四边形中三角形的中位线的应用
平行四边形的判定——三角形的中位线教学设计

19.1.2 平行四边形的判定——三角形的中位线教学设计丹江口市土台中学刘桂林一、教学目标:1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.二、重点、难点1.重点:掌握和运用三角形中位线的性质.2.难点:三角形中位线性质的证明(辅助线的添加方法).3.难点的突破方法:(1)本教材三角形中位线的内容是由一道例题从而引出其概念和性质的,新教材与老教材在这个知识的讲解顺序安排上是不同的,它这种安排是要降低难度,但由于学生在前面的学习中,添加辅助线的练习很少,因此无论讲解顺序怎么安排,证明三角形中位线的性质(例1)时,题中辅助线的添加都是一大难点,因此教师一定要重点分析辅助线的作法的思考过程.让学生理解:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法.(2)强调三角形的中位线与中线的区别:中位线:中点与中点的连线;中线:顶点与对边中点的连线.1 / 5(3)要把三角形中位线性质的特点、条件、结论及作用交代清楚:特点:在同一个题设下,有两个结论.一个结论表明位置关系,另一个结论表明数量关系;条件(题设):连接两边中点得到中位线;结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系(在应用时,可根据需要选用其中的结论);作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.(4)可通过题组练习,让学生掌握其性质.三、例题的意图分析例1是教材P98的例4,这是三角形中位线性质的证明题,教材采用的是先证明后引出概念与性质的方法,它一是要练习巩固平行四边形的性质与判定,二是为了降低难度,因此教师们在教学中要把握好度.建议讲完例1,引出三角形中位线的概念和性质后,马上做一组练习,以巩固三角形中位线的性质,然后再讲例2.例2是一道补充题,选自老教材的一个例题,它是三角形中位线性质与平行四边形的判定的混合应用题,题型挺好,添加辅助线的方法也很巧,结论以后也会经常用到,可根据学生情况适当的选讲例2.教学中,要把辅助线的添加方法讲清楚,可以借助与多媒体或教具.四、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判2 / 53 / 5定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)3.创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?五、例习题分析例1(教材P98例4) 如图,点D 、E 、分别为△ABC 边AB 、AC 的中点,求证:DE ∥BC 且DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . (也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE 到F ,使EF=DE ,连接CF 、CD 和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 定义:连接三角形两边中点的线段叫做三角形的中位线.4 / 5【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由) 例2(补充)已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,∵ AH=HD ,CG=GD ,∴ HG ∥AC ,HG=21AC (三角形中位线性质).同理EF ∥AC ,EF=21AC . ∴ HG ∥EF ,且HG=EF .∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.六、课堂练习1.(填空)如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是m,理由是.2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.七、课后练习1.(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.2.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5 / 5。
