关于影响酶活力的因素的曲线分析课件

合集下载

影响酶活力的因素的曲线分析

影响酶活力的因素的曲线分析
02
对于温度和pH的影响,可以采用更精细的温度和pH梯度进行实验, 以获得更准确的酶活力变化曲线。
03
在研究抑制剂和激活剂的影响时,可以尝试更多的抑制剂和激活剂种 类,以更全面地了解它们对酶活力的影响。
04
在实验结束后,应对实验数据进行详细的分析和解释,确保结论的准 确性和可靠性。
对未来研究的展望
不同酶的最适pH值不同,大多 数酶的最适pH值在6.5-8.0之间。
pH对酶活性的影响主要与酶的 解离状态有关。过酸或过碱的环 境会使酶的解离状态发生变化, 从而影响其活性。
抑制剂对酶活力的影响
抑制剂对酶活力的影响也呈曲线变化。抑制剂可以降低酶的活性,且不同抑制剂对酶活性的影响程度 不同。
抑制剂可以分为不可逆抑制剂和可逆抑制剂两类。不可逆抑制剂与酶结合后,会导致酶永久失活;可逆 抑制剂与酶结合后,可以通过其他物质的作用使酶恢复活性。
温度对酶活性的影响主要与酶的稳定 性有关。高温会使酶的结构变得不稳 定,导致酶失活。
不同酶的最适温度不同,有些酶的最 适温度在30-40℃,而有些酶的最适 温度可能高达70-80℃。
pH对酶活力的影响
01
02
03
pH对酶活力的影响也呈曲线变化。 在一定pH范围内,酶的活性随着 pH的升高而增强,但超过一定范 围后,酶的活性会迅速降低。
pH对酶活力的曲线分析
总结词
pH对酶活力具有显著影响,随着pH的改变,酶活力呈现先升高后降低的趋势。
详细描述
酶的活性受溶液的酸碱度影响。在一定的pH范围内,酶的活性随着pH的升高而增强。这是因为合适的pH能够维 持酶的活性中心结构和功能,使酶与底物更好地结合。但当pH过高或过低时,酶的结构可能发生变化,导致酶 失活。

酶活性测定的主要影响因素及控制.ppt

酶活性测定的主要影响因素及控制.ppt
将上述实测ε值代入K值计算公式得到校准K值外。
K V 10 6
v L
3.4 K的校准(酶校准物)
使用公认的酶校准物对K值进行校准,它是 国际上目前酶测定标准化新途径。
使用酶校准物的优点, 除具有实测ε值换算出的校准K值所具有的 一切优点外, 还可促进方法间的一致性和增加常规酶方 法的可靠性,可使不同实验室之间的测定 结果相对统一。
只是在延滞期去除部分干扰物。 这种模式可采用单一试剂剂型。
2.3 底物启动模式与样品启动模式
双试剂与单试剂酶促反应时间进程曲线
2.3 需要注意
某些双试剂剂型是基于试剂稳定性考虑, 并没有将底物单独作为第二试剂,也起不 到消除内源性干扰的作用。
2.4 正向反应与逆向反应
一般根据测定底物或产物的难易程度来决定。 除原则上选择对底物亲和力大,酶转换率高的
检测系统
光度计的准确性、重复性、线性范围和杂散光等 均会造成结果的偏差。
3 仪器影响因素的控制
在日常工作中,除常规做好仪器和设备的 正确使用和维护外,
重点应注意仪器的校准问题。
3.1 酶活性浓度的计算公式
U / L A K min
K V 10 6
vL
摩尔吸光系数 和系数 K 均为常数, 和 K受仪器诸多因素的影响,
反应时底物浓度高,反应时间短; 这也是淀粉酶的碘淀粉比色法逐渐被色素源底物
所取代的原因之一。 除部分测定NADH减少可以看成测底物的消耗量外,
已很少采用测定底物消耗量的项目。
2.2 检测底物或检测产物的选择
底物与产物
举例
ALT测定(赖氏法-定时法) L-丙氨酸 + α-酮戊二酸 A LT α-丙酮酸 + L-谷氨酸

