生物化学 第三章 酶化学

合集下载

生物化学第三章 酶

生物化学第三章  酶

(四)酶的比活力(比活性) • 酶的比活力是指每单位质量样品中的酶 活力,即每毫克酶蛋白中所含的活力单 位数或每千克酶蛋白中所含的Kat数。
比活力=
酶活力单位数 酶蛋白质量(mg)
• 比活力是表示酶制剂纯度的一个重要指 标,对同一种酶而言,酶的比活力越高, 纯度越高。
七、酶促反应动力学
• 酶促反应动力学主要研究酶催化的反 应速度及影响反应速度的各种因素。 • 在探讨各种因素对酶促反应速度的影 响时,通常测定其初始速度来代表酶
单纯酶 酶→ 结合酶(全酶)→ 辅助因子→ 酶蛋白 辅酶 辅基 金属离子

●酶蛋白与辅助因子单独存在时均无催化活性,二 者只有结合成完整的分子时,才具有催化活性。 ●一种酶蛋白只与一种辅酶结合,组成一种全酶, 催化一种或一类底物进行某种化学反应。 ●一种辅酶可以和多种酶蛋白结合,组成多种全酶, 分别催化不同底物进行同一类反应。
(三) 诱导契合学说-关于酶作用专一性的假说 ●1890年,Emil Fischer提出“锁钥学说” :底 物的结构和酶活性部位的结构非常吻合,就象 锁和钥匙一样,这样它们就能紧密结合形成中 间产物。
底物
+

酶 –底物复合物
●1958年,Koshland提出“诱导契合学说”: 酶活性部位的结构与底物的结构并不特别 吻合,但活性部位具有一定的柔性,当底 物与酶接近时,可以诱导酶活性中心的构 象发生改 变,使之 成为能与 底物分子 密切结合 的构象 。
促反应速度,即底物转化量 <5% 时的
反应速度。
(一)酶浓度对反应速度的影响 • 当反应系统中底物的浓度足够大时, 酶促反应速度与酶浓度成正比,即 ν =k[E]。
(二) 底物浓度对反应速度的影响

生物化学I 第三章 酶学

生物化学I 第三章 酶学

根据国际生化协会酶命名委员会的规定,每一个酶都用 四个打点隔开的数字编号,编号前冠以EC(酶学委员会缩 写),四个数字依次表示该酶应属的大类、亚类、亚亚类 及酶的顺序号,这种编码一种酶的四个数字即是酶的标码。
例如:EC1.1.1.27(乳酸脱氢酶) 酶
乳酸:NAD+氧化还原
u u u u
第一大类 氧化还原酶 第一亚类 —CHOH被氧化 第一亚亚类 氢受体为NAD+ 排序 顺序号为27
4. 1878年, Kü hne赋予酶统一的名称 “Enzyme”, 其意思为“在酵母中”。
Enzyme 酶
德国生物化学家
5. 1930~1936年,Northrop和Kunitz先后得到了胃蛋 白酶、胰蛋白酶和胰凝乳蛋白酶结晶,并用相应方法 证ቤተ መጻሕፍቲ ባይዱ酶是蛋白质。
为此, Northrop和Kunitz于1949年共同 获得诺贝尔奖。
(1)旋光异构专一性:
(2)顺反异构专一性:
例如:不同的酶有不同的活性中心,故对底物有严格的特异性。例如乳 酸脱氢酶是具有立体异构特异性的酶,它能催化乳酸脱氢生成丙酮酸 的可逆反应:
A、B、C分别为LDH活性中心的三个功能基团
消化道内几种蛋白酶的专一性
氨肽酶
(芳香) (硷性)
羧肽酶 羧肽酶
(丙)
Ser
His 活性中心重要基团: His57 , Asp102 , Ser195
Asp
(4)酶的活性中心与底物形状不是正好互补的。
(5)酶的活性中心是位于酶分子表面的一个裂 缝(Crevice)内。
(6)底物通过次级键较弱的作用力与酶分子结 合,这些次级键为:氢键、离子键(盐键)、 范德华力和疏水相互作用。 (7)酶的活性中心具有柔性或可运动性。

