欧拉线定理证明及应用

合集下载

三角形内切圆二级结论

三角形内切圆二级结论

三角形内切圆二级结论一、引言三角形内切圆是指与三角形的三条边都相切的圆,它是三角形最大的内接圆。

在研究三角形内切圆时,我们可以得到许多有趣的结论和性质。

本文将介绍三角形内切圆的一个重要结论——欧拉线定理。

二、欧拉线定理欧拉线定理是指:三角形内切圆的圆心、垂心和重心共线,且这条直线称为欧拉线。

1. 证明(1)设ABC为任意三角形,I为其内切圆的圆心,H为其垂心,G为其重心。

(2)由于I是内切圆的圆心,因此AI、BI、CI均与内切圆相切,并且它们都垂直于各自所在边上的中点。

(3)设D、E、F分别为BC、AC、AB上对应于I的垂足,则DI=EI=FI=r(r为内切圆半径)。

(4)由于AH⊥BC, BH⊥AC, CH⊥AB,并且G是重心,因此GH=2/3HG。

(5)又因为HI=2rcosA/2, HG=2/3GM, GM=1/3(MA+MB+MC),其中M为中心,因此有HI:GM=3:2cosA/2。

(6)根据余弦定理可得,cosA/2=sqrt[(s-b)(s-c)/bc],其中s为半周长。

(7)将(6)式代入(5)式中可得HI:GM=3sqrt[(s-b)(s-c)/bc]。

(8)根据垂心定理可得,AH^2=BH^2+CH^2-4Rr,其中R为外接圆半径。

(9)将(8)式代入(7)式中可得HI:GM=3sqrt[(s-b)(s-c)/bc]=AH/2R。

(10)因此I、H、G三点共线,且IH:HG=2R:AH。

三、欧拉线的性质欧拉线不仅是三角形内切圆的圆心、垂心和重心的连线,还具有以下性质:1. 欧拉线与外接圆相切于外接圆上的费马点;2. 欧拉线上有一个点P满足PH=2OG,其中O为外接圆的圆心;3. 欧拉线上的点P是三角形内切圆与九点圆的交点。

四、应用欧拉线定理在几何学中有着广泛的应用。

例如,在三角形内切圆半径已知的情况下,我们可以利用欧拉线定理求出外接圆半径。

此外,欧拉线还可以用于证明其他几何学定理,如费马点定理、垂心定理等。

欧拉线定理的证明及其应用

欧拉线定理的证明及其应用

注意到中位线 FD一+AC,且 FD∥Ac,△ABC
0G一 0A + oG 一 0B + 0G 一 0C一

的 中线 AD 经 过 重 心 G,并 且 DG一÷ GA.显 然 这 些




1 ———
——— ———
0,亦 即0G一÷ (OA+0B+0c).
.)
平行关 系 和等量关 系 可以用 共 线 向量 来 表示 ,从 而 可 以考虑 用 向量 的方法加 以解 决.
因为 FD、OF不 共 线 ,由 平 面 向 量 基 本 定 理 得
』2一 _。’所以 一 一2,即 :::2 ,商 一2 .
1 - 2— 0,



1 ———+
———
———+
因为 G为重 心 ,于是DG=÷GA,所 以0G—OD+
接 0D 并延 长到 ,连 接 oF并延 长到 U,连 接 OS并 延 长到 V,使 DW一0D,FU一0F,S 一0S.
当 B= 90。时 ,0 为 AC 的 中 点 ,H 与 B 重 合 ,
CH 并 延 长 ,分 别交 BC、AB 于 E、M ,则有 AE_上_BC, 0A+0B+OC= 0B一0H ,所 以 m一 1.
甄以 AH //oD,CH 7oF.
证 明 如 图 3所 示 ,因 为 G 为

重 心 ,所 以 AG+ BG + CG ===0,即
OH 互 相平 分.设 0H 的 中 点 为 Q,即 DN 经 过 Q 且 被 Q 平 分 .PF、KS也 经 过 Q 且 被 Q 平 分 .四 边 形 0l AH W 也 是 平 行 四 边 形 , B Aw 经 过 Q 且 被 Q 平 分 . 同 理 ,BV、CU 经 过 Q 且 被

欧拉公式的证明及应用举例

欧拉公式的证明及应用举例

高中数学120·同步辅导·选修2-2高中数学·北师大版2016年11月1欧拉公式的证明与应用【欧拉公式】公式:简单多面体的顶点数V 、面数F 及棱数E 之间有关系:2=-+E F V 。

