方程思想解几何题
高中数学解析几何大题(附有答案及详解)

47. 已知椭圆E :()222210x y a b a b +=>>,其短轴为2.(1)求椭圆E 的方程;(2)设椭圆E 的右焦点为F ,过点()2,0G 作斜率不为0的直线交椭圆E 于M ,N 两点,设直线FM 和FN 的斜率为1k ,2k ,试判断12k k +是否为定值,若是定值,求出该定值;若不是定值,请说明理由.48. 如图,椭圆()2222:10x y C a b a b +=>>⎛ ⎝⎭,P 为椭圆上的一动点.(1)求椭圆C 的方程;(2)设圆224:5O x y +=,过点P 作圆O 的两条切线1l ,2l ,两切线的斜率分别为1k ,2k . ①求12k k 的值;①若1l 与椭圆C 交于P ,Q 两点,与圆O 切于点A ,与x 轴正半轴交于点B ,且满足OPA OQB S S =△△,求1l 的方程.49. 已知椭圆E :22221x y a b +=(a >b >0)的左、右焦点分別为12,F F ,离心率为e =左焦点1F 作直线1l 交椭圆E 于A ,B 两点,2ABF 的周长为8. (1)求椭圆E 的方程;(2)若直线2l :y =kx +m (km <0)与圆O :221x y +=相切,且与椭圆E 交于M ,N 两点,22MF NF +是否存在最小值?若存在,求出22MF NF +的最小值和此时直线2l 的方程.50. 已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,动点M 的轨迹为曲线C .(1)求C 的轨迹方程,并说明其形状;(2)过直线3x =上的动点()()3,0P p p ≠分别作C 的两条切线PQ 、PR (Q 、R 为切点),N 为弦QR 的中点,直线l :346x y +=分别与x 轴、y 轴交于点E 、F ,求NEF 的面积S的取值范围.51. 在平面直角坐标系xOy 中,已知直线l :20x y ++=和圆O :221x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.52. 已知以1C 为圆心的圆221:1C x y +=.(1)若圆222:(1)(1)4C x y -+-=与圆1C 交于,M N 两点,求||MN 的值;(2)若直线:l y x m =+和圆1C 交于,P Q 两点,若132PC PQ ⋅=,求m 的值. 53. 已知圆()22:21M x y +-=,点P 是直线:20l x y +=上的一动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B .(1)当切线P A P 的坐标;(2)若PAM △的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由; (3)求线段AB 长度的最小值.54. 已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当90AOB ∠=︒时,求实数k 的值;(2)若1,k P =是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究:直CD 是否过定点.若存在,请求出定点的坐标;否则,说明理由.55. 在平面直角坐标系xOy中,(A,B ,C 是满足π3ACB ∠=的一个动点. (1)求ABC 垂心H 的轨迹方程;(2)记ABC 垂心H 的轨迹为Γ,若直线l :y kx m =+(0km ≠)与Γ交于D ,E 两点,与椭圆T :2221x y +=交于P ,Q 两点,且||2||DE PQ =,求证:||k > 56. 平面上一动点C的坐标为),sin θθ.(1)求点C 轨迹E 的方程;(2)过点()11,0F -的直线l 与曲线E 相交于不同的两点,M N ,线段MN 的中垂线与直线l 相交于点P ,与直线2x =-相交于点Q .当MN PQ =时,求直线l 的方程.答案及解析47.(1)2212x y +=;(2)是定值,该定值为0.【分析】(1)依题意求得,a b ,进而可得椭圆E 的方程;(2)设直线MN 的方程为()()20y k x k =-≠,与椭圆E 方程联立,利用韦达定理和斜率公式即可求得12k k +的值. 【详解】(1)由题意可知:22b =,1b =,椭圆的离心率c e a ==a =①椭圆E 的标准方程:2212x y +=;(2)设直线MN 的方程为()()20y k x k =-≠.22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 整理得:()2222128820k x k x k +-+-=.设()11,M x y ,()22,N x y , 则2122812k x x k +=+,21228212k x x k -=+,()()()1212121212121212222211111k x k x y y x x k k k x x x x x x x x ⎡⎤--+-+=+=+=-⎢⎥-----++⎢⎥⎣⎦222222228242122208282111212k k k k k k k k k k ⎡⎤-⎢⎥⎛⎫-+=-=-=⎢⎥ ⎪--⎝⎭⎢⎥-+⎢⎥++⎣⎦. ①120k k +=为定值.