第三章 酶的生物合成
酶工程 第三章酶的发酵生产 第一节酶生物合成的基本理论

第一节 酶生物合成的基本理论
转录时,RNA聚合酶首先结合到DNA的特定位点(启动基因)上,DNA的 双螺旋链部分解开,以其中一条链为模板,通过碱基互补方式结合进第一个 核苷三磷酸,然后随着RNA聚合酶的移动,DNA双螺旋逐渐解开,按照模板上 的碱基顺序逐个加入与其互补的核苷三磷酸并聚合而生成多聚核苷酸链。在 RNA聚合酶后面生成的多聚核苷酸链立即与模板分开,DNA分子的两条链又重 新缠绕形成双螺旋。(图3-1)
第一节 酶生物合成的基本理论
三、酶生物合成的调节
如上所述,酶的生物合成要经过一系列的步骤,需要 诸多因素的参与。故此,在转录和翻译过程中,许多因素 都会影响酶的生物合成。那么,究竟哪些因素对酶的生物 合成起主要的调节控制作用呢?研究结果表明,至少在原 核生物中,甚至在所有生物中,转录水平的调节控制对酶 的生物合成是至为重要的。
的过程,称为酶生物合成的诱导作用。简称为诱导作用。 起诱导作用的物质,称为诱导剂。例如,乳糖诱导β—半 乳糖苷酶的合成等。
酶生物合成的诱导作用过程如图3-4所示。
第一节 酶生物合成的基本理论
第一节 酶生物合成的基本理论
(B)
图3-4酶生物合成的诱导作用 (A)-----无诱导物时 (B)----添加诱导物时
转录水平调节控制,又称为基因的调节控制。这种控 制理论最早是由雅各(Jacob)和莫诺德(Monod)于1960年 提出的操纵子学说来阐明的,1966年发现了启动基因,使 这一调节控制理论不断完善。
第一节 酶生物合成的基本理论
根据基因调节控制理论,在DNA分子中,与酶生物合 成有密切关系的基因有4种。它们是调节基因(Regulator gene)、启动基因(Promoter gene)、操纵基因(Operator gene)和结构基因(Strutural gene)。其中,结构基因与 酶有各自的对应关系,结构基因中的遗传信息可转录成 mRNA上的遗传密码,再经翻译成为酶蛋白的多肽链。操纵 基因可以特异性地与调节基因产生的边构蛋白(阻抑蛋白) 中的一种结构结合,从而操纵酶合成的时机及速度。结构 基因与操纵基因一起称为操纵子。启动基因决定酶的合成 能否开始,启动基因由两个位点组成,一个是RNA聚合酶 的结合位点,另一个是环腺苷酸(cAMP)与环腺苷酸接受 蛋白(CRP)的复合物(cAMP- CRP)的结合位点。只有在 cAMP- CRP复合物结合到启动基因的位点上时,RNA
生物化学 第三章 酶(共65张PPT)

含多条肽链则为寡聚酶,如RNA聚合酶,由4种亚基构成五聚体。
(cofactor)
别构酶(allosteric enzyme):能发生别构效应的酶
9 D-葡萄糖6-磷酸酮醇异构酶 磷酸葡萄糖异构酶
esterase)活性中心丝氨酸残基上的羟基结合,使酶失活。
酶蛋白
酶的磷酸化与脱磷酸化
五、酶原激活
概念
酶原(zymogen):细胞合成酶蛋白时或者初分 泌时,不具有酶活性的形式
酶原 切除片段 酶
(–)
(+)
酶原激活
本质:一级结构的改变导致构象改变,激活。
胰蛋白酶原的激活过程
六、同工酶
同工酶(isoenzyme)是指催化相同的化学反应, 而酶蛋白的分子结构、理化性质乃至免疫学性质 不同的一组酶。
正协同效应(positive cooperativity) 后续亚基的构象改变增加其对别构效应剂
的亲和力,使效应剂与酶的结合越来越容易。
负协同效应(negative cooperativity) 后续亚基的构象改变降低酶对别构效应剂