三角形中位线性质的活用

三角形中位线性质的活用三角形的中位线平行于三角形的第三边,且等于第三边的一半.利用三角形的中位线可以进行几何求值、证明、作图,且能解决生活实际问题.一、证明例1 如图1,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是 .分析:由三角形的中位线位置关系知GH ∥AD 、 GF ∥BC ,数量关系知 GH =12AD 、GF =12BC .要使四边形EFGH 是菱形, 需证平行四边形EFGH 的GH =GF ,所以四边形ABCD 还应满足的一个条件是AD =BC .证明: ∵ 在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点, ∴ GH ∥AD , GF ∥BC , EF ∥AD ,HE ∥BC , ∴ 四边形EFGH 是平行四边形. 又 GH =12AD 、GF =12BC , ∴ 当AD =BC 时, 平行四边形EFGH 的邻边GH =GF . 即 平行四边形EFGH 是菱形. 二、实际问题例2 如图2,ABCD 是校园内一块四边形空地,学校在征集对这块空地种花草的设计中选定了如下方案:把这块四边形空地分成九块,种植三种不同品种的花草,其中E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,P 、Q 、R 、K 分别是EF 、FG 、GH 、HE 的中点,现要在四边形PQRK 中种上红色的花,在△PFQ 、△QGR 、△RHK 、△KEP 中种上黄色的花,在△HAE 、△EBF 、△FCG 、△GDH 中种上紫色的花,已知红黄紫三种花的单价分别是8元/㎡、10元/㎡、12元/㎡,而种红花已用去120元,请用学过的数学知识计算种满四边形ABCD 这块空地的花需要多少元?HGFE DCBA 图1KRQPHGFDC BA图2分析:利用三角形的中位线性质推导出“中点四边形”与原四边形的面积关系,得出结论. 解:由三角形中位线性质,可得顺次连接四边形中点所得四边形的面积是原四边形面积的一半,即四边形PQRK 的面积=12四边形EFGH 的面积=14四边形ABCD 的面积, 又 四边形PQRK 的面积=1208=15㎡,∴ 种黄色花需要10×15=150(元), 种紫色花需要12×30=360(元),∴ 种满这块空地共需要120+150+360=630(元).三角形中位线的应用“三角形的中位线平行于第三边并且等于它的一半”,这就说明三角形的中位线与第三边既有位置关系,又有数量关系,所以,中位线的应用相当广泛。
四边形拓展—中点应用

四边形拓展练习——中点应用中点,特别是线段的中点是几何图形中的一个特殊点,直角三角形斜边中线、等腰三角形三线合一、中心对称图形、三角形中位线和梯形中位线等都有其身影.那么,如何恰当地利用中点和处理与中点有关的问题呢?关键在于:充分挖掘中点所包含的信息,合理联想构造含中点的图形来解决问题.一、利用中点构造三角形中线例1.如图,在ABC ∆中,AB AC =,90BAC ∠=︒,BD 是中线,AE BD ⊥交BC 于点E .求证:2BE CE =.例2.如图,在ABC ∆中,AB AC =,90BAC ∠=︒,BD 是中线,AM BD ⊥于M ,交BC 于点E .求CDE S ∆.【注】如果是等腰三角形的问题,则腰上的中点即为构造全等三角形创造了条件.三角形中线的性质是分三角形为两个面积相等的小三角形.在涉及求面积时,往往是常用的结论之一.二、利用中点构造中心对称三角形例3.如图,在梯形ABCD 中,90D ∠=︒,M 为AB 中点. 若 6.5CM =,17BC CD DA ++=,求梯形ABCD 的面积.BB例4.如图,在菱形ABCD 中,120ABC ∠=︒,F 是DC 的中点,AF 的延长线交BC 的延长线于点E .求直线BF 与DE 所夹的锐角的度数.【注】:在四边形问题中,若已知条件中有一边的中点,往往可利用中点构造中心对称的全等的三角形,从而把分散的条件相对集中,为解题创造有利条件.三、利用中点构造三角形中位线例5.如图,在ABC ∆中,7AC =,4BC =,D 为AB 的中点,E 为AC 上一点,且1902AED C ∠=︒+∠.求CE 的长.例6.