生物化学 第三章 酶(共65张PPT)

生物化学  第三章 酶(共65张PPT)
概念: 抑制剂和底物的结构相似,能与底物竞争酶的活性中心,从而阻碍酶底物复合物的形成,使酶的活性降低。
含多条肽链则为寡聚酶,如RNA聚合酶,由4种亚基构成五聚体。
(cofactor)
别构酶(allosteric enzyme):能发生别构效应的酶
9 D-葡萄糖6-磷酸酮醇异构酶 磷酸葡萄糖异构酶
esterase)活性中心丝氨酸残基上的羟基结合,使酶失活。
酶蛋白
酶的磷酸化与脱磷酸化
五、酶原激活
概念
酶原(zymogen):细胞合成酶蛋白时或者初分 泌时,不具有酶活性的形式
酶原 切除片段 酶
(–)
(+)
酶原激活
本质:一级结构的改变导致构象改变,激活。
胰蛋白酶原的激活过程
六、同工酶
同工酶(isoenzyme)是指催化相同的化学反应, 而酶蛋白的分子结构、理化性质乃至免疫学性质 不同的一组酶。
正协同效应(positive cooperativity) 后续亚基的构象改变增加其对别构效应剂
的亲和力,使效应剂与酶的结合越来越容易。
负协同效应(negative cooperativity) 后续亚基的构象改变降低酶对别构效应剂
的亲和力,使效应剂与酶的结合越来越难。
协同效应
正协同效应的底物浓度-反应速率曲线为S形曲线
/ 即: Vmax = k3 [Et]
Km 和 Vmax 的测定
双倒数作图法 Lineweaver-Burk作图
将米氏方程式两侧取倒数
1/v = Km/Vmax[S] + 1/Vmax = Km/Vmax •1/ [S] + 1/Vmax 以 1/v 对 1/[S] 作图, 得直线图
斜率为 Km/Vmax

生物化学03 酶

生物化学03 酶

1、酶的别构(变构)效应 •概念:有些酶分子表面除了具有活性中心外,还存在被称为调节位
点(或变构位点)的调节物特异结合位点,调节物结合到调 节位点上引起酶的构象发生变化,导致酶的活性提高或下降, 这种现象称为别构效应,具有上述特点的酶称别构酶。
效应剂

构 中
活性 中心

2、酶的多种分子形式——同工酶
最适 温度
温度
4、pH对酶促反应速度的影响
v
•过酸过碱导致酶蛋白变性
•酶的最适pH不是一个固定 不变的常数

pH

pH
5、激活剂对酶作用的影响
凡是能提高酶活力的物质,称为酶的激活剂。
类别
金属离子:K+、Na+、 Mg2+、Cu2+、Mn2+、Zn2+、Se3+ 、 Co2+、Fe2+ 阴离子: Cl-、Br有机分子 抗坏血酸、半胱氨酸、谷胱甘肽
v
Vm axS K m S
PE
(2)米氏常数Km的意义
① 当v=Vmax/2时,Km=[S]( Km的单位为浓度单位) ②是酶在一定条件下的特征物理常数,通过测定Km的数值,可
鉴别酶。 ③可近似表示酶和底物亲合力,Km愈小,E对S的亲合力愈大,
Km愈大,E对S的亲合力愈小。 ④在已知Km的情况下,应用米氏方程可计算任意[s]时的v,或
相对专一性:要求底物具有一定的化学键,且对键的某 一端所连的基团也有一定的要求,如胰蛋白酶。
键专一性:只作用于一定的键,而对键两端的基团并无 严格要求,如二肽酶。
2、 立体异构专一性 只能催化一种立体异构体,对另一种立体异构体无
作用,如乳酸脱氢酶能催化L-乳酸,而不能催化D-乳酸。

