宽带直流放大器实验报告

宽带直流放大器实验报告
宽带直流放大器实验报告

宽带直流放大器

摘要:本项目制作了一个宽带直流放大器。宽带直流放大器主要由输入缓冲级、程控增益放大器、调零电路、功率放大四部分构成。输入缓冲级采用THS4001高宽带运放对输入高频小信号放大输出给下一级,输入电阻50Ω与信号源进行阻抗匹配;程控增益放大器由AD603构成(-10dB~30dB)增益的高频放大电路,同时由80C51f0202的单片机为核心主控放大器的增益调节;然后再经THS3091对放大信号进行功率放大,使得输出电压达到10V有效值以上的电压,驱动50Ω的负载电阻。本项目设计的放大器可以达到5MHz以内电压1dB波动,10MHz 以内3dB的衰减;纹波电压(V pp)0.2V;最大不失真输入电压(V pp)59mV;最大不失真输出电压(V pp)5.6V;增益可控范围0~32dB,步进1dB。

关键字:高频;放大器;程控增益;单片机;

1、设计任务与实验要求

1.1 设计任务

设计并制作一个宽带直流放大器

1.2 基本要求

(1)电压增益A V≥40dB,输入电压有效值V i≤20mV。A V可在0~40dB范围内手动连续调节。

(2)最大输出电压正弦波有效值V o≥2V,输出信号波形无明显失真。

(3)3dB通频带0~5MHz;在0~4MHz通频带内增益起伏≤1dB。

(4)放大器的输入电阻≥50Ω,负载电阻(50±2)Ω。

1.3发挥部分

(1)最大电压增益A V≥60dB,输入电压有效值V i≤10 mV。

(2)在A V=60dB时,输出端噪声电压的峰-峰值V ONPP≤0.3V。

(3)3dB通频带0~10MHz;在0~9MHz通频带内增益起伏≤1dB。

(4)最大输出电压正弦波有效值V o≥10V,输出信号波形无明显失真。

(5)进一步降低输入电压提高放大器的电压增益。

(6)电压增益A V可预置并显示,预置范围为0~60dB,步距为5dB(也可

以连续调节);放大器的带宽可预置并显示(至少5MHz、10MHz 两点)。

(7)其他(例如改善放大器性能的其它措施等)。

2、方案论证与选取

2.1 程控增益放大器的论证与比较

方案一:采用场效应管或三极管控制增益。主要利用场效应管的可变电阻区(或三极管等效为压控电阻)实现增益控制,本方案由于采用大量分立元件,电路复杂,稳定性差。

方案二:采用芯片AD603实现增益控制。主要由GPOS ,GNEG的电压差值来控制AD603的增益大小,用单片机输出电压直接给定稳定的电压控制电路的增益大小。其特点是以dB为单位进行调节,可调增益40dB,可以用单片机方便地预置增益,并显示增益大小。

综上所述:方案二条理较清晰、控制方便、易于数字化用单片机处理,鉴于实验要求,选取方案二。

2.2 功率输出电路的论证与比较

方案一:采用分立元件三极管构成功率放大电路。对于高宽带的信号,对分立元件要求比较要高,要使用高频带的三极管。而电路器件比较多,复杂,调试很麻烦。

方案二:采用THS3091集成芯片构成功率放大电路。3091的放大信号频率可到210MHz,输出电流可达250mA,单级运放即可驱动50Ω的电阻,并且集成运放构成的电路性能比较好,易于调试。

综上所述:方案二的方法更能够达到实验的要求,并且容易操作,故采用方案二。

3、系统总体设计

本项目硬件电路主要由输入缓冲级电路,程控增益放大电路、输出功率放大电路构成,由单片机系统主控来调节放大电路的增益大小,同时显示出0~40dB 以内的步进值。系统总体框图如下图1所示:

信号源前级缓冲电路AD603调节增益后级功率放大C8051F020单片机按键数码管显示

示波器显示波形

图1 系统设计框图

4、单元电路设计

4.1 输入缓冲级

输入缓冲级主要是对信号源的小信号进行信号放大从而达到下一级输入信号的范围,使得输入信号更稳定,电路的整体性能更好。函数信号发生器有一定的输出阻抗,由于项目要求输入阻抗50Ω,因此对于小信号有一定的损失,要通过输入缓冲电路进行阻抗匹配。鉴于信号频带要求达到0~10MHz 的通带,因此对于前级放大电路采用高频高速运放THS4001型号的集成运放,频带可达270MHZ ,能够满足项目的制作要求。如下图2为输入缓冲级电路:

图2 前级缓冲电路图

4001型号的集成运放是电压反馈型的运放,因此采用它构成反相输入的电压并联负反馈电路。输入电阻为R=50Ω。阻值的选取均由芯片的使用手册获得,电源电压采用±5V 的电压。

放大倍数:

09.42

3

==

R R A u (1) dB A Gain u 24.12log 20==

(2)

4.2 程控增益放大器

程控增益放大器是指一个通过单片机提供可变电压控制的一个单元单路。采用AD603为核心构成放大器,由芯片的使用手册可知,引脚VOUT与引脚FDBK 相连,COMM引脚接地,即可构成一个-10dB~40dB增益可调、频带90MHz的放大器。电路相对简单,电路图如下图3所示:

图3 程控增益电路图

单片机通过对GPOS ,GNEG提供电压值控制电路的增益调节,两个引脚的电压差值可使得芯片的增益从-10dB调节到40dB。

V G

40+

=(3)

G a i n(d B)10

10

Gain30

=(4)

dB

-

~

说明:为芯片提供±5V的电源电压。

4.3 功率放大电路

对高频小信号放大之后,并不能满足实际的需要,若要驱动外电路或负载的运行,还需进行功率放大。将信号的功率和电流放大,驱动50Ω的负载。功率放大电路采用THS3091信号的高速运放,频带可达210MHz。3091为电流反馈型放大器,将信号的电流放大,即放大信号的功率,单级即可驱动50Ω的负载电阻。电路如图4所示:

图4 功率放大电路图

放大倍数:

22.91

2

==

R R A u (5) dB A Gain u 30.19log 20==

(6)

说明:经3091放大的电压为10以上的有效值,因此采用±15V 的电源电压。 4.4 整体电路图

将各级单元电路直接级联起来,即构成整体的电路图。如下图5所示: 由式子(2)、(4)、(6)得:

系统总体增益:

dB dB Gain 87.59~87.19=

(7)

5、数据处理与分析

6、仪器与元器件的使用

7、总结

本项目设计的宽带直流放大器基本达到了实验要求。电路整体设计由输入缓冲级电路、程控增益放大器、功率放大电路构成。

宽带直流放大器的设计

第29卷第1期湖北民族学院学报(自然科学版)Vol.29No.1 2011年3月Journal of Hubei University for Nationalities(Natural Science Edition)Mar.2011 宽带直流放大器的设计 刘三军,樊江川,宴佳治,廖红华 (湖北民族学院信息工程学院,湖北恩施445000) 摘要:宽带直流放大器在无线通信领域,尤其是发射机的末级有重要的用途.通过各种方案的比较,系统采用运放OPA690作为前级和中间级放大,输出级采用?15V供电的视频运放AD811,辅以相应的偏置电路和程控可调电阻实现增益的调节,以单片机MSP430为控制核心;设计出电压增益A V范围为0 60dB,最大输出电压有效值V o ≥10V,3dB通频带为0 10MHz的宽带直流放大器.人机接口采用红外遥控及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能. 关键词:宽带放大器;带宽增益;MSP430;OPA690 中图分类号:TP212.2文献标识码:A文章编号:1008-8423(2011)01-0103-05 Design of Wideband DC Amplifier LIU San-jun,FAN Jiang-chuan,YAN Jia-zhi,LIAO Hong-hua (School of Information Engineering,Hubei University for Nationalities,Enshi445000,China) Abstract:Wide band DC Amplifier can be widely used in wireless telecommunication field,especially in the output side of a transmitter.Based on the comparison of various methods,the system uses OPA690as front and middle amplifiers and AD811as the output amplifier,and uses the adjustable resistors to change gain of wide band DC Amplifier.The experiment shows that voltage gain ranges from0dB to 60dB.The maximum output sine voltage is more than10volts.The3dB pass band is from0to10MHz. The whole system is controlled by MSP430which is of low power consumption,and the infrared remote module is used as interface,LCD is used as display module that is convenient for interaction. Key words:wideband DC amplifier;pass band gain;MSP430;OPA690 随着微电子技术的发展,人们迫切地要求能够远距离、迅速而准确地传送多媒体信息.于是,无线通信技术得到了迅猛的发展,技术也越来越成熟.而宽带放大器是上述通信系统和其它电子系统必不可少的一部分,随之,人们对它的设计要求也越来越高.宽带放大器广泛应用于A/D转换器、D/A转换器、有源滤波器、波形发生器、视频放大器等电路;例如在通讯、广播、雷达、电视、自动控制等各种装置中,宽带放大器都有十分广泛的应用和良好的市场前景[1]. 放大器是能把输入信号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成.宽带放大器可以作为高频功率放大器使用,高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出;因而可以用宽带放大器作为发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平.按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器[2]. 收稿日期:2010-10-20. 基金项目:湖北省教育厅科学研究项目(DZ0101903). 作者简介:刘三军(1980-),男,硕士,主要从事嵌入式、SOPC技术的研究.