如图,已知AD 为ABC ∆的角平分线,AB <AC ,在AC 上截取CE AB =,M 、N 分别为边BC 、AE 的中点.求证://MN AD .【注】:在四边形问题中,当已知条件中出现四边形对边的两个中点时,常见的方法是:另外作对角线的中点,再利用三角形的中位线来解题.EA四、利用中点构造直角三角形斜边中线和三角形中位线例7.如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为D ,E G 、分别为AD AC 、的中点,DF BE ⊥,垂足为F .求证:FG DG =.例8.如图,在ABC ∆内取一点P ,使PBA PCA ∠=∠,作PD AB ⊥于点D ,PE AC ⊥于点E .求证:DE 的垂直平分线必经过BC 的中点M .【注】:当题目的条件中涉及到三角形一边的中点和直角三角形时,常用的方法是:另取一边(一般取斜边)的中点,为沟通直角三角形斜边中线定理和三角形中位线定理架起一座桥梁.五、利用中点构造梯形中位线例9.在梯形ABCD 中,90ABC DCB ∠=∠=︒,AD 上有一点E 使得BE EC ⊥,且45CED ∠=︒.求证:AB CD BC +=.例10.如图,M N 、分别是四边形ABCD 边AB CD 、的中点,BN 与MC 交于点P ,AN 与MD 交于点Q .求证:BCP ADQ MQNP S S S ∆∆=+四边形.六、利用多个中点构造三角形和四边形例11.如图,在任意五边形ABCDE 中,M N P Q 、、、分别为AB CD BC DE 、、、的中点,K L 、分别为MN PQ 、的中点.求证://KL AE 且1=4KL AE .例12.在六边形ABCDEF 中,//AB DE ,//BC EF ,//CD FA ,AB DE BC EF +=+,1111A B D E 、、、分别是边AB BC DE EF 、、、的中点,且1111A D B E =.求证:CDE AFE ∠=∠.ABE1ADABCD配套练习:1.如图,在菱形ABCD 中,100A ∠=︒,M N 、分别是边AB BC 、的中点,MP CD ⊥于点P ,求NPC ∠的度数.2.如图,在ABC ∆中,D 为边BC 的中点,点E F 、分别在边AC AB 、上,且ABE ACF ∠=∠,BE 与CF 交于点O ,作OP AC ⊥,OQ AB ⊥,P Q 、为垂足.求证:DP DQ =.3.如图,在ABC ∆中,2A B ACB ∠+∠=∠,8BC =,D 为AB 的中点,且CD =,求AC 的长.BBD BAFE MABCDM4.如图,在ABC ∆中,2B C ∠=∠,AD BC ⊥于D ,M 为BC 的中点,求证:12DM AB =5.如图,在ABC ∆中,2ABC C ∠=∠,AD 平分BAC ∠,过BC 的中点M 作AD 的垂线,交AD 的延长线于F ,交AB 的延长线于E ,求证:12BE BD =.6.如图,已知五边形ABCDE 中,90,ABC AED BAC EAD ∠=∠=︒∠=∠。
《平行四边形性质与判定的应用:中位线定理》

三角形中位线定理的探索及其判定一、说教材三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
(地位与关系)三角形中位线定理的探索及其判定,属于平行四边形性质定理与判定定理的应用,因而,在教材中这部分知识被安排在平行四边形性质与判定之后。
但从研究方法的角度而言,三角形中位线定理的研究较平行四边形的性质与判定有很大的不同。
后者,我们主要是利用三角形及其全等来研究平行四边形,而前者,则主要是利用我们学习的平行四边形去研究三角形中的有关问题。
(作用)三角形中位线定理涉及到了线段的位置关系,也涉及到了数量关系,特别是倍长关系,由于这些特殊性,使得其应用极其广泛。
同时,中位线定理证明过程中所涉及到的思考问题的方法对于相关类型的题目的解答具有启发意义。
二、教材的设计思想教材中关于三角形中位线定理的叙述大致思路如下:首先,给出三角形中位线的定义,辨别出中位线与中线之间的区别;其次,引导学生,提出猜想,讨论中位线与底边的位置关系与数量关系;最后,引导学生,证明猜想,得出中位线定理。
三、教学目的以及重难点教学目的:掌握三角形中位线定理及其应用。
难点:理解中位线定理的证明过程四、教学过程①回顾知识,引出问题师:前几节课,我们学习了平行四边形的性质定理与判定定理,大家还记得当时我们的结论是如何得出来的,比如说平行四边形的性质:对角线相互平分,这是如何得到的?生:通过证三角形全等得到的。