生物化学 第3章 酶

生物化学 第3章 酶

生物化学第3章酶生物化学第3章酶第3章酶自学建议1.掌握酶及所有相关的概念、酶的结构与功能的关系、酶的工作原理、酶促反应动力学特点、意义及应用。

2.熟识酶的分子共同组成与酶的调节。

3.了解酶的分类与命名及酶与医学的关系。

基本知识点酶是对其特异底物起高效催化作用的蛋白质。

单纯酶是仅由氨基酸残基组成的蛋白质,融合酶除所含蛋白质部分外,还所含非蛋白质辅助因子。

辅助因子就是金属离子或小分子有机化合物,后者称作辅酶,其中与酶蛋白共价紧密结合的辅酶又称辅基。

酶分子中一些在一级结构上可能相距很远的必需基团,在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物,这一区域称为酶的活性中心。

同工酶就是指催化剂相同化学反应,酶蛋白的分子结构、化学性质乃至免疫学性质相同的一组酶,就是由相同基因编码的多肽链,或同一基因mRNA分解成的相同mrna所译者的相同多肽链共同组成的蛋白质。

酶促反应具有高效率、高度特异性和可调节性。

酶与底物诱导契合形成酶-底物复合物,通过邻近效应、定向排列、表面效应使底物容易转变成过渡态。

酶通过多元催化发挥高效催化作用。

酶促反应动力学研究影响酶促反应速率及其影响因素,后者包括底物浓度、酶浓度、温度、ph、抑制剂和激活剂等。

底物浓度对反应速率的影响可用米氏方程表示。

v?vmax[s]km?[s]其中,km为米氏常数,其值等同于反应速率为最小反应速率一半时的底物浓度,具备关键意义。

vmax和km需用米氏方程的双倒数作图去求得。

酶在拉沙泰格赖厄县ph和拉沙泰格赖厄县温度时催化活性最低,但拉沙泰格赖厄县ph和拉沙泰格赖厄县温度不是酶的特征性常数,受到许多因素的影响。

酶的抑制作用包含不可逆遏制与对称遏制两种。

对称遏制中,竞争抑制作用的表观km值减小,vmax维持不变;非竞争抑制作用的km值维持不变,vmax增大,反竞争抑制作用的km值与vmax均增大。

在机体内酶活性与含量的调节是代谢调节的重要途径。

《生物化学》第三章 酶化学与辅酶及答案

《生物化学》第三章 酶化学与辅酶及答案
C.酶原是普通的蛋白质
D.缺乏辅酶或辅基
E.是已经变性的蛋白质
3.磺胺类药物的类似物是:
A.四氢叶酸B.二氢叶酸C.对氨基苯甲酸D.叶酸E.嘧啶
4.关于酶活性中心的叙述,哪项不正确?
A.酶与底物接触只限于酶分子上与酶活性密切有关的较小区域
B.必需基团可位于活性中心之内,也可位于活性中心之外
C.一般来说,总是多肽链的一级结构上相邻的几个氨基酸的残基相对集中,形成酶的活性中心
(6)合成酶类:催化两分子底物合成为一分子化合物,同时偶联有ATP的磷酸键断裂释能的酶类。
3.金属辅助因子的作用是多方面的,主要是以下几方面:
(1)作为酶活性中心的催化基团参与催化反应、传递电子。
(2)作为连接酶与底物的桥梁,便于酶与底物起作用
(3)稳定酶的构象
(4)中和阴离子,降低反应中的静电斥力。
7.L-精氨酸只能催化L-精氨酸的水解反应,对D-精氨酸则无作用,这是因为该酶具有_________专一性。
8.酶所催化的反应称________,酶所具有的催化能力称_________。
9.参与琥珀酸脱氢生成延胡索酸反应的辅酶是。
10.生物素是的辅酶,其作用是。
三、判断题
1. 按照国际系统分类法,柠檬酸合酶应属裂解酶类。
C.一种辅助因子只能与一种酶蛋白结合成一种全酶
D.酶蛋白决定结合酶蛋白反应的专一性
E.辅助因子直接参加反应
7.如果有一酶促反应其〔8〕=1/2Km,则v值应等于多少Vmax?
A.0.25 B.0.33 C.0.50 D.0.67 E.0.75
8.有机磷杀虫剂对胆碱酯酶的抑制作用属于:
A.可逆性抑制作用
2.4倍9倍
3.不同也不同酶的最适底物