【点睛】关键点点睛:第(2)问的关键点是:得出()12121212221x x k k k x x x x ⎡⎤+-+=-⎢⎥-++⎢⎥⎣⎦.48.(1)2214x y +=;(2)①14- ;①yy =+【分析】(1)根据已知条件结合222c a b =-列关于,a b 的方程,解方程即可求解;(2)①设()00,P x y ,切线:l 00()y y k x x -=-,利用圆心到切线的距离列方程,整理为关于k 的二次方程,计算两根之积结合点P 在椭圆上即可求12k k ;①由OPA OQB S S =△△可得PA BQ =,可转化为A B P Q x x x x +=+,设1l :y kx m =+,与椭圆联立可得P Q x x +,再求出A x 、B x ,即可求出k 的值,进而可得出m 的值,以及1l 的方程. 【详解】(1)因为22222234c a b e a a -===,所以2a b =,因为点⎛ ⎝⎭在椭圆上,所以221314a b +=即2213144b b +=, 解得:1b =,2a =,所以椭圆方程为:2214x y +=;(2)①设()00,P x y ,切线:l 00()y y k x x -=-即000kx y y kx -+-= 圆心()0,0O到切线的距离d r ==整理可得:2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭,所以2020122200441451544455x y k k x x ⎛⎫-- ⎪-⎝⎭===---,①因为OPA OQB S S =△△所以PA BQ =,所以A P Q B x x x x -=-,所以A B P Q x x x x +=+, 设切线为1:l y kx m =+,由2244y kx m x y =+⎧⎨+=⎩可得:()222418440k x kmx m +++-= 所以2841P Q kmx x k -+=+, 令0y =可得B mx k=-,设(),A A A x kx m +, 则1A OA A kx m k x k +==-,所以21A km x k -=+, 所以228411P Q km m kmx x k k k --+==-+++, 整理可得:()()()2222814121k k k k +=++,所以221k =,解得:k =, 因为圆心()0,0O 到1:l y kx m =+距离d ,所以mm =,因为0B mx k=->,所以当k =m =k =时,m =;所以所求1l的方程为y =或y = 【点睛】思路点睛:圆锥曲线中解决定值、定点的方法(1)从特殊入手,求出定值、定点、定线,再证明定值、定点、定线与变量无关; (2)直接计算、推理,并在计算、推理的过程中消去变量是此类问题的特点,设而不求的方法、整体思想和消元思想的运用可以有效的简化运算.49.(1)2214x y +=;(2)最小值为2,0x =或0x +-=.【分析】(1)由椭圆定义结合已知求出a ,半焦距c 即可得解;(2)由直线2l 与圆O 相切得221m k =+,联立直线2l 与椭圆E 的方程消去y ,借助韦达定理表示出22MF NF +,利用函数思想方法即可作答. 【详解】(1)依题意,结合椭圆定义知2ABF 的周长为4a ,则有4a =8,即a =2,又椭圆的离心率为c e a =c =2221b a c =-=, 所以椭圆E 的方程为2214x y +=;(2)因直线2l :y =kx +m (km <0)与圆O :221x y +=1=,即221m k =+,设()()()112212,,,,2,2M x y N x y x x ≤≤,而点M 在椭圆E 上,则221114x y +=,即221114x y =-,又2F ,21|2|MF x =-=12x -,同理222NF x =,于是得)22124MF NF x x +=+, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y 得:()222148440k x kmx m +++-=,显然Δ0>,则122814km x x k +=-+, 又km <0,且221m k =+,因此得1228||14km x x k +=+令2411t k =+≥,则12x x +=113t =,即t =3时等号成立,于是得22MF NF +存在最小值,且)221242MF NF x x +=+≥,22MF NF +的最小值为2,由2221413m k k ⎧=+⎨+=⎩,且km <0,解得k m ⎧=⎪⎪⎨⎪=⎪⎩或k m ⎧=⎪⎪⎨⎪=⎪⎩. 所以所求直线2l的方程为y x =y x =0x =或0x +=.【点睛】关键点睛:解决直线与椭圆的综合问题时,要注意:(1)观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 50.(1)()2214x y ++=,曲线C 是以1,0为圆心,半径为2的圆;(2)5542⎡⎤⎢⎥⎣⎦,.【分析】(1)设出动点M 坐标,代入距离比关系式,化简方程可得;(2)先求切点弦方程,再根据切点弦过定点及弦中点性质得出N 点轨迹,然后求出动点N 到定直线EF 的距离最值,最后求出面积最值.切点弦方程的求法可用以下两种方法.