的亲和力,使效应剂与酶的结合越来越难。
协同效应
正协同效应的底物浓度-反应速率曲线为S形曲线
/ 即: Vmax = k3 [Et]
Km 和 Vmax 的测定
双倒数作图法 Lineweaver-Burk作图
将米氏方程式两侧取倒数
1/v = Km/Vmax[S] + 1/Vmax = Km/Vmax •1/ [S] + 1/Vmax 以 1/v 对 1/[S] 作图, 得直线图
斜率为 Km/Vmax
酶学与酶工程重点总结

酶学与酶⼯程重点总结第⼆章酶学基础⼀、酶的活性中⼼(active center,active site)(⼀)活性中⼼和必需基团1、与酶活性显⽰有关的,具有结合和催化底物形成产物的空间区域,叫酶的活性中⼼,⼜叫活性部位。
2、活性中⼼可分为结合部位和催化部位。
3、结合部位决定酶的专⼀性,催化部位决定酶所催化反应的性质。
4、酶结构概述(1)活性中⼼是⼀个三维实体。
(2)是有⼀些⼀级结构上可能相距较远的氨基酸侧链基团组成,有的还包含辅酶或辅基的某⼀部分基团。
(3)在酶分⼦表⾯呈裂缝状。
(4)酶活性中⼼的催化位点和结合位点可以不⽌⼀个。
(5)酶活性中⼼的基团都是必需基团,但必需基团还包括活性中⼼以外的基团。
5、酶分⼦中的氨基酸残基或其侧链基团可以分为四类1.接触残基2.辅助残基3.结构残基4.⾮贡献残基(⼆)酶活性中⼼中的化学基团的鉴别1.⾮特异性共价修饰:某些化学试剂能使蛋⽩质中氨基酸残基的侧链基团反应引起共价结合、氧化或还原修饰反应,使基团结构和性质发⽣变化。
如果某基团修饰后不引起酶活⼒的变化,就可初步认为此基团可能是⾮必需基团;反之,如修饰后引起酶活⼒的降低或丧失,则此基团可能是酶的必需基团。
2.亲和标记共价修饰剂是底物的类似物,可专⼀性地引⼊酶的活性中⼼,并具有活泼的化学基团(如卤素),可与活性中⼼的基团形成稳定的共价键。
因其作⽤机制是利⽤酶对底物类似物的亲和性⽽将酶共价标记的,故称为亲和标记。
3.差别标记在过量底物或可逆抑制剂遮蔽活性中⼼的情况下,加⼊共价修饰剂,使后者只修饰活性中⼼以外的有关基团;然后去除底物或可逆抑制剂,暴露活性中⼼,再⽤同位素标记的向⼀修饰剂作⽤于活性中⼼的同类基团;将酶⽔解后分离带有同位素的氯基酸,即可确定该氨基酸参与活性中⼼。
4.蛋⽩质⼯程这是研究酶必需基闭和活性中⼼的最先进⽅法,即将酶蛋⽩相应的互补DNA(cDNA)定点突变,此突变的cDNA表达出只有⼀个或⼏个氨基酸被置换的酶蛋⽩,再测定其活性,可以知道被置换的氨基酸是否为活⼒所必需。
生化第三章酶

第三章酶本章要点生物催化剂——酶:由活细胞产生的、对其底物具有高度特异性和高度催化效能的蛋白质。
一、酶的分子结构与功能1.单体酶:由单一亚基构成的酶。
(如溶菌酶)2.寡聚酶:由多个相同或不同的亚基以非共价键连接组成的酶。
(如磷酸果糖激酶-1)3.多酶复合物(多酶体系):几种具有不同催化功能的酶可彼此聚合。
(如丙酮酸脱氢酶复合物)4.多功能酶(串联酶):一些酶在一条肽链上同时具有多种不同的催化功能。
(如氨基甲酰磷酸合成酶Ⅱ)(一)、酶的分子组成中常含有辅助因子1.酶蛋白主要决定酶促反应的特异性及其催化机制;辅助因子主要决定酶促反应的性质和类型。
2.酶蛋白和辅助因子单独存在时均无催化活性,只有全酶才具有催化作用。
3.辅酶与酶蛋白的结合疏松,可以用透析和超滤的方法除去。
在酶促反应中,辅酶作为底物接受质子或基团后离开酶蛋白,参加另一酶促反应并将所携带的质子或基团转移出去,或者相反。