影响酶活性的因素28页PPT

影响酶活性的因素28页PPT

实验报告的书写
1.实验目的 2.实验原理 3.实验步骤 4.实验结果 5.实验分析
影响酶作用的因素
一、实验目的
通过对唾液淀粉酶活性的观察,验证 温度、pH、激活剂、抑制剂等对酶活性 的影响。
二、实验原理
唾液淀粉酶存在于唾液中,其作用 的底物是淀粉。
淀粉酶
淀粉
I2:蓝色
淀粉酶
糊精(大分子,小分子)
2. 器材
恒温水浴锅 电炉
比色板
四、实验操作
1.唾液淀粉酶的制备
取干净的纸杯,盛上蒸馏水。 用蒸馏水漱口。 口含约20ml蒸馏水,2-3分钟后,吐入一干净试 管中,棉花过滤。
管别
对照组 实验组
淀粉管
3ml 3ml
稀释唾液
——
蒸馏水
2ml
同时放于 2分钟后 30-40oC 水浴中
2ml
——
2分钟后做碘液检查:在比色板上滴上碘液,于
二管各取一滴加入,看是否开始水解,以后每隔
2分钟再取一滴加以检查,约6-10分钟后实验管
水解过程由蓝紫
红棕
无色,此
时水解完成。但对照管仍蓝色。
观察两管淀粉在水解后的乳样光泽
分别取两管溶液5滴,加入班氏试剂0.5ml,加热 煮沸,观察有何现象发生。
2.pH对唾液淀粉酶活性的影响
一、实验目的 了解pH对酶活性的影响及最适pH的定义。
3. 温度对唾液淀粉酶活力 的影响
一、实验目的 了解温度对酶活性的影响并了解最适温度的定义。
二、原理 对温度敏感是酶的一个重要特性,酶作为生物催化剂,和
一般催化剂一样呈现出温度效应,提高温度可以提高酶促反应 速度,但另一方面又会加速酶蛋白的变性速度,所以在较低的 温度范围内,酶反应速度随温度升高而增大,但是超过一定温 度后,反应速度反而下降。酶反应速度达到最大时的温度称为 酶的最适温度。酶的最适温度不是一个常数,它与作用时间的 长短有关系。

酶促反应相关曲线分析ppt课件

酶促反应相关曲线分析ppt课件
度与酶促反应速率的关系。据图分析正确的是 B
A.图一曲线a中,A点后,限制生成物量不再增加的因素是酶的 数量不足
B.图二曲线,酶减少后,图示反应速率可用曲线f表示 C.分别在图二中取B、C点的速率值,对应图一中的曲线c和d D.减小pH,重复该实验,图二曲线b应变为曲线f;增大pH,应
变为曲线e
11
速率最大值应比Ⅱ的______(“大”还是“小”)。
12
6. 如图表示在不同条件下酶促反应速率的变化曲线,请分析回 答下列问题。
(1)酶促反应速率可以用____
__来表示。
(2)Ⅱ和Ⅰ相比,酶促反应速率慢,这是因为

(3)图中AB段和BC段影响反应速率的主要限制因子分别是___
___和__ ____。
(4)在酶浓度相对值为1个单位,温度为25℃条件下酶促反应
物的量和反应时间的关系,解读此图可获得的信息是 D
A.三个处理中b是此酶促反应的最适条件 B.三个处理条件的差异不可能是酶制剂的量不同 C.三个处理条件的差异可能是反应底物的量不同 D.三个处理条件的差异可能是处理温度的不同
9
4.如图所示在不同条件下的酶促反应速率变化曲线,下列据图叙述
错误的是 D
列分析正确的是 A
A.该酶催化反应的最适温度为35℃左右,最适pH为8 B.当pH为8时,影响反应速率的主要因素是底物浓度和酶浓度 C.随pH升高,该酶催化反应的最适温度也逐渐升高 D.当pH为任何一固定值时,实验结果都可以证明温度对反应速率 的影响
8
3.图中表示某酶在不同处理条件(a、b、c)下催化某反应生成
1
一、基本曲线模型
1.酶高效性的曲线 2.酶专一性的曲线 3.温度、pH影响酶活性的曲线

酶活力及酶课件

酶活力及酶课件

3×1000=3000。
酶活力及酶课件
6
2、影响酶作用的因素
1)、酶浓度对酶反应速度的影响
在有足够底物和其他条件不变的情况下,反应 速度与酶浓度成正比 。
当[S]>>[E]时,V=K3×[E]
反 应