【欧拉公式的证明】方法1:(利用几何画板)逐步减少多面体的棱数,分析E F V -+先以简单的四面体ABCD 为例:(分析法)去掉一个面,使它变为平面图形,四面体顶点数V 、棱数E 与剩下的面数1F 变形后都没有变。

因此,要研究2=-+E F V ,只需去掉一个面变为平面图形,证11=-+E F V ;(1)去掉一条棱,就减少一个面,E F V -+1不变。

依次去掉所有的面,变为“树枝形”。

(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,E F V -+1不变,直至只剩下一条棱。

以上过程E F V -+1不变,则11=-+E F V ,所以加上去掉的一个面,2=-+E F V 。

对任意的简单多面体,运用这样的方法,都是只剩下一条线段。

因此公式对任意简单多面体都是正确的。

方法2:计算多面体各面内角和设多面体顶点数V ,面数F ,棱数E 。

剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和α∑;一方面,在原图中利用各面求内角总和。

设有F 个面,各面的边数为1n ,2n ,…,F n ,各面内角总和为:]180)2(180)2(180)2[(21︒⋅-++︒⋅-+︒⋅-=∑F n n n α︒⋅-+++=180)2(21F n n n F ︒⋅-=︒⋅-=360)(180)22(F E F E (1)另一方面,在拉开图中利用顶点求内角总和。

设剪去的一个面为n 边形,其内角和为︒⋅-180)2(n ,则所有V 个顶点中,有n 个顶点在边上,n V -个顶点在中间。

中间n V -个顶点处内角和为︒⋅-360)(n V ,边上的n 个顶点处的内角和︒⋅-180)2(n 。

则多面体各面的内角总和:︒⋅-=︒⋅-+︒⋅-+︒⋅-=∑360)2(180)2(180)2(360)(V n n n V α(2)由(1)(2)得:︒⋅-=︒⋅-360)2(360)(V F E ,所以2=-+E F V .【欧拉公式的意义】(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律;(2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。

一个欧拉定理的推广及其应用

一个欧拉定理的推广及其应用

从而 3
" )* + 7 ! A ; < = : # # )"3 A BA )+ *" B A ), + ) *" , " " " " A 3 ) *" , "
" A BA ( )+ *# B A ), + ) *# , ! ’ # # # # : ; < = 2 ! ) " 证毕 7 "6 ’ ( 5 7 3 ! )#3 ! 5 0 : : 4 ; < = ; < = 我 们 所 熟 知 的 布 罗 卡 点/ 是指下面一个
! ! ! ! : 3C D E *B C D E +B C D E , / C D E 代入即知推论 "成立 7 证毕 7 推论 8 若 )*+ 布罗卡 ,的面积为 )/

+ *" " " / > 3 3 + *# ; < = : # 则 9+ *" 3 9+ *#/ " # *" ? )+ *# 且相似比为 )+ " # " 7 ; < = :
下 面 我 们 将 给 出 它 的 推 广/ 并展示其有 益的应用 7 定理 8 欧 拉 定 理 的 推 广 ( - 为 )*+ ’ , 所 在 平 面 上 的 任 意 一 点/ + . , *". " "分别在边 + , . , *. *+ 上 / 且 9+ , 3 9, *3 " " 则 +3 : / 9*" 2 ! ) )"3 "6 ’ ( 5 7 ! 5 0 : 4 ; < = 式中各字母的意义与定理 "相同 ( ’

三角形的四心欧拉线的证明

三角形的四心欧拉线的证明

三⾓形的四⼼欧拉线的证明三⾓形的四⼼三⾓形的四⼼是指三⾓形的重⼼、外⼼、内⼼、垂⼼。

等边三⾓形的四⼼重合。

⼀、三⾓形的重⼼三⾓形的重⼼是三⾓形三条中线的交点。

三⾓形的三条中线必交于⼀点已知:△ABC的两条中线AD、CF相交于点O,连结并延长BO,交AC于点E。

三⾓形的三条中线必交于⼀点求证:AE=CE证明:延长OE到点G,使OG=OB∵OG=OB,∴点O是BG的中点⼜∵点D是BC的中点∴OD是△BGC的⼀条中位线∴AD∥CG∵点O是BG的中点,点F是AB的中点∴OF是△BGA的⼀条中位线∴CF∥AG∵AD∥CG,CF∥AG,∴四边形AOCG是平⾏四边形∴AC、OG互相平分,∴AE=CE三⾓形的重⼼的性质1.重⼼到顶点的距离与重⼼到对边中点的距离之⽐为2:1。