4.辅基则与酶蛋白结合紧密,不能通过透析或超滤将其除去。
在酶促反应中,辅基不能离开酶蛋白。
5.作为辅助因子的有机化合物多为B族维生素的衍生物或卟啉化合物,它们在酶促反应中主要参与传递电子、质子(或基团)或起运载体作用。
金属离子时最常见的辅助因子,约2/3的酶含有金属离子。
6.金属离子作为酶的辅助因子的主要作用①作为酶活性中心的组成部分参加催化反应,使底物与酶活性中心的必需基团形成正确的空间排列,有利于酶促反应的发生;②作为连接酶与底物的桥梁,形成三元复合物;③金属离子还可以中和电荷,减小静电斥力,有利于底物与酶的结合;④金属离子与酶的结合还可以稳定酶的空间构象。
7.金属酶:有的金属离子与酶结合紧密,提取过程中不易丢失。
8.金属激活酶:有的金属离子虽为酶的活性所必需,但与酶的结合是可逆结合。
(二)、酶的活性中心是酶分子执行其催化功能的部位1.酶的活性中心(活性部位):酶分子中能与底物特异地结合并催化底物转变为产物的具有特定三维结构的区域。
第三章酶的生产

2023年5月15日星期一
第三章 酶的生产制备
酶的生产方式
1.提取法: 植物、动物、微生物
2.化学合成法
生物合成法: 利用植物、动物、微生物细胞合成。 上个世纪50年代起利用微生物生产酶
。 1949年细菌发酵生产淀粉酶
上个世纪70年代以来利用植物细胞和 动物细胞培养技术生产酶。
木瓜细胞培养生产木瓜蛋白酶和木瓜 凝乳蛋白酶 人黑色素瘤细胞培养生 产血纤维蛋白溶酶原激活剂
34
2.生长偶联型中的特殊形式——中期合成型
酶的合成在细胞生长一段时间后才开始,而在细胞生 长进入平衡期以后,酶的合成也随着停止。 特点:酶的合成受产物的反馈阻遏或分解代谢物阻遏。
所对应的mRNA是不稳定的。
枯草杆菌碱性磷酸酶合成曲线 35
3.部分生长偶联型(又称延续合成型)
酶的合成在细胞的生长阶段开始,在细胞生长进入 平衡期后,酶还可以延续合成较长一段时间。 特点:可受诱导,一般不受分解代谢物和产物阻遏。
所对应的mRNA相当稳定。
黑曲霉聚半乳糖醛酸酶合成曲线 36
4. 非生长偶联型(又称滞后合成型)
只有当细胞生长进入平衡期以后,酶才开始合成并 大量积累。许多水解酶的生物合成都属于这一类型。 特点:受分解代谢物的阻遏作用。
所对应的mRNA稳定性高。
黑曲霉酸性蛋白酶合成曲线 37
总结:影响酶生物合成模式的主要因素
②发酵代谢调节:理想诱导物的添加,解除 反馈阻遏和分解代谢物阻遏(难利用的碳 氮源的使用,补料发酵)。
③降低产酶温度。
二、细胞生长动力学
微生物细胞生长的动力学方程:
Monod方程:
S-限制性基质浓度; μm—最大比生长速率; Ks —Monod常数
酶学与酶工程第三章酶生物合成学生

丛梗孢科,曲霉属真菌中的一个常见种。
酶学与酶工程第三章酶生物合成学生College of Life Sciences
米曲霉:半知菌亚门,丝孢纲,丝孢目,从梗孢科, 曲霉属真菌中的一个常见种。米曲霉菌落生长快, 10d直径达5~6cm,质地疏松,初白色、黄色,后变 为褐色至淡绿褐色。背面无色。分生孢子头放射状, 一直径150~300μm,也有少数为疏松柱状。分生孢 子梗2mm左右。
链霉菌
酶学与酶工程第三章酶生物合成学生College of Life Sciences
3.酵母菌 酵母菌(yeast)是—类单细胞微生物,但不同于细菌,
属于真核微生物。
酿酒酵母 球拟酵母 假丝酵母
拟酵母
酶学与酶工程第三章酶生物合成学生College of Life Sciences