单管放大电路实验报告—王剑晓

单管放大电路实验报告 电03 王剑晓 2010010929 单管放大电路报告

一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理 实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减小; U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部失真(截 止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则: 电压增益A i=U O/U i=-?(R C// R L)/r be; 输入电阻R i=R B1//R B2//r be; 输出电阻R O= R C; 其中r be=r bb’+(1+?)U T/ I EQ,体现了直流工作点对动态特性的影响; 分析:当R C、R L选定后,电压增益主要决定于r be,受到I EQ,即直流工作点的影 响。由上面对直流工作点的分析可知,R w变化(以下以增大为例)时I CQ减小, 那么r be增大,电压增益A i减小,输入电阻R i增大,输出电阻R O基本不变,与直 流无关; 如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,电路的动态 参数分别变为 电压增益A i=U O/U i=-?(R C// R L)/[r be+(1+?) R E1];

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

实验一小信号调谐(单调谐)放大器实验指导

实验一高频小信号单调谐放大器实验 一、实验目的 1.掌握小信号单调谐放大器的基本工作原理; 2.熟悉放大器静态工作点的测量方法; 3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 4.了解高频单调谐小信号放大器幅频特性曲线的测试方法。 二、实验原理 小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号的线性放大。其实验原理电路如图1-1所示。该电路由晶体管BG、选频回路(LC并联谐振回路)二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。 1.单调谐回路谐振放大器原理 单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C 是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻负载对回路Q值的影响,输出端采用了部分接入方式。 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

图1-2 单调谐回路谐振放大器实验电路 高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑=LC f π21 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 21oe C C n C ∑=+ 式中, C oe 为晶体管的输出电容; n 1(注:此图中n 1=1)为初级线圈抽头系数;n 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,微调C3,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。A u0的表达式为

宽带直流放大器设计

宽带直流放大器(C题) 摘要 本系统以两级直接耦合的可控增益放大器AD603为核心,外加跟随器OPA642和电压放大器AD811配合,实现了增益可调的宽带直流放大器。系统主要由四个模块构成:前置放大电路、可控增益放大电路、后级功率放大电路、单片机显示控制模块。可控增益放大电路由两级直接耦合的可控增益放大器AD603构成,可实现-20dB到40dB的增益调节范围,配合AD811的固定增益实现0dB到60dB的增益调节范围;后级功率放大电路由高速缓冲器BUF634扩大输出电流,提升放大器的带负载能力。第二级AD603与固定增益模块间加入直流偏移调零模块,最大限度地减小了整个放大器的直流偏移。为解决宽带放大器自激问题及减小输出噪声,本系统采用多种形式的抗干扰措施,抑制噪声,改善放大器的定性。 关键词:宽带放大器,可控增益,调零电路,固定增益,功率放大