0
酶浓度
酶活力及酶课件
8
2)、底物
Vmax [S] V= Km + [S]
酶活力及酶课件
9
3)、温度对酶反应速度的影响
例: 碱性磷酸酶催化磷酸苯酯水解时
[s]为2.5x10-5 M,最适pH为 8.3 [s]为2.5x10-2 M,最适pH为10.0
酶活力及酶课件
14
pH影响反应速度的原因
( 1 ) pH影响了酶分子、底物分子和ES复合物的 解离状态。
( 2 ) 过高、过低的pH导致酶蛋白变性。
酶活力及酶课件
15
酶活力及酶课件
19
有机磷化合物:抑制蛋白酶或酯酶活性
敌敌畏
敌百虫
萨林
酶活力及酶课件
20
有机砷化合物:与酶的巯基结合而抑制活性
路易斯毒气
酶活力及酶课件
21
(二)可逆抑制作用(reversible inhibition)
抑制剂与酶蛋白以非共价方式结合,引起酶活 性暂时性丧失。抑制剂可以通过透析等方法被 除去,并且能部分或全部恢复酶的活性。
[Ef][S] Km =
[ES]
Km [Ef]=[ES] [S]
[Ef][I] Ki =
[EI]
[I] [EI]酶=活[力E及f酶] 课件Ki
40
竞争性抑制作用动力学
酶活力及酶课件

影响酶活力的因素的曲线

影响酶活力的因素的曲线

3.底物浓度——反应速度
反 应 速 率
B · · A
· C
底物浓度 描述曲线特征: (当酶浓度、温度和pH恒定时)在底物浓度很低的范围 内,反应速度与底物浓度成正比;继续增加底物浓度, 反应速度增加转慢;达到最大后保持不变。
O
解释:酶数量一定时,底物浓度越大,形成的酶—底物 复合物越多;达到一定程度后,有限的酶全部与底物 结合而达到饱和。 BC段有限的不影响酶的活性。 8
比较:酶与无机催化剂
2
影响酶促反应速度的主要因素
反应速率: 单位时间内生成物的增加量,或底物的消耗量 = 酶活力 = 酶的催化效率
底物浓度 酶浓度 酶 酶活性
温度
pH 抑制剂或激活剂等 竞争性抑制
可逆 (降低酶活性,但不使酶变性) 抑制剂作用机制 (形成氢键) 非竞争性抑制 不可逆 使酶永久性失活 (抑制剂与酶共价连接)
1.催化剂加快反应速度的本质原因:降低反应活化能
[活化分子] 过渡态(活化态)
催化后活化能的减少值 非催化过程的活化能
自由能
无机催化剂
酶催化过程的活化能
(酶使活化能更低)
初态 反应物S 平均能量水平较低 终态 产物P 反应过程
反应前后自由能之差
★反应活化能:反应物进入活化状态所需的能量。 (类似于跨栏时栏的高度)(只调节能够反应的反应速度) 催化剂能降低反应活化能,提高活化分子百分数,因此加快了反应速度。 即:在催化反应中,只需较少的能量就可使反应物进入活化态。 ★某反应在不同情况下的反应速度不同,本质原因是反应活化能的不同。 ★酶与无机催化剂相比,活化能水平被降得更低,显示出高效性。 1
思考:
①限制OA段的因素 是底物浓度; 限制BC段的因素是 酶浓度。

生物化学实验课件-影响酶活力的因素-温度和pH

生物化学实验课件-影响酶活力的因素-温度和pH

注意事项
注意事项
1.反应试管应清洗干净,不同试剂、酶液以及移液管不能交叉使用。 2.使用混合唾液或者通过预试选出合适的唾液稀释度,效果更为显著。 3.使用完毕的生物试剂(如:人唾液)的无公害处理。
生物化学实验
THANKS
实验步骤 3.pH对酶活力影响
取干净试管5只,按下表加入试剂并操作。
试剂/管号
1
2
3
4
5
0.2mol/lNa2HPO4/ml
0.16
0.56
1.47
2.43
2.84
0.2mol/lNaH2PO4/ml
2.84
2.44
1.53
0.57
0.16
pH
5.6
6.2
6.8
7.4
8
1%淀粉溶液/ml
1
1
1
1
1
唾液淀粉酶可将淀粉逐步水解成各种不同大小分子的糊精及麦芽糖。它们 遇碘呈不同的颜色。直链淀粉(即可溶性淀粉)遇碘呈蓝色;糊精按分子从 大到小的顺序,遇碘可呈蓝色、紫色、暗褐色和红色,最小的糊精和麦芽 糖遇碘不呈现颜色。因此可由酶反应混合物遇碘所呈现的颜色来判断。
实验步骤
1.酶的专一性
取干净试管4只,按下表加入试剂并操作。
生物化学实验
影响酶活力的因素-温度、pH
目录 / CONTENTS
CHAPTER 01 CHAPTER 02 CHAPTER 03 CHAPTER 04 CHAPTER 05
实验目的 实验原理 实验试剂 实验步骤 注意事项
实验目的
实验目的
1.掌握温度、pH对酶活力的影响。 2.理解温度、pH影响酶活力的机制。 3.了解测定酶的最适温度、最适pH的方法。