4. 霉菌 霉菌是一类丝状真菌,用于酶的发酵生产的霉菌主
二、产酶微生物的来源
1.土壤中的产酶微生物 2.水体中的产酶微生物 3.空气中的产酶微生物 4.极端环境中的产酶微生物
酶学与酶工程第三章酶生物合成学生College of Life Sciences
三、产酶微生物的分离和筛选
酶学与酶工程第三章酶生物合成学生College of Life Sciences
第三章 酶的生物合成
酶学与酶工程第三章酶生物合成学生
第一节 微生物发酵产酶
微生物发酵产酶的优点: 1)微生物种类繁多; 2) 微生物生长周期短,繁育快; 3) 微生物易改造,可通过多种手段育种。
酶学与酶工程第三章酶生物合成学生College of Sciences
一、产酶微生物的种类 用于酶的生产的细胞必须具备几个条件 (1)酶的产量高 (2) 容易培养和管理 (3) 产酶稳定性好,不易变异退化,不易被感染 (4) 利于酶的分离纯化 (5) 安全可靠,无毒性
第三章第一节酶生物合成的调节PPT课件

AUG
反密码
GUU UAC ACA
5’
3’ mRNA
密码(codon)与反密码(anticodon) 的碱基配对
.
31
蛋白质合成的几个要素-核糖体,ribosome
• 核糖体(或称核糖核蛋白体)由蛋白质和rRNA组成。 是存在于细胞质内的微小颗粒。
.
32
The ribosome composition of
.
Few example
2
一、提取分离法
• 酶的提取:在一定的条件下,用适当的溶剂处理 含酶原料,使酶充分溶解到溶剂中的过程。
• 主要提取方法:
– 盐溶液提取
– 酸溶液提取
– 碱溶液提取
– 有机溶剂提取等
注意选择适当 的溶剂!!!
.
3
• 优点:提取方法简单方便 • 缺点:
– 必须先获得含酶组织或细胞 – 受气候环境影响 – 若培养细胞则工艺路线变复杂 – 产品含杂质较多,分离纯化较困难
.
4
适用范围
• 在动植物资源丰富的地区 • 从动物胰脏中提取各种胰蛋白酶,小肠中
提取碱性磷酸酶
.
5
二、生物合成法(发酵法)
• 利用微生物细胞、植物细胞或动物细胞的 生命活动而获得人们所需酶的技术。
依细胞 种类不同
微生物 植物细胞 动物细胞
发酵产酶 培养产酶 培养产酶
.
6
• 酶的发酵生产:经过预先设计,通过
60年代中期,在操纵子中还发现了另一个开关基因,称为启动基因。启
动基因位于操纵基因之前,二者紧密相邻。启动基因由环腺苷酸(cAMP)启 动,而环腺苷酸能被葡萄糖所抑制。这样,葡萄糖便通过抑制环腺苷酸而间 接抑制启动基因,使结构基因失活,停止合成半乳糖苷酶。
第三章酶的发酵生产

CAP结合位点
DNA
P
O
Z
Y
A
+ + + + 转录
无葡萄糖,cAMP浓度高时
CAP CAP CAP CAP
CAP CAP
CAP
有葡萄糖,cAMP浓度低时
低半乳糖时
葡萄糖低 cAMP浓度高
高半乳糖时
RNA-pol
O I
无转录
O
mRNA
葡萄糖高 cAMP浓度低
I O
无转录
O
低水平转录
色氨酸操纵子——阻遏型操纵子 调节区
UUUU…… UUUU……
4
trp 密码子 前导肽
序列3、4不能形成衰减子结构 •当色氨酸浓度低时
细胞周期与酶的合成
可能的三种模式:
合成伴着生长进行,
进入静止期,合成降
低 静止期合成增加
中间类型
对数生长期合成降低,
三、酶发酵动力学
主要研究在发酵过程中细胞生长速率,产物 形成速率以及环境因素对速率的影响. 在酶的发酵生产中,研究酶发酵动力学对于了 解酶生物合成模式;发酵条件的优化控制,提 高酶产量具有重要的理论指导意义。