一、系统方案 1. 方案比较与选择 (1)可控增益放大 方案一:采用可编程放大器的思想,将输入交流信号作为高速DAC 的基准电压,用DAC 的电阻网络构成运放反馈网络的一部分,通过改变DAC 数字控制量实现增益控制。理论上讲,只要DAC 的速度足够快、精度足够高就可以实现很宽范围的精密增益控制,但是控制的数字量和最后的20dB 不成线性关系而成指数关系,造成增益调节不均匀,精度下降,因此不选用此方案。 方案二:选用两级集成可控增益放大器直接耦合作为增益控制,集成可控增益放大器的增益与控制电压成线性关系,控制电压由单片机控制DAC 产生。单级集成可控增益放大器AD603具有-10dB 到+30dBdB 的增益控制范围,两级级联后理论上可达到-20dB 到+60dB 的增益控制范围,精度达到0.5dB,带宽90MHz ,可以满足题目指标要求。 采用集成可控增益放大器AD603实现增益控制,外围电路简单,便于调试,而且具有较高的增益调节范围和精度,故采用此方案。 (2)功率放大电路 方案一:采用分立元件实现宽带功率放大器,可以实现较大输出电压,但需采用多级高频放大电路,受电路分布参数影响,调试难度大,带宽难以保证,所以不选用此方案。 方案二:采用单片集成宽带运算放大器提供较高的输出电压,再由高速缓冲器 BUF634实现扩流输出,提升放大器带负载能力。此方案电路较简单,容易调试,故采用此方案. (3)低通滤波器方案论证 方案一:采用有源滤波器,通带内没有可以没有能量损耗,电路相对有源滤波复杂,需要直流电源供电。 方案二:采用无源低通LC 滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。无源LC 滤波器的优点是电路比较简单,不需要直流电源供电,可靠性高,为了使通带尽量平坦,选用了通带比较平坦的巴特沃斯滤波器。同时在滤波器后加入固定增益放大器,弥补信号通过滤波器时幅度的衰减。 2. 方案描述 系统框图如图1所示,系统主要由五个模块构成:前置放大电路、可控增益放大电路、低通滤波电路、后级功率放大电路、单片机显示控制模块。系统增益调节范围为0~60dB ,

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩:

一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图 共射极单管放大器

音频功率放大器实验报告_音频功率放大器课程设计报告.docx

音频功率放大器实验报告_音频功率放大器课程设计报告 本科实验报告 课程名称:姓名:学院:系:专业:学号:指导教师: 电子电路安装与调试 信息与电子工程学院 电子科学与技术 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备五、实验步骤与过程六、实验调试、实验数据记录七、实验结果和分析处理八、讨论、心得 一、实验目的 1、学习并初步掌握音频功率放大器的设计、调试方法。 2、学习并掌握电路布线、元器件安装和焊接。 3、掌握音频功率放大器各项主要性能及指标的调试方法。 二、实验任务与要求 1、设计 (1)设计一音频功率放大器,使其达到如下主要技术指标:负载阻抗:R L =4Ω额定功率:P o =10W 带宽:BW ≥(50~15000) Hz 音调控制: 低音:100Hz ±12dB 高音:10kHz ±12dB 失真度:γ≤3% 输入灵敏度:U " i (2)设计满足以上设计要求的稳压电源。 2、在Altium Designer中画出原理图, 并进行PCB 板的编辑与设计。 3、根据给定的功率放大器的原理图(三),做如下工作: (1)分析计算晶体管前置放大器的直流工作电压、电流、输入电阻、输出电阻、各级放大器的交流增益。 (2)分析音调控制电路的工作原理,计算4个极端情况下的交流增益。(3)安装实验电路板 (4)调试和测试实验电路的增益、频响特性曲线、输入电阻和输出电阻、以及改变某实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 些电路参数后的性能测试(电路图中括号内的数字)。 (5)分析实验数据,并与理论计算值比较,讨论二者之间的误差和产生误差的原因。三、实验原理和实验方案设计 作为音频放大器的音源部分,其输出电平既有高至数百毫伏(如调谐器:50~500mV,线路输出:100~500mV),也有低至1mV (如话筒:1~5mV),相差达几百倍。音频放大器就是要把这些不同大小的音源放大后驱动喇叭,发出同等强度的声音。因此,根据不同音源的需要,可以画出音频放大器的原理框图,如图1所示。 P.2 装订线 图1音频功率放大器框图 1、各部分电路电压增益的确定 根据额定输出功率P o =10W和负载R L =4Ω,可求得输出电压为 : V o ===6.32V 所以整机中频电压增益为:A O um =