生物化学03第三章 酶

生物化学03第三章 酶

三、 酶的命名与分类
(一)酶的命名
1.习惯命名法——推荐名称
通常以酶催化的底物、反应的性质以及酶的来源命名。 (1) 依据酶所催化的底物命名,如淀粉酶等。 (2) 依据催化反应类型命名,如脱氢酶、转氨酶等。 (3) 综合上述两项原则命名,如乳酸脱氢酶等。 2. 系统命名法——系统名称 规定各种酶名称要明确标示酶的底物与反应类型,如 果一种酶催化两个底物,应在酶系统名称中同时写入 两种底物的名称,用“:”把它们分开,如果底物之 一是水,则水可省略不写。
底物
反应总能量改变
产物 应 过 程
酶促反应活化能的改变

一、酶的活性中心(active center)
(一)什么是活性中心(活性部位)
指在整个酶分子中,只有一小部分区域 的aa残基参与对底物的结合和催化作用,这
些特异的aa残基比较集中的区域称为酶的活
性中心或称活性部位。
(二)酶活性中心的组成
结合部位:酶分子中与结合底物有关的部位。
1. 结合酶的酶蛋白与辅助因子协同作用才能发挥 催化作用。
酶蛋白
(无催化活性)
+ 辅助因子
(无催化活性)
全酶
(有催化活性)
2.全酶各部分在催化反应中的作用
(1)酶蛋白决定反应的特异性。 (2)辅助因子决定反应的种类与性质。
3.辅酶:属于有机分子类型的辅因子;辅酶又可
分为一般的辅酶和辅基两类(按其与酶蛋白结合
酶的调节部位可以与某些化合物可逆地非共价结 合,使酶发生结构的改变,进而改变酶的催化活性, 这种酶活性的调节方式称~。

别构酶:多为寡聚酶
正效应物(别构激活剂) 负效应物(别构抑制剂)
效应物(别构效应剂) (多为小分子化合物)

生物化学第三章酶化学

生物化学第三章酶化学

通式:AH2+B→BH2+A
系统命名可分为19亚类,习惯上可分为4个亚类: (1)脱氢酶:受体为NAD或NADP,不需氧。
(2)氧化酶:以分子氧为受体,产物可为水或H2O2,常需黄素辅基。
(3)过氧化物酶:以H2O2为受体,常以黄素、血红素为辅基。 (4)氧合酶(加氧酶):催化氧原子掺入有机分子,又称羟化酶。按
His 活性中心重要基团: His57 , Asp102 , Ser195
Asp
3 活性中心的研究方法 1.酶分子侧链基团修饰法 (1)非共价特异修饰法: (2)特异性共价修饰法 (3)亲和标记法
2.动力学参数测定方法 3.X-射线晶体结构分析法 4.定点诱变法
二 酶原及酶原的激活 没有催化活性的酶的前体称为酶原(zymogen)。
V max 初 速 度 v c b 1/2 V max
a
0
Km
[S]
图5-14 底物 浓度对 酶促反 应速度 的影响
酶促反应速度V与底物浓度[S]的关系
(二)Michaelis-Menten方程和米氏常数
米氏方程式推导来源于中间产物学说 解释酶促反应中底物浓度和反应速率关系的最合理的
学说是中间产物学说。该学说认为酶促反应形成酶-