影响酶生物合成模式的因素主要是: mRNA和培养基中存的阻遏物:
mRNA稳定性高的,在细胞停止生长后继续合成相应的酶; mRNA稳定性差的,随着细胞生长停止而终止酶的合成;
不受阻遏物阻遏的,可随着细胞生长而开始酶的合成;
受阻遏物阻遏的,要在细胞生长一段时间或进入稳定期后解除 阻遏,才能开始酶的合成。
2.人工合成酶制剂:
蛋白质的人工合成:人 工合成胰岛素等
人工合成酶制剂受客观
条件的限制,如试剂、 设备等,另外,体外合 成,形成单体的难度大,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶氧量过低,会对微生物生长、繁殖和新陈代 谢产生影响,从而使酶产量降低。但,过高的 溶氧量对酶的发酵生产业会产生不利影响,一 方面会造成浪费,另一方面高溶氧也会抑制某 些酶的生物合成,因此在整个发酵过程中应根 据需要控制好溶氧量。.
酶浓度调节的化学本质是基因表达的调节, 在细胞内进行的转录或翻译过程都有特定的 调节控制机制,其中,转录水平的调控占主 导地位,是酶生物合成中最重要的调节
.
操纵子
操纵子(operon)是一组功能上相关且受同 一调控区控制的基因组成的遗传单位
操纵子是酶合成调控的结构基础
.
操纵子调控模型
根据基因调节理论,在 DNA 分子中,与酶的生物 合成有密切关系的基因有 4 种。它们是调节基因 (regulator gene)、启动基因(promoter gene)、 操纵基因(operator gene)和结构基因(structural gene)。
蛋白酶
. 皮革脱毛
酶发酵生产菌种要求
产酶量高,具有生产应用价值 易培养,既能适应大生产粗放的营养和生产条
件,包括能利用廉价原料、对工艺条件要求不 苛刻 代谢速率高,发酵周期短 产酶稳定性好,菌种的生产性能不易退化,不 易感染噬菌体 安全可靠,要求菌种不是致病菌,其代谢物安 全无毒,在系统发育上与病原体无关 选用产胞外酶菌种,有. 利于酶的分离提取
.
发酵条件控制及对产酶的影响
温度:影响微生物生长和合成酶、影响酶合成 后的稳定性
pH:影响微生物体内各种酶活性,从而导致微生 物代谢途径发生变化;影响微生物形态和细胞 膜通的透性,从而影响微生物对培养基中营养 成分的吸收以及代谢产物的分泌;影响培养基 中某些营养物质的分解或中间产物的解离,从 而影响微生物对这些营养物质的利用
.
酶生物合成阻遏作用的调节机制
在没有共阻遏物存在时, 调节基因产生的阻遏蛋白 与操纵基因的亲和力弱, 不能与操纵基因结合。所 以,RNA 聚合酶可以结合 到其在启动基因的位点上, 进行转录,而合成结构基 因所对应的酶
而当环境中有辅阻遏物,
并达到一定浓度时,阻遏
蛋白与辅阻遏物结合,使
阻遏蛋白结构发生变化,
阻遏型操纵子(repressible operon):在无 阻遏物时,基因正常表达,当有阻遏物时, 转录则受到阻遏,酶不能合成。如色氨酸操 纵子
.
转录水平的调节
酶生物合成的诱导作用 酶生物合成的反馈阻遏作用 分解代谢物阻遏作用
.
酶
根据酶生成是否与环境中所存在的该酶底物 或其相关物质的关系,把酶分为: 1 组成酶:是细胞内固有的酶类,不管是 否其底物或结构类似物存在都有一定量存在, 它的合成是在相应的基因控制下进行的,如 EMP途径中的酶类 2 诱导酶:是细胞为适应外来底物或结构 类似物时而合成的一类酶,其合成明显受环 境因素影响
物细胞来生产获得
.