2.重⼼和三⾓形3个顶点组成的3个三⾓形⾯积相等。

3.重⼼到三⾓形3个顶点距离的平⽅和最⼩。

4.在平⾯直⾓坐标系中,重⼼的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直⾓坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/35.重⼼和三⾓形3个顶点的连线的任意⼀条连线将三⾓形⾯积平分。

6.重⼼是三⾓形内到三边距离之积最⼤的点。

⼆、三⾓形的外⼼三⾓形的外⼼是三⾓形三条垂直平分线的交点(或三⾓形外接圆的圆⼼) 。

三⾓形的三条垂直平分线必交于⼀点三⾓形的三条垂直平分线必交于⼀点已知:△ABC中,AB,AC的垂直平分线DO,EO相交于点O求证:O点在BC的垂直平分线上证明:连结AO,BO,CO,∵DO垂直平分AB,∴AO=BO∵EO垂直平分AC,∴AO=CO∴BO=CO即O点在BC的垂直平分线上三⾓形的外⼼的性质1.三⾓形三条边的垂直平分线的交于⼀点,该点即为三⾓形外接圆的圆⼼.2三⾓形的外接圆有且只有⼀个,即对于给定的三⾓形,其外⼼是唯⼀的,但⼀个圆的内接三⾓形却有⽆数个,这些三⾓形的外⼼重合。