通式: AB→A+B

包括醛缩酶、水化酶、脱羧酶等。共7个亚 类。
5、异构酶类 催化同分异构体之间的相互转化。

通式:A→B
其中:A、B为同分异构

包括消旋酶、异构酶、变位酶等。共6个亚 类。
6、合成酶类 催化由两种物质合成一种物质,必须与ATP 分解相偶联。也叫连接酶,如DNA连接酶。
通式:A+B+ATP→AB+ADP+Pi 或 A+B→AB+AMP+PPi
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b. 立体化学(异构)专一性
Stereochemical Specificity,stereospecificity
(1) 旋光异构专一性
▪ 酶的一个重要特性是能专一性地与手性底物结合并催化这类底物 发生反应。即当底物具有旋光异构体时,酶只能作用于其中的一 种。
例如,淀粉酶只能选择性地水解D-葡萄糖形成的1,4-糖苷键; L-氨基酸氧ห้องสมุดไป่ตู้酶只能催化L-氨基酸氧化;乳酸脱氢酶只对L-乳酸 是专一的。
▪ 有些酶对底物的要求非常严格,只作用于一个特定的 底物。这种专一性称为绝对专一性(Absolute specificity)。
例如:脲酶、麦芽糖酶、淀粉酶、碳酸酐酶及延胡索酸 水化酶(只作用于反丁烯二酸)等。
(2)相对专一性
(Relative Specificity) 有些酶的作用对象不是一种底物,而是一类化合物或 一类化学键。这种专一性称为相对专一性(Relative Specificity)。包括:
酶促反应一般在pH 5-8 水溶液中进行,反应温度范围为 20-40C。 高温或其它苛刻的物理或化学条件,将引起酶的失活
2
3.高度专一性(Specificity)
▪ 酶的专一性 Specificity又称为特异性,是指酶在催化 生化反应时对底物的选择性,即一种酶只能作用于某 一类或某一种特定的物质。亦即酶只能催化某一类或 某一种化学反应。
(一)酶的共同特性
★ 都能降低反应的活化能 ★ 能加快反应速度,但不能改变反应的平衡点,反应前后 不发生质与量的变化 ★催化效率高
活化能
◆活化能—反应需要克服的障碍能阈,分子由常态变成 活化态所需的能量。
◆活化分子—携带足够的能量,能够发生有效碰撞的分子。 ◆有效碰撞—能够使反应顺利进行的分子碰撞。
※酶作为催化剂只降低活化能,但反
应前后底物和产物能量差异不变,只 是改变反应速率,不改变反应性质、 反应方向和反应平衡点。
E+S
ES E + P
(二)酶作为生物催化剂的特性
1.酶易失活 ▪ 凡能使蛋白质变性的因素如强酸、强碱高温等条件都能
使酶破坏而完全失去活性。所以酶作用一般都要求比较 温和的条件如常温、常压和接近中性的酸碱度。
第一节 酶的概述
▪ 酶的发现和提出:1897年,Buchner兄弟用不含细胞的酵母 汁成功实现了发酵。提出了发酵与活细胞无关,而与细胞液 中的酶有关。
▪ 1903年,Henri提出了酶与底物作用的中间复合物学说。 ▪ 1913年,Michaelis和Menten提出了酶促动力学原理—米氏
学说。 ▪ 1925年,Briggs和Handane对米氏方程做了修正,提出了稳
(2)几何异构专一性
geometrical specificity
▪ 有些酶只能选择性催化某种几何异构体底物的反应,而 对另一种构型则无催化作用。
如延胡索酸水合酶只能催化延胡索酸即反-丁烯二酸水合生成苹 果酸,对马来酸(顺-丁烯二酸)则不起作用;再如:丁二酸 (琥珀酸)脱氢酶