工业用部分主要酶的生产菌种
微生物类别
菌名
产生的酶
用途
细菌
枯草杆菌 大肠杆菌
淀粉酶 蛋白酶 L-天冬氨酸酶 青霉素酰化酶
酒精与啤酒工业、洗涤剂、糊精加工、纺织品脱浆等
生丝脱胶、皮革脱毛、胶卷回收、酱油酿造 生产L-天冬氨酸:治疗白血病 制备新青霉素的母核6-氨基青霉素烷酸
异型乳酸杆菌 短小芽孢杆菌
.
酶合成的诱导现象
大肠杆菌在葡萄糖培养基上不能产生利用乳 糖的酶
当培养基中只有乳糖时,可产生利用乳糖的 酶
在培养基中添加葡萄糖后,利用乳糖的酶消 失
.
乳糖操纵子诱导酶合成的过程
R:调节基因 O:操纵基因 S:结构基因
.
酶生物合成的诱导作用
酶合成的诱导作用:由于加入某种物质,使酶的生物合 成开始或加速进行的现象,称为酶生物合成的诱导作用
固定化微生物细胞产酶的工艺条件及其控 制应注意事项
需要对固定化微生物细胞进行预培养 增加溶宜解氧的供给 发酵温度的控制 培养基组分的特殊要求:1)培养基浓度不
过高,并可通过改变培养基组分来降低培养 基粘度,有利于氧的溶解和传递,从而克服 固定化细胞好氧发酵过程中氧溶解和传递的 限制;2)培养基组分不能影响固定化细胞 的结构稳定性,或影响很小
阻遏蛋白
调节基因可以产生一种阻遏蛋白。阻遏蛋白是一种由多 个亚基组成的变构蛋白,它可以通过与某些小分子效应 物(诱导物或阻遏物)的特异结合而改变其结构,从而 改变它与操纵基因的结合力。
当阻遏蛋白与操纵基因结合时,由于空间排挤作用, RNA 聚合酶就无法结合到启动基因的位点上,也无法 进入到结构基因的位置进行转录,因而无法将 DNA 上 的遗传信息转录到 mRNA 分子上,酶的生物合成也就 无法进行。
.
培养基成分
碳源:是构成菌体细胞的主要元素、构成酶骨 架的元素之一,也是菌体生命活动所需能量的 主要来源。应根据细胞对酶营养要求的不同而 选择合适碳源
氮源:是生物体合成各种含氮物质的组成成分, 是酶制剂生产的原料
无机盐:大量元素和微量元素 生长因子:氨基酸、维生素、嘌呤、嘧啶、激
素等。 产酶促进剂:诱导物和表面活性剂
1. 结构基因与多肽链有各自的对应关系。结构基因上的 遗传信息可以转录成为 mRNA上的遗传密码,再经翻 译成为酶蛋白的多肽链,每一个结构基因对应一条多 肽链。
2. 操纵基因可以与调节基因产生的变构蛋白(阻遏蛋白) 中的一种结构结合,从而操纵酶生物合成的时机和合 成速度。
.
操纵子调控模型(二)
3. 启动基因决定酶的合成能否开始,启动基 因由两个位点组成:一个是 RNA 聚合酶的 结合位点,另一个是环腺苷酸(cyclic AM P,cAM P)与 CAP 组成的复合物(cAM P-CAP)的结合位点。CAP 是指环腺苷酸 受体蛋白(cAM P acceptor protein)或分解 代谢物活化剂蛋白(catabolite activator protein)。只有到达启动基因的位点时, RNA 聚合酶才能结合到其在启动基因上的 相应位点上,转录才有可能开始,否则酶 就无法开始合成。.
.