师:还比如说:我们知道两组对边相互平行的四边形是平行四边形,这是根据平行四边形的定义得到的判定定理。
而还有一些判定定理:如对角线相互平分的四边形是平行四边形,这个判定定理是如何得出的,大家还记得吗?生:记得,通过证三角形全等,得到内错角相等,然后得到对应边相互平行,得出是平行四边形。
师:那么,我们就会发现,关于平行四边形的性质定理、判定定理的得出,都是利用三角形的性质,特别是三角形全等。
也就是说,我们是利用三角形及其性质来研究平行四边形的性质。
三角形中位线定理的应用

三角形中位线定理的应用三角形中位线定理在初中教材体系中是一个很重要的定理,学好这部分内容将有助于梯形中位线定理乃至整个平面几何知识的学习.它具有两个方面的特性:(1)平行于第三边,这是位置关系;(2)等于第三边的一半,这是数量关系.就第一个特性而言,中位线定理与平行线等分线段定理中的推论(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系.我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用.一、证明问题1、证明角相等关系例1、如图、四边ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,EF ⊥MN 交AB 于E ,交CD 于F ,求证:∠AEF =∠DFE分析:欲证:∠AEF =∠DFE .由MN ⊥EF 想到延长BA ,CD 与MN 的延长线交于P 、Q 只需证明∠EPN =∠Q ,如何利用中点的条件? 想到三角形的中位线,连线BD ,取BD 的中点G ,则有12GM AB∥,12GN CD ∥,由于AB =CD ,进而有GM =GN ,∠GMN =∠GNM 然后再转化∠EPN =∠Q ,从而证出结论.证明:延长BA ,CD 分别与NM 的延长线交于P 、Q 连结BD ,取BD 的中点G ,连结GM 、GN .∵G 、M 分别为△ABD 的边BD 、AD 的中点∴12GM AB ∥.同理可证:12GN AB∥,又∵AB =CD ,∴GM =GN ,∴∠GMN =∠GNM ,∵GM //AB ,GN =CD ,∴∠GMN =∠EPN ,∠GNM =∠Q ,∴∠EPN =∠Q ,又 EF ⊥MN ,∴∠AEF =∠DFE (等角的余角相等)说明:添辅助线是证明几何题的难点.若要添多条辅助线,更为困难,掌握一般添辅助线的规律是必要的,更为重要的是分析中自由添加辅助线,添辅助线是分析问题过程的一个步骤,这是几何的证明的较高层次,要在实践中仔细体会,不断摸索,不断总结.2、证明线段的倍分以及相等关系例2.如图,已知平行四边形ABCD 中,BD 为对角线,点E 、F 分别是AB 、CD 的中点,连线EF ,交BD 于M 点.求证:(1)BM =14BD (2)ME =MF 分析:欲证问题(1)由E 、F 分别为AB 、BC 中点想到连结AC ,由平行线等分线段定理可证得BM =MO .又因为平行四边形的对角线互相平分,可得BO =OD ,即BM =41BD .欲证问题(2),由问题(1)中的辅助线,即连结AC ,由三角形中位线定理可得EM =12AO ,MF =12OC ,又由平行四边形对角线互相平分即可得到问题(2)的结论.证明:(1)连结AC ,交BD 于O 点,∵E 、F 分别为AB 、BC 中点,∴EF ∥AC ,∴BM =MO =12BO (平行线等分线段定理) 又∵四边形ABCD 是平行四边形∴BO =OD =12BD ,AO =OC =12AC , ∴BM =1124BO BD ,即BM =14BD(2)∵M 是BO 的中点,E 、F 分别是AB 、BC 中的中点.∴12ME AD =,12MF OC =,又∵AO =OC ,∴ME =MF 小结:问题(1)看起来似乎与三角形中位线定理无关,其实这是从侧面的运用了三角形中位线的位置关系,即三角形的中位线平行于底边,而问题(2)直接运用了三角形中位线的数量关系.3、证明线段平行关系例3.如图,自△ABC 的顶点A ,向∠B 和∠C 的平分线作垂线,重足分别为D 、E .求证:DE ∥BC 分析:欲证ED //BC 我们可想到有关平行的判定,但要找到有关角的关系很难,这时只要通过延长AD 、AE ,交BC 与CB 的延长线于G 与H ,通过证明△ABD 与△GBD 全等易证D 是AG 中点,同理E 为AH 的中点,故,ED 是△AEG 的中位线,当然有DE ∥BC .