法一:由两切点即为两圆公共点,利用两圆相交弦方程(两圆方程作差)求出切点弦方程;法二:先分别求过Q 、R 两点的切线方程,再代入点P 坐标,得到Q 、R 两点都适合的同一直线方程,即切点弦方程. 【详解】解:(1)设(),M x y ,由12MO MA =12=. 化简得22230x y x ++-=,即()2214x y ++=. 故曲线C 是以1,0为圆心,半径为2的圆.(2)法一(由两圆相交弦方程求切点弦方程):由题意知,PQ 、PR 与圆相切,Q 、R 为切点,则DQ PQ ⊥,DR PR ⊥,则D 、R 、P 、Q 四点共圆,Q 、R 在以DP 为直径的圆上(如图).设()1,0D -,又()()3,0P p p ≠,则DP 的中点为1,2p ⎛⎫⎪⎝⎭,DP .以线段DP 为直径的圆的方程为()22212p x y ⎛⎫-+-= ⎪⎝⎭⎝⎭, 整理得22230x y x py +---=①(也可用圆的直径式方程()()()()1300x x y y p +-+--=化简得. ) 又Q 、R 在C :22230x y x ++-=①上, 由两圆方程作差即①-①得:40x py +=. 所以,切点弦QR 所在直线的方程为40x py +=. 法二(求Q 、R 均满足的同一直线方程即切点弦方程): 设()1,0D -,()11,Q x y ,()22,R x y .由DQ PQ ⊥,可得Q 处的切线上任一点(,)T x y 满足0QT DQ ⋅=(如图), 即切线PQ 方程为()()()()1111100x x x y y y -++--=.整理得()221111110x x y y x y x ++---=.又22111230x y x ++-=,整理得()111130x x y y x +++-=.同理,可得R 处的切线PR 方程为()222130x x y y x +++-=. 又()3,P p 既在切线PQ 上,又在切线PR 上,所以()()11122231303130x py x x py x ⎧+++-=⎪⎨+++-=⎪⎩,整理得11224040x py x py +=⎧⎨+=⎩. 显然,()11,Q x y ,()22,R x y 的坐标都满足直线40x py +=的方程. 而两点确定一条直线,所以切点弦QR 所在直线的方程为40x py +=. 则QR 恒过坐标原点()0,0O .由()2240,14x py x y +=⎧⎪⎨++=⎪⎩消去x 并整理得()22168480p y py +--=. 设()11,Q x y ,()22,R x y ,则122816py y p +=+.点N 纵坐标1224216N y y py p +==+. 因为0p ≠,显然0N y ≠,所以点N 与点()1,0D -,()0,0O 均不重合.(或者由对称性可知,QR 的中点N 点在x 轴上当且仅当点P 在x 轴上,因为0p ≠,点P 不在x 轴上,则点N 也不在x 轴上,所以点N 与D 、O 均不重合.) 因为N 为弦QR 的中点,且()1,0D -为圆心,由圆的性质,可得DN QR ⊥,即DN ON ⊥(如图).所以点N 在以OD 为直径的圆上,圆心为1,02G ⎛⎫- ⎪⎝⎭,半径12r =.因为直线346x y +=分别与x 轴、y 轴交于点E 、F ,所以()2,0E ,30,2F ⎛⎫⎪⎝⎭,52EF =.又圆心1,02G ⎛⎫- ⎪⎝⎭到直线3460x y +-=的距离32d ==. 设NEF 的边EF 上的高为h ,则点N 到直线346x y +=的距离h 的最小值为31122d r -=-=; 点N 到直线346x y +=的距离h 的最大值为31222d r +=+=(如图).则S 的最小值min 1551224S =⨯⨯=,最大值max 1552222S =⨯⨯=.因此,NEF 的面积S 的取值范围是5542⎡⎤⎢⎥⎣⎦,.【点睛】设00(,)P x y 是圆锥曲线外一点,过点P 作曲线的两条切线,切点为A 、B 两点,则 A 、B 两点所在的直线方程为切点弦方程.常见圆锥曲线的切点弦方程有以下结论: 圆222()()x a y b r -+-=的切点弦方程:200()()()()x a x a y b y b r --+--=, 圆220x y Dx Ey F ++++=的切点弦方程: 0000022x x y yx x y y D E F ++++++= 椭圆22221x y a b+=的切点弦方程:00221x x y y a b +=;双曲线22221x y a b-=的切点弦方程:00221x x y y a b -=;抛物线22y px =的切点弦方程为:00()y y p x x =+.特别地,当00(,)P x y 为圆锥曲线上一点时,可看作两切线重合,两切点A 、B 重合,以上切点弦方程即曲线在P 处的切线方程.51.(1)()1,1P --;(2)1;(3)存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.理由见解析.