欧拉线问题 解析版-高中数学

欧拉线问题 解析版-高中数学

欧拉线问题欧拉线是高中数学常见的信息题类的考点,其原理很简单:三角形的外心、垂心和重心都在同一直线上,而且外心和重心的距离是垂心和重心的距离之半”,这条直线叫做三角形的欧拉线,只需要掌握图形特点即可轻松求解等腰三角形中的欧拉线(中垂线)1.数学巨星欧拉(LeonhardEuler,1707~1783)在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上,而且外心和重心的距离是垂心和重心的距离之半”,这条直线被后人称之为三角形的欧拉线.若已知△ABC的顶点B(-1,0),C(0,2),且AB=AC,则△ABC的欧拉线方程为()A.2x-4y-3=0B.2x+4y+3=0C.4x-2y-3=0D.2x+4y-3=0【答案】D【分析】根据题意得出△ABC的欧拉线方程为线段BC的垂直平分线,再根据点B和点C的坐标求出线段BC 的垂直平分线即可.【详解】由B(-1,0),C(0,2),得线段BC中点的坐标为-1 2 ,1,所以线段BC的斜率k BC=2,所以线段BC垂直平分线的方程为:y-1=-12x+12,即2x+4y-3=0,又因为AB=AC,所以△ABC的外心、中心、垂心都在线段△ABC的垂直平分线上,所以△ABC的欧拉线方程为2x+4y-3=0,故选:D.2.瑞士著名数学家欧拉在1765年得出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为“欧拉线”.在平面直角坐标系中作△ABC,AB=AC,点B-1,3,点C4,-2,圆M:(x+3)2+y2= 4,P x0,y0是“欧拉线”上一点,过P可作圆的两条线切,切点分别为D,E.则下列结论正确的是()A.△ABC的“欧拉线”方程为y=x-1B.圆M上存在点N,使得∠MPN=π6C.四边形PDME面积的最大值为4D.直线DE恒过定点【答案】ABD【分析】由题意求出BC中点为D的坐标,根据欧拉线的定义求出欧拉线的方程即直线AD的方程,再利用圆和圆的切线的性质判断各选项即可.【详解】设BC中点为D,因为AB=AC,所以AD⊥BC,因为k BC=3+2-1-4=-1,所以k AD=1,且x D=-1+42=32,y D=3-22=12,所以D32,12,由题意可得欧拉线为直线AD,则欧拉线的方程为y-12=x-32即y=x-1,A正确;由圆的切线性质可得∠MPD≥∠MPN,设P(a,a-1),则PM2=(a+3)2+(a-1)2=2a2+4a+10,在△MPD中由正弦定理得PMsin∠PDM=PDsin∠MPD,所以sin∠MPD=PD×sin∠PDMPM=22a2+4a+10,由二次函数的性质得当a=-42×2=-1时2a2+4a+10取最小值8,所以sin∠MPD=22a2+4a+10≤22,即∠MPD的最大值为π4,所以∠MPN≤π4,所以圆M上存在点N,使得∠MPN=π6,B正确;由圆的切线的定义可知PD⊥MD,PE⊥ME,PD=PE,所以S PDME=S△PMD+S△PME=12×PD×MD+12×PE×ME=2PD,又因为PD=PM2-4,且PM min=-3-112+(-1)2=22,所以PD min=4即四边形PDME面积的最小值为4,C错误;设P(a,a-1),因为PD⊥MD,PE⊥ME,所以P,D,M,E四点共圆,其中PM为直径,设PM中点Ha-32,a-12,则PH=a-a-322+a-1-a-122=a2+2a+52,所以圆H为x-a-3 22+y-a-122=a2+2a+52即x2+y2-(a-3)x-(a-1)y-3a=0,所以DE为圆M和圆H的相交弦,两圆方程相减得DE方程为(a+3)x+(a-1)y+5+3a=0,即a(x+y+3)+3x-y+5=0,由x+y+3=03x-y+5=0解得DE过定点(-2,-1),D正确;故选:ABD3.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.在非等边△ABC中,AB=AC,点B坐标为-1,1,点C坐标为3,-3,且其“欧拉线”与圆M:x2+y2=r2r>0相切,则△ABC的“欧拉线”方程为,圆M的半径r=.【答案】y=x-22【分析】分析可知△ABC 的“欧拉线”为线段BC 的中垂线,求出线段BC 的中垂线方程,可得出△ABC 的“欧拉线”方程,利用圆心到“欧拉线”的距离等于圆的半径可求得r 的值,即可得解.【详解】线段BC 的中点为M 1,-1 ,在非等边△ABC 中,AB =AC ,所以,△ABC 的“欧拉线”为线段BC 的中垂线,k BC =1+3-1-3=-1,所以,△ABC 的“欧拉线”方程为y +1=x -1,即y =x -2,由已知,圆M 与直线y =x -2相切,故r =212+12= 2.故答案为:y =x -2;2.普通三角形中的欧拉线4.数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的外心、垂心和重心都在同一直线上.这条直线被后人称为三角形的欧拉线.已知△ABC 的顶点分别为A 0,2 ,B -1,0 ,C 4,0 ,则△ABC 的欧拉线方程为()A.4x -3y -6=0B.3x +4y +3=0C.4x +3y -6=0D.3x +4y -3=0【答案】C【分析】先求出△ABC 的重心坐标,由k AB ⋅k AC =-1得出△ABC 为直角三角形,外心为斜边中点,进而求出外心坐标,由于外心和重心在同一直线上,根据外心和重心的坐标即可得出答案.【详解】因为△ABC 的顶点分别为A 0,2 ,B -1,0 ,C 4,0 ,所以△ABC 的重心为G 1,23 ,因为k AB =2,k AC =-12,所以k AB ⋅k AC =-1,所以AB ⊥AC ,所以△ABC 的外心为BC 的中点D 32,0 ,因为三角形的外心、垂心和重心都在同一直线上,所以△ABC 的欧拉线为直线GD ,所以△ABC 的欧拉线方程为y -023-0=x -321-32,即4x +3y -6=0,故选:C .5.欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心、垂心和外心共线,这条线称之为三角形的欧拉线.已知A 0,2 ,B 4,2 ,C a ,-1 ,且△ABC 为圆x 2+y 2+Ex +Fy =0内接三角形,则△ABC 的欧拉线方程为.【答案】y =1/y -1=0【分析】首先将点的坐标代入圆的方程,即可求出E 、F ,从而得到圆心坐标即△ABC 的外心坐标,再确定△ABC的重心坐标,即可得解.【详解】依题意22+2F=042+22+4E+2F=0,解得E=-4F=-2,所以圆x2+y2-4x-2y=0,即x-22+y-12=5,故圆心坐标为2,1,即△ABC的外心坐标为2,1,又△ABC的重心坐标为a+43,1 ,又点2,1、a+4 3,1均在直线y=1上,所以△ABC的欧拉线方程为y=1.故答案为:y=16.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中,△ABC满足AC=BC,顶点A-1,0、B1,2,且其“欧拉线”与圆M:x+52+y2=r2r>0相切.(1)求△ABC的“欧拉线”方程;(2)若圆M与圆x2+y-a2=2有公共点,求a的范围.【答案】(1)x+y-1=0(2)a∈-7,7【分析】(1)由等腰三角形三线合一知△ABC的欧拉线即为AB的垂直平分线,根据与直线AB垂直得到斜率,结合过中点得到所求直线方程;(2)由直线与圆相切得到圆M的圆心和半径,由两圆有公共点得到两圆的位置关系进而得到关于a的不等式,解不等式即可得到a的取值范围.【详解】(1)因为AC=BC,所以△ABC是等腰三角形,由三线合一得:△ABC的外心、重心、垂心均在边AB 的垂直平分线上,设△ABC的欧拉线为l,则l过AB的中点,且与直线AB垂直,由A-1,0、B1,2可得:AB的中点D1-12,0+22,即D0,1 ,由k AB=2-01--1=1,得k l=-1,故l的方程为y-1=-x即x+y-1=0;(2)因为l与圆M:x+52+y2=r2相切,故圆心M-5,0,r=|6|1+1=32,圆x2+y-a2=2的圆心坐标为0,a,半径r1=2,则要想圆M与圆x2+y-a2=2有公共点,则两圆外切、相交或内切,只需两圆圆心的距离小于等于半径之和,大于等于半径之差的绝对值,即32-2≤-52+a2≤32+2,故22≤25+a2≤42,解得a∈-7,7.。