证明:延长AD 、AE 交BC 、CB 的延长线于G 、H ,∵BD 平分∠ABC ,∴∠1=∠2,又∵BD ⊥AD ,∴∠ADB =∠BDG =900. 在△ABD 与△GBD 中12BD BDBDG BDA⎧⎪⎨⎪⎩=== ∠∠∠∠,∴△ABD ≌△GBD (A S A ) ∴AD =DG ,同理可证,AE =GE ,∴D ,E 分别为AG ,AH 的中点, ∴ED ∥BC小结:由此题我们可以知道证明直线或线段平行除了平行判定等,还可以用中位线定理来证明直线或线段平行.二、比较大小1、比较线段大小 例4.如图,M 、N 是四边形ABCD 的边 BC 、AD 的中点,且AB 与CD 不平行.求证:MN <12(AB +CD ). 分析:欲证MN <12(AB +CD ),我们从表面上看这个问题比较复杂,但由M 、N 分别为BC 、AD 中点我们可以联想到如何构造三角形中位线来证明问题,通过连结BD ,并取BD 中点P ,连结NP 、MP 这时分别为△DAB 、△DCB 的中位线,这时三条线段NP 、MP 、MN 都在一个三角形里,问题就迎刃而解了.证明:连结BD 并取BD 中点P ,连结NP ,MP . ∵N 为AD 中点,P 为BD 中点.∴NP 为△DAB 的中位线,∴NP =12AB ,同理可得MP =12CD .∵AB 与CD 不平行,∴P 点不在MN 上.在△PMN 中,由于两边之和大于第三边,∴MN <PM +PN =12(AB +CD )小结:此类题型通过转化,把有关的线段或与之有联系的线段集中在一个三角形中,再应用三角形的有关知识,如:三角形中位线及两边之和大于第三边,两边之差小于第三边等知识,即可得出证明.2、比较角的大小例5、如图:AD 是△ABC 的中线,如果AB >AC ,那么∠BAD <∠CAD . 分析:因为D 为BC 中点联想到,过点D 作中位线DE ,因为DE ∥AB 即△ABC 得到∠1=∠3,由AB >AC , 有12AB >12AC ,所以就有∠3<∠2,即∠BAD <∠CAD证明:过点D 作DE ∥AB 交AC 于E ,∴DE ∥AB 且 DE =12AB ,E 为AC 中点.∴∠1=∠3,∵AB >AC ,∴12AB >12AC ,即在△AED 中,DE >AE ,∴∠3<∠2,∴∠1<∠2,即∠BAD <∠CAD小结:本题证角不相等,因为要证的两个角不在同一个三角形中,如果这两个角在同一个三角形中能应用:在同一个三角形中,大边对大角原理这时就考虑到如何将这两个角放在一个三角形中,通过观察只要过D 作DE ∥AB 就可解决求证问题.三、求值问题例6. 如图,正方形ABCD 两对角线相交于点E ,∠CAB 的平分线交BE 于G ,交BC 于F ,若GE =24 求FC 的长.分析:求FC 的长,因为E 为对角线交点,就是AC 中点所以作辅助线PE ∥BC 就有PE ∥FC 且有PE =21FC 所以只要能求出PE 的长即可,而PE 的长可由∠3=∠4求出,因为∠3为△APE 的外角所以有∠3=∠2+∠5同理有∠4=∠1+∠7因为AF 为∠BAC 的平分线所以∠1=∠2又因为所以∠5=∠6,而∠6=∠7所以有∠3=∠4即PE =GE =12FC ,这样问题就解决了. 解:过点E ,作EP ∥BC ,交AF 于点P ,则P 为AF 中点,∵∠3=∠2+∠5=∠2+∠6,∠4=∠1+∠7,又∵AF 平分∠BAC ,∴∠1=∠2,又∵∠6=∠7,∴∠3=∠4,∴EP =EG ,∵PE 是△AFC 的中位线,∴PE =12FC =EG ,即FC =2EG =2PE =2×24=48小结:求值问题,主要是如何添加辅助线,将比较难的问题转为容易的问题.总之,三角形中位线定理及其应用,在初中数学中占有很重要的地位,如何正确添加辅助线构造三角形中位线对每个学生来说是一个重点也是一个难点.要求学生要善于觉察图形中的有关定理的基本图形,涉及到中点问题时要及时联想到有关定理.一条或一组合理地利用了题目条件的辅助线常见有一箭双雕甚至一箭多雕的效益,准确而理想的图形能有效地帮助我们迅速地捕捉到题意预定的目标.。
冀教版八年级下册数学第22章 四边形 三角形的中位线

知1-练
2
感悟新知
知识点 2 三角形中位线在四边形中的应用
知2-讲
例如2图,在▱ABCD中,E,F分别是AD,BC的中点, 连接AF,DF分别交BE,CE于点M,N,连接MN.