实验一_高频小信号调谐放大器实验报告

本科生实验报告 实验课程高频电路实验 学院名称信科院 专业名称物联网工程 学生姓名刘鑫 学生学号201313060108 指导教师陈川 实验地点6C1001 实验成绩 二〇年月二〇年月

高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验仪器与设备 高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器 三、实验原理 (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f0的表达式为

∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑ C 为调谐回路的总电容,∑ C 的表达式为 ie oe C P C P C C 2221++=∑ 式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,g Σ为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为 BW = 2△f 0.7 = fo/Q L 式中,Q L 为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为 ∑ = ?C y BW A fe V π20

宽带直流放大器的设计

宽带直流放大器地设计 电子信息工程专业学生:陈朝霞指导老师:许岳兵 摘要:本文以TI 公司地压控放大器VCA810 为核心,外加ADI 公司地运算放大器AD806 5 作前级,采用ST 公司地89C52 单片机控制系统增益,通过按键实现对小信号放大增益± 6 dB 步进可调,并通过1602 液晶实时显示.系统主要由前级缓冲模块,程控放大模块,人机交换模块,显示模块组成.整个系统结构简单,性能稳定,操作简单可靠. 关键词:程控放大;VCA810 ;STC89C52 1 引言 宽带放大器在自动控制系统,电子测量技术,智能仪表等领域应用非常广泛.传统放大 器由分立元件器搭建而成,且有地采用电容级间耦合方式,因此不具有直流放大能力,但在仪器仪表地应用中,也需要对直流信号或者偏置信号进行采集和还原,因此设计一款具有直流放大功能地宽带直流放大器是很有必要地.而宽带直流放大电路地发展中,为了满足 电路地更高性能与控制地便捷性,准确性,程控宽带直流放大电路应时而生.本文就是对程 控宽带直流放大器进行研究. 2 系统方案设计与论证 本文所设计地宽带直流放大器基本要求是3dB带宽为OHz?6MHz ;最大增益>40dB (100倍),增益值6dB步进可调,并实时显示增益;最大输出电压有效值>3V负载电 阻600 Q.根据设计功能要求,系统分为信号放大模块,控制模块和人机交换模块 2.1 方案比较与选择方案一:采用分立元件构成,利用高频三极管或场效应管差分对构成多级放大电路,通过负反馈电路来确定增益.但电路比较复杂,且零点漂移严重,难以实现直流信号地放大. 方案二:采用集成运放芯片级联.集成运放芯片使用比较简单,但精度高,且集成运放具有高放大倍数、高输入电阻、低输出电阻等优良性能.而对于实用地放大电路,通常要求 其输入电阻大,输出电阻小,集成运放刚好能满足上述要求. 方案选定:比较上述地两种方案,决定采用方案二. 2.2 系统方案描述 系统框图如图 1 所示,系统分为信号处理电路和控制电路两部分.信号处理电路主要由前级缓冲模块、可变增益放大模块组成.前级缓冲模块采用AD8065 电压反馈型芯片.可变增益放大器采用可控增益放大器VCA810. 系统通过STC89C52 实现控制,通过STC89C52 和按键控制DAC0832 地输入数字量,并在LCD1602 上实时显示该放大器地增益.