与酶有关的图表、曲线解读

与酶有关的图表、曲线解读
表示酶的高效性的曲线
①催化剂可加快化学反应速率,与无机催化 剂相比,酶的催化效率更高。 ②酶只能缩短达到化学平衡所需时间,不改 变化学反应的平衡点。
表示酶专一性的图解
Байду номын сангаас
①图中A表示酶,B表示被催化的反应物。 ②酶和被催化的反应物分子都有特定的结构。
影响酶活性的曲线
①在一定温度(pH)范围内,随着温度(pH)的升 高,酶的催化作用增强;超过酶的最适温度(pH) 后,随着温度(pH)的升高,酶的催化作用减弱。 ②过酸、过碱、高温都会使酶的空间结构遭到破坏, 使酶失去活性;而低温只是使酶的活性降低,酶的分 子结构未遭到破坏,温度升高可恢复其活性。
反应物浓度和酶浓度对酶促反应的影响
①在其他条件适宜,酶浓度一定条件下,酶促反应速 率随反应物浓度增加而加快;但当反应物达到一定浓 度后,受酶数量和酶活性限制,酶促反应速率不再增 加。 ②在反应物充足,其他条件适宜的条件下,酶促反应 的反应速率与酶浓度成正比。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●比较 ①与 ② ●比较 ①与 ③
③ ①

时间
时间
●描述曲线 ①的特征(分段、准确);
解释曲线变化的原因(底物浓度降低,产物浓度增加,可能pH
或温度发生变化等)
●在①的基础上,酶浓度增加一倍的曲线【 ② 】
●在①的基础上,反应物浓度增加一倍的曲线【 ③】
☆4条竖线提示:斜率、拐点的变化。
7
3.底物浓度——反应速度
【加酶洗衣粉、TaqDNA聚合酶】
②人体内呼吸作用酶活性与环境温度;
6.pH——唾液淀粉酶活性。
再增加:①胃蛋白酶; ②肠肽酶。
6
2.开始时的反应物浓度、酶浓度均不变。 时间——产物浓度;时间——反应物浓度。
每图再增加:①酶浓度增加一倍;②反应物浓度增加一倍。
产物 浓度
②①
③ 改变纵坐标含义 反应物 浓度
9
反应 速度
温度或PH改变;【红线, 注意斜率和拐点变化】
反应 速度
酶浓度增加一倍;【红线, 注意斜率和拐点变化】
底物浓度
底物浓度
10
3.底物浓度——反应速度(酶浓度不变) 再增加:加入竞争性 / 非竞争性抑制剂
反应速率①②③O底物浓度曲线③属于非竞争性抑 制剂作用情形,类似于 不可逆抑制剂霸占酶。 因此,存在非竞争性抑 制剂相当于降低了酶的 浓度,曲线斜率变小, 很快达到最大。
v只是在最初一段时间保持恒定,
随着时间延长,v逐渐下降直到0。
▲反应速度下降的原因是什么?
底物浓度的降低,产物浓度的增加,
pH或温度的变化等。
5
时间
关于酶的常见曲线图【关注坐标轴的含义】
1.催化剂加快反应速度的本质原因:降低反应活化能。
2.开始时的反应物总量、酶浓度均不变。
时间——产物浓度;时间——反应物浓度。
每图再增加:①酶浓度增加一倍;②反应物浓度增加一倍。
3.底物浓度——反应速度。
再增加:①酶浓度增加一倍;
②加入竞争性抑制剂;
③非竞争性抑制剂
4.酶浓度——反应速度。
再增加:①底物浓度增加一倍;
②温度降低10℃;
③反应开始时加入一定量的不可逆抑制剂。
5.温度——酶活性。
再增加:①嗜冷微生物、嗜热微生物的酶
关于影响酶活力的 因素的曲线分析
1
比较:酶与无机催化剂
相同点: ①改变反应速度,但本身的质、量不变;
【但是,所有酶都必须参与反应过程!】 ②只能催化热力学允许进行的反应; ③加快v,缩短达到平衡的时间,但不改变平衡点; ④降低活化能,使v加快。
不同点:
①高效性;
②专一性(酶对底物);
③多样性;
④易变性;
解读:加入竞争性抑制剂;【蓝线】
反应
酶浓度限制v
速度
反应
速度
竞争性抑制剂
V受底物浓度 限制
底物浓度
底物浓度
●竞争性抑制剂既与酶结合,又与酶分离。
●竞争性抑制剂的效应取决于抑制剂与底物的相对浓度。
●增加底物浓度,使反应液中的底物分子%增大,进而使v不
断接近vmax。 ●可通过增加底物浓度而解除抑制。
11
抑制剂——能与酶结合并降低酶活性的分子
▲某些抑制剂能可逆地与酶 结合 和分离。可逆抑制剂可分为
竞争性抑制剂 和 非竞争性抑制剂。
竞争性抑制剂
①竞争性抑制剂与底物结构相似,都结合在
酶活性部位上,从而阻止酶与底物的结合。
★可通过增加底物浓度而解除抑制。
V 无抑制剂
●使v下降的原因:
Vmax
酶(E)与抑制剂(I)结合,使部分酶
联系与区别
4
反应速度的测定:
▲测定反应速度时,可以测定 产物增加量 或 底物减少量。 ▲如果底物过量,则测定底物减少量不容易精确,
而产物从无到有,便于测定,只要方法灵敏。
产物