求证:MNBC. =∥1 2
感悟新知
知2-讲
导引:欲证MNB=∥C1,只需证明MN 是△EBC的中位线2即可.而要证得M,N分别为
∴MN是△EBC的中位线.∴MNBC.
=∥ 1 2
知2-讲
感悟新知
归纳
知2-讲
(1)证明两直线平行的常用方法: ①利用同平行(垂直)于第三条直线;②利用同位角、 内错角相等,同旁内角互补;③利用平行四边形 的性质;④利用三角形的中位线定理.
感悟新知
归纳
知2-讲
(2)证明一条线段是另一条线段的2倍的常用方法: ①利用含30°角的直角三角形;②利用平行四边 形的对角线;③利用三角形的中位线定理.
1 2
感悟新知
3. 如图,△CDE为△ABC沿AC方向平移得到的, 延长AB,ED相交于点F.请指出图中有哪些相等 的线段,有哪些平行的线段.
知1-练
解:相等的线段有AB=BF=CD, BC=DF=DE,AC=CE. 平行的线段有AF∥CD,AB∥CD, BF∥CD,BC∥DF,BC∥DE,BC∥EF.
∴DE=DF=BC.
11 22
感悟新知
归纳
知1-讲
三角形的中位线平行于第三边,并且等于第三边 的一半.
感悟新知
知1-讲
例已1知:如图,在四边形ABCD中,AD=BC,P为对角线 BD的中点,M为DC的中点,N为AB的中点.
求证:△PMN是等腰三角形.
感悟新知
证明:在△ABD中, ∵N,P分别为AB,BD的中点,
平行四边形判定的应用(三角形中位线定理)课件

利用三角形中位线定理可以证明四边形的对角线互相平分。
详细描述
根据三角形中位线定理,如果一个四边形的对角线互相平分,则该四边形的两组对边分别平行,从而判定该四边 形是平行四边形。这一结论可以通过构造两个三角形并应用中位线定理来证明。
利用中位线定理证明四边形的对角线互相垂直
总结词
利用三角形中位线定理可以证明四边形的对角线互相垂直。
通过多做练习题,加深对三角形中位线定理的理解,提高运用能力,以便更好地 解决实际问题。
对未来学习的展望
三角形中位线定理是几何学中的重要定理之一,对于后续学 习其他几何定理和解决几何问题具有重要意义。
在未来的学习中,应继续深入研究和探索三角形中位线定理 的应用,提高自己的几何素养和解题能力。
THANKS.