欧拉线的发现与证明过程

欧拉线的发现与证明过程
欧拉线的发现与证明过程
• 欧拉线的发现 • 欧拉线的证明过程 • 欧拉线在几何学中的应用 • 欧拉线的扩展研究 • 总结与展望
01
欧拉线的发现
欧拉简介
欧拉(Leonhard Euler)是18世纪的瑞士数学家,被誉为历史上最伟大 的数学家之一。他不仅在数学领域有着广泛而深入的研究,还在物理学、 工程学和天文学等领域有着卓越的贡献。
欧拉还利用面积法证明了欧拉线定理,即三角形各边的垂直 平分线交于一点,这一点将三角形的重心分为2:1的两部分。
欧拉线的深入证明
欧拉线的深入证明主要涉及解析几何和代数方法的应用。 通过建立坐标系,将三角形的顶点和角元线方程表示为坐 标形式,然后利用代数方法求解这些方程,可以得到欧拉 线的方程。
此外,还可以利用向量和矩阵等工具来证明欧拉线定理, 这些方法在处理更复杂的几何问题时非常有用。
THANKS
感谢观看
05
总结与展望
欧拉线的重要意义
数学史上的里程碑
欧拉线的发现是数学史上的一个重要 里程碑,它推动了数学领域的发展, 丰富了数学理论体系。
对几何学的影响
在其他学科的应用
欧拉线不仅在数学领域有广泛应用, 还涉及到物理学、工程学等多个学科, 为这些学科的发展提供了重要的理论 支持。
欧拉线是几何学中的重要概念,它的 出现为几何学的研究提供了新的思路 和方法,促进了几何学的发展。
欧拉线是由欧拉在18世纪提出的几何概念。它是指在一个多边形中,连接所有顶 点与对边中点的线段组成的折线。
欧拉在研究多边形的几何性质时,发现了这一特殊的折线。他发现,无论多边形 的形状如何变化,只要边数固定,欧拉线的长度总和保持不变。这一性质被称为 “欧拉线的定长性”。
欧拉线在几何学中的地位

欧拉定理

欧拉定理
定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波) 做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。
4.提出多面体分类方法:
在欧拉公式中, f (p)=V+F-E叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。
除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的 表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面 体的欧拉示性数为0。
数论定理
内容
证明
应用
设,且,则我们有: 其中称为对模缩系的元素个数。 此外,对模的阶必整除。
欧拉定理的证明取模的缩系,则也是模的缩系. 故有 特别地,当时,该结论加强为费马小定理.
首先看一个基本的例子。令a = 3,n = 5,这两个数是互素的。比5小的正整数中与5互素的数有1、2、3和4, 所以φ(5)=4(详情见[欧拉函数])。计算:a^{φ(n)} = 3^4 =81,而81= 80 + 1 Ξ 1 (mod 5)。与定理结果相符。
证明应用
利用几何画板
公式应用
逐步减少多面体的棱数,分析V+F-E 先以简单的四面体ABCD为例分析证法。 去掉一个面,使它变为平面图形,四面体顶点数V、棱数E与剩下的面数F1变形后都没有变。因此,要研究V、 E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1 1.去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。 2.从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一个点。 以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。 对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。 计算多面体各面内角和 设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和Σα 一方面,在原图中利用各面求内角总和。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档