酶的立体化学专一性的实践意义
从而发现核酶 (ribozyme),打破了以往酶是蛋白质的传统观念。 1986年Schultz和Lerner等人研制成功抗体酶
一、酶的概念
▪酶是活细胞产生的一类具有催化功能的蛋白质,亦称为生物催
化剂Biocatalysts 。
▪绝大多数的酶都是蛋白质(除Ribozyme核酸酶)。 ▪酶催化的生物化学反应,称为酶促反应Enzymatic reaction。
第三章 酶
要求掌握: 一、酶的催化作用特点。 二、掌握酶的化学本质及其组成。 三、掌握酶的命名和分类。 四、掌握酶的活力测定和分离纯化。 五、熟识酶工程。 六、反应速率及其测定。 七、各级反应的特征。 八、底物浓度对酶反应速率的影响
(1)熟识米氏方程式的推导。 (2)米氏常数的意义。 九、酶的抑制作用。 (1)抑制作用的类型。 (2)抑制作用的鉴别。
▪ 例如:蛋白酶催化蛋白质的水解;淀粉酶催化淀粉 的水解;核酸酶催化核酸的水解。
酶的底物专一性即特异性(substrate specificity)指 酶对它所作用的底物有严格的选择性。一种酶只 能作用于某一种或某一类结构性质相似的物质。 类型:
结构专一性和立体化学专一性。
a. 结构专一性 (1)绝对专一性(Absolute specificity)
态学说。
▪ 1926年,Sumner从刀豆种子中分离、纯化得到了脲酶结晶,首 次证明酶是具有催化活性的蛋白质。
• 1930年 Northrop 分离得到胃蛋白酶、胰蛋白酶和胰凝乳蛋白 酶结晶并证实其均为蛋白质,酶的蛋白质本质确立。
1969年,Merrifield等人工合成了具有酶活性的胰RNase。 1982年,Cech和Altman对四膜虫的研究中发现RNA具有催化作用,
▪ 族(group)专一性——又叫—基团专一性(对键两端的 基团要求的程度不同,只对其中一个基团要求严格)。 如-D-葡萄糖苷酶,不但要求 -糖苷键,还要求 -糖 苷键的一断必须是葡萄糖残基,但对于糖苷键的另一 端R基团则没有严格要求。
键(Bond)专一性——有些酶只要求作用于底物一定的 键,而对键两端的基团无严格的要求。如酯酶催化酯 的水解,对于酯两端的基团没有严格的要求。
十、温度、pH、激活剂对酶反应的影响。 十一、酶的活性部位。 1、酶活性部位的定义、特点。 2、酶活性部位的研究方法。 十二、酶催化反应的独特性质。 十三、影响酶催化效率的有关因素。 十四、别构酶的性质、酶原的激活以及同工酶的理解。 十五、掌握酶的定义及分类。掌握核酶、抗体酶、单体酶、寡聚酶 以及多酶复合体的概念。 十六、维生素的概念与分类。 十七、掌握B族维生素与辅酶的关系。
4.酶活力可调节和控制
▪ (1)酶浓度的调节 ▪ 诱导或抑制酶的合成 ▪ 调节酶的降解 ▪ (2)激素调节酶的活性 ▪ (3)反馈抑制调节酶的活性 ▪ (4)抑制剂和激活剂的调节 ▪ (5)其他调节方式。 ▪ 共价修饰调节、别构调节、酶原激活、同功酶等。
二、
三、
单体酶-monomeric enzyme:一般由一条肽链组成,如溶菌酶、胰 蛋白酶、木瓜蛋白酶等。但有的单体酶有多条肽链组成,如胰凝乳 蛋白酶由3条肽链,链间由二硫键相连构成一个共价整体。 寡聚酶-oligomeric enzyme:由2个或2个以上亚基组成,亚基间可 以相同也可不同。亚基间以次级键缔合。如3-磷酸甘油醛脱氢酶、 乳酸脱氢酶、丙酮酸激酶等。
相关文档
最新文档