总结与思考
05
三角形中位线定理与平行四边形判定的关系
三角形中位线定理是平行四边形判定 的一种重要应用,通过三角形中位线 定理可以判断一个四边形是否为平行 四边形。
三角形中位线定理的应用,使得平行 四边形的判定更加直观和易于理解, 有助于解决几何问题。
如何更好地应用三角形中位线定理解决实际问题
在解决实际问题时,应充分理解三角形中位线定理的含义和适用条件,掌握其应 用技巧。
第三步
根据已知条件和所证明的平行四 边形性质,我们可以进一步求解 题目中的问题。具体过程如下
解题过程与结果
由于四边形BEDF是平行四边形 ,根据平行四边形的性质,我 们有BE = DF。
由于E和F分别是AC和AB的中 点,根据中位线定理,我们有 BE = 0.5BC和DF = 0.5BC。
因此,我们得出结论:BE = DF = 0.5BC。
考察知识点
数学中位线知识点总结

数学中位线知识点总结一、中位线的概念中位线(median line)是指一个图形中的中轴线或对称轴线。
在数学中,中位线通常指的是统计学中的中位数,它是一组数据中的中间值,即将数据按大小顺序排列后,位于中间位置的数值。
中位线也可以指的是图形中的对称轴线,即将图形分成两个对称的部分的线。
二、中位线在统计学中的应用1. 中位数的计算在一组数据中,中位数是指把数据按大小顺序排列后,位于中间位置的数值。
如果数据中的个数是奇数,则中位数就是位于中间位置的数值;如果数据中的个数是偶数,则中位数是位于中间两个数值的平均值。
计算中位数是统计学中的常见操作,可用于描述数据的集中趋势。
2. 中位线的代表性与平均数不同,中位数不受极端值的影响,更能反映数据的真实情况。
当数据中存在极端值或异常值时,常常使用中位数来作为代表性指标,以避免这些极端值对总体趋势的影响。
3. 中位数的应用在实际问题中,中位数也常常用于分析人口收入、房价水平、企业利润等各种经济和社会数据,以反映总体的趋势和变化,具有很强的实用价值。
三、中位线的数学性质1. 数据的分布在一组数据中,中位数是数据分布的一个重要指标,它可以直观地反映数据的集中趋势。
当数据中的数值集中在中位数附近时,说明数据的分布比较均匀;当数据中的数值分散在中位数附近时,说明数据的分布比较不均匀。
2. 质数的中位数质数是指除了1和自身外,没有其他正因数的自然数。
在一组质数中,中位数通常是这组数据的中间值,通过求解中位数,可以更好地理解这组质数的分布规律和特点。
3. 数轴上的中位线在数轴上,中位线是指将数轴分成两段长度相等的线段,这两段线段的中点就是中位线。
在数轴上,中位线也被称为中点线,它是数轴的中心线,对称于原点。
四、中位线的几何性质1. 几何图形中的中位线在三角形中,中位线是指连接三角形的一个顶点与对边的中点的线段。
在四边形中,中位线是指连接四边形对角线的交点的一条线段。
在多边形中,中位线是指连接多边形一个顶点与对边的中点的线段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形中三角形的中位线的应用
例1. 已知点E 、F 、G 、H 分别是四边形ABCD 四边的中点,试问四边形EFGH 是平行四边形吗?
分析:这是个引子问题,也是个基础问题。
只要连结四边形ABCD 的一条对角线,再利用三角形中位线性质和平行四边形的判定定理“一组对边平行且相等的四边形是平行四边形”可解决问题。
它也有许多引伸。
如:当四边形ABCD 满足什么样条件时,连结它四边中点所得到的四边形是菱形?答案是对角线相等。
想想为什么?
例3. 已知:如图,四边形ABCD ,点E 、F 分别是AB 、CD 的中点,试说明AD BC EF +>2。
分析:本题看条件很简单,如何得结论似乎无处入手。
但只要想到三角形中位线,知道构造三角形,这问题也不难。
解:连结BD ,取BD 中点为H ,连结EH 、FH 。
因为点E 、F 分别是AB 、CD 的中点
所以EH AD FH BC =
=1212,
又EH FH EF +>,所以1212AD BC EF +> 即AD BC EF +>2
例4. 已知:如图,四边形ABCD ,AC 、BD 交于点O ,且AC =BD ,点E 、F 分别是AB 、CD 中点,连结EF 交AC 、BD 于G 、H ,试说明OG =OH 。
分析:本题看条件比例3多了一个条件,但解题仍比较困难,这时经验与想象力就很重要了。
解:取BC 中点为M ,连结ME 、MF
因为点E 、F 分别是AB 、CD 的中点
所以ME AC MF BD ==1212,
ME ∥AC ,MF ∥BD
又AC =BD ,所以ME =MF
则∠MEF =∠MFE
又ME ∥AC ,MF ∥BD
所以∠1=∠MEF ,∠2=∠MFE
所以∠1=∠2,OG =OH。