浓度



?
反应 速度
最 初 阶 段
据图分析回答:
▲如何计算反应速度(v)?
△浓度
V=
=斜率
t
▲描述反应速度变化的特征:
时间
⑤反应条件的温和性;
⑥酶活性受到调节、控制;
⑦有些酶的活性需要辅助因子。
2
影响酶促反应速度的主要因素
反应速率: 单位时间内生成物的增加量,或底物的消耗量 = 酶活力 = 酶的催化效率
底物浓度
酶浓度
酶 酶活性
温度 pH 抑制剂或激活剂等
竞争性抑制
可逆
(降低酶活性,但不使酶变性)
抑制剂作用机制 (形成氢键) 非竞争性抑制
BC段有限的酶被饱和,反应速度达到最大,再增加
底物浓度,底物浓度并不影响酶的活性。
8
思考:
①限制OA段的因素 是底物浓度; 限制BC段的因素是 酶浓度。

应 速
· B

·A
O
· C
底物浓度
②酶浓度增加1倍,曲线发生怎样的变化? 如图的红色曲线。
【理解走势、斜率、拐点等特征性变化】
相同底物浓度下,酶浓度越高,形成的酶—底物复 合物越多,v越大;酶浓度越高,使酶饱和需要的底 物浓度越大。说出曲线几段的限制因素。 ③请举出两种能够影响这一曲线形状的因素。 酶浓度、温度和pH等
不可逆
使酶永久性失活
(抑制剂与酶共价连接)
3
酶作用曲线
酶活性易受多种因素制约,常用坐标图来表示.
在解读坐标图题型时,要注意以下要点: ●看坐标轴含义——了解两个变量的关系 ●看曲线走势——掌握变量的增减快慢特征与
意义 ●看特殊点——理解特殊点的意义
(起止点、拐点、交叉点) ●看不同曲线的异同——理解曲线之间的内在
被抑制剂占据而不能再同时与底物结合,
加竞争性抑制剂 但EI不能生成产物。
●增加底物浓度,使反应液中的底物分
底物浓度 子%增大,进而使v接近vmax。
竞争性抑制剂的效应取决于 【E总】=【E游离】+【ES】+【EI】 抑制剂与底物的相对浓度。 ●例如:喝酒能治疗甲醇中毒。因为
改变S/I的比值可证明之。 甲醇与乙醇竞争性结合酶的活性部位12 。
●竞争性抑制剂与底物竞争性地与 酶的活性部位结合。它既与酶结合, 又与酶分离,即酶与竞争性抑制剂 的结合是可逆的。竞争性抑制剂的 效应取决于抑制剂与底物的相对浓 度。增加底物浓度,使反应液中的 底物分子%增大,进而使v不断接近 vmax,即竞争性抑制剂可以通过增加 底物浓度来降低抑制剂与酶结合的 概率,以缓解抑制。因此②表示竞 争性抑制剂加入后的情形,随底物 浓度的增加抑制作用逐渐减弱并接 近正常的最大反应速度。

应 速
·B
率 ·A
· C
描述曲线特征: O
底物浓度
(当酶浓度、温度和pH恒定时)在底物浓度很低的范围 内,反应速度与底物浓度成正比;继续增加底物浓度, 反应速度增加转慢;达到最大后保持不变。
解释:酶数量一定时,底物浓度越大,形成的酶—底物 复合物越多;达到一定程度后,有限的酶全部与底物 结合而达到饱和。
相关文档
最新文档