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

宽带直流放大器设计报告-江帆

宽带直流放大器 江帆、胡斌、王泽强 摘要: 本系统采用宽带压控增益放大器VCA810来实现增益可调,由前级放大模块、增益控制模块、带宽预置模块、后级功率放大模块、键盘及显示模块和电源模块组成,具有宽带数字程控放大功能。在前级放大电路中,用宽带电压反馈型运算放大器OPA690和宽带压控运算放大器VCA810放大输入信号,再经后级 THS3091功率放大电路将电压放大十倍,并增大输出电流,增强负载驱动能力,提高输出电压有效值X围。经验证,本方案完成了全部基本功能和部分扩展功能。关键字:压控增益放大器;功率放大;宽带数字程控 一.系统方案论证 1.1可控增益放大器部分 方案一:采用场效应管或三极管控制增益。只要利用场效应管的可变电阻区(或三极管等效为压控电阻)实现程控增益,本方案由于采用大量分立元件,电路复杂,稳定性差。 方案二:为了易于实现最大60dB增益的调节,可以采用高速乘法器型D/A实现,比如AD7420。利用D/A转换器的VRef作为信号的输入端,D/A的输出端做为输出。用D/A转换器的数字量输入端控制传输衰减信号实现增益控制。此方案简单易行,精确度高,但经实验知:转化非线性误差大,带宽只有几kHz,而且当信号频率较高时,系统容易发生自激,因此未选此方案。 方案三:根据题目对放大电路增益可控的要求,考虑直接选取压控增益运算放大器VCA810实现,其特点是以dB为单位进行调节,可调增益-40dB至+40dB,

可以用单片机方便地预置增益。 综合以上的分析可知,方案三电路集成度高、条理较清晰、控制方便、易于数字化程控处理。所以本系统采用方案三。 1.2滤波部分 为了达到题目要求的5M和10M带宽,需制作两路低通滤波器电路。 方案一:由无源器件(电阻、电容、电感)构成八阶椭圆滤波器,电路比较简单,成本低,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应。 方案二:为达到通频带内增益起伏≤1dB,采用四阶巴特沃斯低通滤波器。巴特沃斯滤波器特点是通频带内频率响应曲线最大限度平坦,虽然阻带内缓慢下降,但可以增加阶数来加快阻带内的衰减。 由于用Tina仿真软件设计出来的八阶椭圆滤波器需用的器材(电阻、电容、电感)很难找到或组合成相近的值,而用Tina仿真软件设计出的四阶巴特沃斯低通滤波器幅频特性较好,所以选择了方案二。 1.3功率放大部分 方案一:用分立元件,此方案元器件成本低,易于购置。但是设计、调试难度太大,周期很长,尤其是手工制作难以保证可靠性及指标,故不采用此方案。 方案二:采用高输出电压运放作为功率输出部分的第一级,对信号进行电压放大;第二级采用推挽射级跟随器进行电流放大。由于采用分立元件,通频带内信号可能出现较大失真,线性度不好。 方案三:直接使用高电压输出、低失真、电流反馈型的运算放大器THS3091,可以大大提高输出电流,驱动50欧的负载。

单管放大电路的设计与实现实验报告

华中科技大学 《电子线路设计、测试与实验》实验报告 实验名称:单管放大电路的设计与实现 院(系): 专业班级: 姓名: 学号: 时间: 地点:华中科技大学南一楼 实验成绩: 指导教师:

一、实验目的 1.掌握单管放大电路的工作原理。 2.掌握MOSFET共源放大电路以及BJT共射放大电路静态工作点的设置与调整方法。 3.了解电路参数变化对于电路静态工作点的影响。 4.学习使用PSpice或Multisim软件对模拟电子电路进行仿真分析。 5.掌握BJT单极共射放大电路主要性能指标(A v、R i、R o)的测量方法。 二、实验元器件 类型型号(参数)数量 三极管9013 1只 电位器100kΩ1只 电阻51Ω、1kΩ、100kΩ各1只; 10kΩ、10kΩ各2只; 电容10μF 2只 47μF 1只 三、实验原理及参考电路 1.参考电路 实验电路如图1所示。该电路采用自动稳定工作点的分压式射极偏置电路,其温度稳定性好。 图1 2.静态工作点的估算与调整 静态工作点是指输入交流信号为零时三极管的基极电流IBE、集电极电流I CQ、和管压降V CEQ。 根据上图所示的直流通路可得出: 开路电压V BB = R b12V CC/(R b11+R b12) 内阻R B = R b11//R b12