酶生物合成的反馈作用
酶生物合成阻遏物的反馈作用又称产物阻遏作用,是指 酶催化的产物或代谢物的末端产物使该酶的生物合成受 到阻遏的现象,它是通过阻止编码该酶的基因的表达而 进行的。能阻遏酶合成的物质叫辅阻遏物或叫共阻遏物。 被辅作用而停止合成的酶叫阻遏酶
共阻遏物一般是酶催化反应的产物或是代谢途径的末端 产物。例如,无机磷酸是碱性磷酸酶催化磷酸单酯水解 的产物,它的过量存在,却会阻遏碱性磷酸酶的生物合 成;色氨酸作为色氨酸合成途径的终产物,它的过量积 累却反过来对其合成途径中的 4种酶(邻氨基苯甲酸合 成酶、磷酸核糖邻氨基苯甲酸转移酶、磷酸核糖邻氨基 苯甲酸异构酶和色氨酸合成酶)的生物合成均起反馈阻 遏作用
只有当阻遏蛋白通过与效应物(又称辅助阻遏物)结合, 改变结构而不与操纵基因结合时,RNA 聚合酶才能结 合到启动基因的位点上,进行转录,使结构基因所对应 的酶进行生物合成。
.
原核生物操纵子类型
诱导型操纵子(inducible operon):在无诱 导物时,其基因不表达或表达的水平很低, 只有当诱导物存在时,才能进行转录生成 mRNA,进而经翻译合成酶。如乳糖操纵子
第三章 酶的生物合成与 发酵生产
.
酶的生物合成与发酵生产定义
酶的生物合成:即生物体内酶合成的 过程
酶的发酵生产:利用微生物代谢活动 生产所需酶的过程
目前工业上使用的酶大多数是利 用微生物发酵生产的。
.
利用微生物发酵产酶的优点
微生物生长繁殖快,生活周期短,用微生物产酶 几乎可以不受限制的扩大生产,满足市场需求
葡萄糖异构酶 由葡萄糖制果糖 碱性蛋白酶 皮革脱毛
酵母
霉菌 放线菌
产气气杆菌 解脂假丝酵母 啤酒酵母、假丝 酵母 点青酶
转化微白色放线 菌
异淀粉酶 脂肪酶 转化酶
分解Байду номын сангаас粉的α-1,6-糖苷键 绢丝原料脱脂、洗涤剂、医药、乳品增香 制造转化糖
葡萄糖氧化酶 食品加工中食品去氧、除葡萄糖,作试剂测定葡 萄糖
分解代谢物阻遏作用之所以产生,是由于某些物质(如 葡萄糖等)经过分解代谢放出能量,有一部分能量储存 在 ATP 中。ATP 是由 AMP 和 ADP 通过磷酸化作用生成 的。这样细胞内 ATP 的浓度增加,使 AMP 的浓度降低, 存在于细胞内的 cAMP 就通过磷酸二酯酶的作用水解生 成 AMP。
.
固定化微生物原生质体发酵产酶的工艺条 件及其控制应注意事项
培养基渗透压的控制 控制培养基组分,防止细胞壁再生 维持较高的原生质体浓度
.
提高酶产率的方法
酶生物合成的调控机制 打破酶合成调节机制及提高酶产量的方法
.
酶生物合成的调控机制
酶在细胞内的含量取决于酶的合成速度和分 解速度,细胞根据其自身活动需要,严格控 制细胞内各种酶的合理含量,从而对各种生 物化学过程进行调控
.
酶合成阻遏现象
大肠杆菌在无机盐和葡萄糖培养基中可检测到色氨 酸合成酶,可满足自身需要;
若在培养基中添加色氨酸,可发现色氨酸合成酶的 活性降低,甚至消失,色氨酸不再合成;
色氨酸的存在阻止了色氨酸合成酶的合成,体现了 菌体生长的经济原则,即不需要,不合成。
.
分解代谢物阻遏作用
分解代谢物阻遏作用是指某些物质(主要是指容易利用 的碳源)经过分解代谢产生的分解代谢物阻遏某些酶 (主要是诱导酶)生物合成的现象。例如,葡萄糖阻遏 β-半乳糖苷酶的生物合成,果糖阻遏α-淀粉酶的生物合成 等。
微生物种类多,且在不同环境下生存的微生物都 有其完全不同的代谢方式,能分解利用不同底物, 这为微生物酶种类的多样性提供了物质基础