0ax==,y及x)(≥=xf(2)极坐标:ρ=有曲线(φ2.体积(1)绕x(2)平行截面(与x轴垂直)面积为)(xA3.弧微分公式(1)直角坐标:(2)极坐标:七、微分方程1.可降阶方程(1))()(x f y n =型n 次积分得(2))',("y x f y =型作换元'y p =得),('p x f p =得通解),(1C x p ϕ=则21),(C dx C x y +=⎰ϕ(3))',("y y f y =型作换元'y p =,),(,"p y f dxdp p dx dp p dx dp y ===得通解dx dy C y p ==),(1ϕ 则21),(C x C y dy +=⎰ϕ 2.变系数线性微分方程(1)一阶线性微分方程:)()('x Q y x P y =+对应齐次方程:0)('=+y x P y 原方程)()('x Q y x P y =+的通解为(2)0)(')(1=+++-y x P y x P n n若(),(21x y x y n 个线性无关解)()()(22x y C x y C x n n +++若)(*x y 为非齐次方程的一个特解则非齐次方程的通解为)(*)(x y x Y y +=3.常系数齐次线性方程的通解(1)二阶方程0"=++q py y特征方程为02=++q pr r①0>∆,两个不等实根a b r a b r 2,221∆+-=∆--=通解为x r x r e C e C y 2121+=②0=∆,两个相等实根221p r r -== 通解为x r e x C C y 1)(21+=③0<∆,一对共轭复根2,2,,21∆-=-=-=+=βαβαβαp i r i r通解为)sin cos (21x C x C e y x ββα+=(2)高阶方程0'1)1(1)(=++++--y p y p y p y n n n n 特征方程为0111=++++--n n n n p r p r p r 对于其中的根r 的对应项①实根r一个单实根:rx Ce一个k 重实根:rx k k C x C C (121-+++②复根i r βα±=2,1一对单复根:cos (21C x C e x βα+一对k 重复根]sin )(cos )1211x x D x D D x x C k k k k ββ--+++++ 4.)的特解形式 '"qy py y =++02=++q pr r (1))()(x P e x f m x λ=)(x P m 为x 的m 次多项式 特解形式为x m k e x Q x y λ)(*=)(x Q m 是x 的m 次多项式(2)]sin )(cos )([)()2()1(x x P x x P e x f n l x ωωλ+=)(),()2()1(x P x P n l 分别为x 的n l ,次多项式 特解形式为x m m k e x x R x x Q x y λωω]sin )(cos )([*+= },max{n l m =,)(),(x R x Q m m 为x 的m 次多项式记i z ωλ+=5.特殊形式方程(选)(1)伯努利方程n y x Q y x P dxdy )()(=+(1,0≠n ) 令n y z -=1,dxdy y n dx dz n--=)1( 得通解),(C x z ϕ=(2)欧拉方程作变换t e x =或x t ln =,记dtd D = 将上各式代入原方程得到此为常系数线性微分方程 可得通解),,,,(21n C C C t y ϕ= 即可得原方程通解),,,,(21n C C C x y Φ=。

导数微分不定积分公式

导数微分不定积分公式

一、导数的概念及其计算1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即xy ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim→∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0)) 处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

3.常见函数的导出公式.(1)0)(='C (C 为常数) (2)1)(-⋅='n nxn x(3)x x cos )(sin =' (4)x x sin )(cos -='4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。

不定积分(公式大全)

不定积分(公式大全)

所以 x2、x2+1、x2-1、x2+C (C为任意常数)
都是函数f(x)=2x的原函数。
[定理5.1] 设F(x)是函数f(x)在区间I上的一个原函数,
C是一个任意常数,那么, ⑴ F(x)+C也是f(x) 在该区间I上的原函数 ⑵ f(x)该在区间I上的全体原函数可以表示
为F(x)+C 证明:
于是有 ∫u(x)·v'(x)dx=u(x)·v(x)-∫u'(x)·v(x)dx
或表示成 ∫u(x)dv(x)=u(x)·v(x)-∫v(x)du(x)
这一公式称为分部积分公式。
二、讲解例题
例1 求∫xexdx
解:令 u(x)=x,v'(x)=ex 则原式为∫u(x)·v'(x)dx的形式
∵(ex)'=ex ∴v(x)=ex,
x 1 1
元,令u
x

1
则原式=

u
1
1
dx,再反解x=u2+1,
得dx=2udu,代入

x
1 1
1
dx
2
u
u
1
du

2
(1
u
1 )du 1
2[u ln u 1] C 2 x 1 2ln | x 1 1| C
这就是第二换元积分法。
例 求 sin x x dx
dx
(
1 )dx arccos x C 1 x2
两式都是本题的解
[注意] 不能认为 arcsinx=-arccosx,他们之间
的关系是 arcsinx=π /2-arccosx
四、 不定积分的性质 ⑴ [∫f(x)dx]'=f(x) 该性质表明,如果函数f(x)先求不定积分再求导,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档