则I BQ =(V BB–V BEQ)/( R B +(1+β)( R e1 +R e2)) I CQ = βI BQ V CEQ ≈ V CC – (R C + R e1 +R e2)I CQ 当管子确定后,改变V CC、R B、R B2、R C、(或R E)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过R P调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。 3.放大电路电压增益的测量 放大电路电压增益A v 是指输出电压与输入电压的有效值之比,即 A v =V o /V i。 对于该电路,放大电路的电压增益A v 为 A v= -β(R C // R L) /( r be + (1 + β)R e1) 当三极管跟负载电阻选定后,A v主要取决于静态工作点I CQ。 4.输入电阻的测量 对于上述参考电路图所示参数,放大电路输入电阻为: R i = R b11//R b12//[r be + (1 + β)R e1] 三极管输入电阻r be 为: r be = 300 + (1+β)CQ 测量原理为:在信号源与放大电路之间串一个已知阻值的电阻R,用万用表分别测出R 两端的电压V S,和V i,则输入电阻为: Ri = Vi / Ii = Vi R /( V s- V i) 5.输出电阻的测量 输出电阻的测量原理为:用万用表分别测量放大器的开路电压V O和负载电阻上的电压V OL,则输出电阻R O可通过计算求得。 R O =( V O – V OL)R L /V OL 当R L = R O 时,测量误差最小。 6.幅频特性的测量 放大器的幅频特性是指放大器的增益与输入信号频率之间的关系曲线。一般用逐点法进行测量。在保持输入信号幅值不变的情况下,改变输入信号的频率,住店测量不同频率点的电压增益。利用各点数据,在单对数坐标纸上描绘出幅频特性曲

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

小信号放大器实验报告

实验设计报告 (模拟电子技术基础实践) 学院:电气工程与自动化学院 题目:小信号放大器的设计 专业班级:自动化131班 学号:2420132905 学生姓名:吴亚敏 指导老师:曾璐 2014年10月20日

第一章理论设计 1.设计目标与技术要求 1.1 设计目标:设计一个放大倍数约为10倍的小信号交流放大器 1.2 技术要求: (1)保证电路要有较大的输入电阻,主要是为了增大获取输入信号的能力。 (2)电路要有较小的输出电阻,主要是为了增大信号输出的能力。 (3)设计该放大电路,通过测试相应的参数,理解该放大电路的工作原理,掌握一些参数(输入阻抗、输出阻抗、放大倍数)的测量和计算方法。 2.设计方法(电路、元器件选择与参数计算) 2.1 实验原理图如下:

2.2 元件的选择: 电阻:需要33KΩ、16KΩ、3.9KΩ、2KΩ、1.2KΩ、390Ω的电阻各一个; 电容:需要47uF的4个,0.1uF的一个; 三极管:需要NPN型通用小信号晶体管2SC2458两个; 2.3 参数的计算: (1)基极的直流电位Ve是用R1和R2对电源电压Vcc分压后的电位,则 Vb=(R2/(R1+R2))*Vcc (2)发射机的直流电位Ve,则 Ve=Vb-Vbe (3)发射极上流过的直流电流Ie,则 Ie=Ve/Re=(Vb-Vbe)/Re (4)集电极的直流电压Vc等于电源电压减去Rc的压降而得到的值,则 Vc=Vcc-Ic*Rc (5)由于基极电流很小,我们在计算的时候可以省去, 则 Ic=Ie,Vc=Vcc-Ie*Rc (6)交流电压的放大倍数,则 Av=Rc/Re (7)确定耦合电容C1,C2和C3,C4的阻值 因为C1和C2是将基极或集电极的直流电压截止,仅让交流成分进行输入输出的耦合电容,电路中C1和输入阻抗,C2和连接在输出端的负载电阻分别形成高通滤波器--也就是让高频通过的滤波器,所以C1=C2=10uF,而C3和C4是电源的耦合电容应该是降低电源对GND交流阻抗的电容,如果没有这个电容的话,电路中可能产生振荡。所以要在电源上并联连接好小容量的C3=0.1uF电容器和大容量的C4=10uF电容器,能在宽频范围降低电源对GND的阻抗。 (8)静态工作点: Vbq=5*(R2/(R1+R2))=5*(33/(33+16))=3.44V Ieq=Ve/Re=(Vb-Vbe)/Re=Icq=0.5mA Vceq=Vcc-Ieq*Rc-Icq*Re=2.8V Ibq=Icq/(1+β)=0.05mA (9)动态工作点: Av=Rc/Re=3.9K/(2K//390)=10 Ri=Rb1//Rb2=33K//16K=0.093KΩ Ro=Rc=0Ω

相关文档
最新文档