【分析】(1)依题意可得四边形PAOB 为正方形,设(),2P x x --,利用平面直角坐标系上两点的距离公式得到方程,计算可得;(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小,利用点到线的距离公式求出PO 的最小值,即可得解;(3)设()00,2P x x --,求出以OP 为直径的圆的方程,即可求出公共弦AB 所在直线方程,从而求出动点Q 的轨迹方程,即可得解; 【详解】解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P①P 在直线20x y ++=上,设(),2P x x --,则OP =,解得1x =-,故()1,1P --.(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小. 线段PO 长最小值即点O 到直线l的距离,故min PO ==所以min 1PA =.(3)设()00,2P x x --,则以OP 为直径的圆的方程为()2222000022224x x x x x y +----⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得()220020x x x x y y -+++=,与221x y +=联立,可得AB 所在直线方程为()0021x x x y -+=,联立()002221,1,x x x y x y ⎧-+=⎨+=⎩得()222000002443024x x x x x x x ++----=, ①Q 的坐标为002200002,244244x x x x x x --++++⎛⎫⎪⎝⎭,可得Q 点轨迹为22111448x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,圆心11,44⎛⎫-- ⎪⎝⎭,半径R =.其中原点()0,0为极限点(也可以去掉).故存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.【点睛】本题考查了直线与圆的位置关系、方程思想、数形结合方法、转化方法,考查运算求解能力和应用意识.52.(1;(2)m = 【分析】(1)由两个圆相交,可将两个圆的方程相减求得直线MN 的方程.利用圆心到直线的距离,结合垂径定理即可求得||MN 的值.(2)设()()1122,,,P x y Q x y ,利用向量的坐标运算表示出1,PC PQ .将直线方程与圆的方程联立,化简后由>0∆求得m 的取值范围,并表示出12x x +,12x x ,进而由直线方程表示出12y y .根据平面向量数量积的坐标运算,代入化简计算即可求得m 的值. 【详解】(1)直线MN 的方程为2222(1)(1)410x y x y -+----+=, 即2 2 10x y ++=;故圆1C 的圆心到2210x y ++=的距离d =故||MN == (2)设()()1122,,,P x y Q x y ,则()()1112121,,,PC x y PQ x x y y =--=--,由22,1,y x m x y =+⎧⎨+=⎩化简可得222210x mx m ++-=, 故()222481840,m m m ∆=--=->解得m < 12x x m +=-,2121,2m x x -=所以()()()212121212y y x m x m x x m x x m =++=+++,又()()2211121211212113,,2PC PQ x y x x y y x x y y x y ⋅=--⋅--=--++=, 又22111x y +=故121212x x y y +=-,故()21212122x x m x x m +++=-, 将12x x m +=-,2121,2m x x -=代入可得222112m m m --+=-,解得m =又因为m <所以2m =± 【点睛】本题考查了圆与圆的位置关系及公共弦长度的求法,直线与圆位置关系的综合应用,由韦达定理求参数的值,平面向量数量积的运算,综合性强,计算量大,属于难题.53.(1)()0,0P 或84,55P ⎛⎫- ⎪⎝⎭;(2)圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭;(3)当25b =时,AB 有最小【分析】(1)设()2,P b b -,由MP b ,得出结果;(2)因为A 、P 、M 三点的圆N 以MP 为直径,所以圆N 的方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭,化简为()()222220x y b x y y -+++-=,由方程恒成立可知2222020x y x y y -+=⎧⎨+-=⎩,即可求得动圆所过的定点; (3)由圆M 和圆N 方程作差可得直线AB 方程,设点()0,2M 到直线AB 的距离d ,则AB =.【详解】(1)由题可知,圆M 的半径1r =,设()2,P b b -, 因为P A 是圆M 的一条切线,所以90MAP ∠=︒,所以2MP ==,解得0b =或45b =, 所以点P 的坐标为()0,0P 或84,55P ⎛⎫- ⎪⎝⎭.(2)设()2,P b b -,因为90MAP ∠=︒, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 其方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()()222220x y b x y y -+++-=,由2222020x y x y y -+=⎧⎨+-=⎩, 解得02x y =⎧⎨=⎩或4525x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭.(3)因为圆N 方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()222220x y bx b y b ++-++=①又圆22:430M x y y +-+=①①-①得圆M 方程与圆N 相交弦AB 所在直线方程为 ()22230bx b y b --+-=.点()0,2M 到直线AB的距离d =所以相交弦长AB == 所以当25b =时,AB【点睛】本题考查直线和圆的位置关系,考查定点问题和距离的最值问题,难度较难. 54.(1)k =(2)直线CD 过定点(1,1)- 【分析】(1)由已知结合垂径定理求得圆心到直线的距离,再由点到直线的距离公式列式求得k ; (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,求出两条切线方程,计算出直线CD 的方程,从而得到定点坐标;解法2:由题意可知,O 、P 、C 、D 四点共圆且在以OP为直径的圆上,求出公共弦所在直线方程,再由直线系方程求得定点坐标. 【详解】(1)2AOB π∠=,∴点O 到l 的距离2d r =,k = (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,则圆在点C 处的切线方程为 1111()()0y y y x x x -+-=,所以221111x x y y x y +=+,即112x x y y +=同理,圆在点D 处的切线方程为222x x y y += 又点00(,)P x y 是两条切线的交点, 10102x x y y ∴+=,20202x x y y +=,所以点()11,C x y ,()22,D x y 的坐标都适合方程002x x y y +=, 上述方程表示一条直线,而过C 、D 两点的直线是唯一的, 所以直线CD 的方程为:002x x y y +=. 设(,2)P t t -,则直线CD 的方程为(2)2tx t y +-=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-.解法2:由题意可知:O 、P 、C 、D 四点共圆且在以OP 为直径的圆上, 设(,2)P t t -,则此圆的方程为:()(2)0x x t y y t -+-+=, 即:22(2)0x tx y t y -+--=, 又C 、D 在圆22:2O x y +=上,两圆方程相减得():220CD l tx t y +--=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-. 【点睛】本题考查了直线与圆的相交问题,由弦长求直线斜率,只需结合弦长公式计算圆心到直线的距离,然后求得结果,在求直线恒过定点坐标时,一定要先表示出直线方程,然后在求解. 55.(1)22(1)4x y ++=(2y ≠-);(2)证明见解析. 【分析】(1)由题可求出顶点C 的轨迹方程,再利用相关点法可求垂心H 的轨迹方程;(2)利用弦长公式可求||DE ,再利用韦达定理法求||PQ ,由||2||DE PQ =得出2221m k ≥+,然后结合判别式大于零即可证. 【详解】设ABC 的外心为1O ,半径为R ,则有22sin ABR ACB==∠,所以1πcos 13OO R ==即1(0,1)O ,设(,)C x y ,()00,H x y ,有1O C R =,即有22(1)4x y +-=(0y ≠), 由CH AB ⊥,则有0x x =,由AH BC ⊥,则有(00(0AH BC x x y y ⋅=+=,所以有(220(3(1)12x x x y y y yy y---=-===-,则有()220014x y ++=(02y ≠-),所以ABC 垂心H 的轨迹方程为22(1)4x y ++=(2y ≠-); (2)记点(0,1)-到直线l 的距离为d ,则有d =所以||DE==,设()11,P x y,()22,Q x y,联立2221y kx mx y=+⎧⎨+=⎩,有()2222210k x kmx m+++-=,所以()224220k m∆=+->,||PQ==由||2||DE PQ=,可得()()()()()2222222222222418141(1)8412222k m k km mk k kk k++++-=-≤-+++++,所以()22222248(1)212m mk kk++≤+++,即有()()()22222224181(1)22k k mmk k+++≤+++,所以()()()22222222418122(1)22k k mm mk k+++--≥-++,即22222222222221(1)101222k k m k mm mk k k k⎛⎫-=-⇒-≥⇒≥+⎪+++⎝⎭又0∆>,可得2212km<+,所以222112kk+<+,解得22k>,故||k>56.(1)2212xy+=;(2)10x y±-=.【分析】(1)利用22sin cos1θθ+=求得点C的轨迹E的方程.(2)设直线l的方程为1x my=-,联立直线l的方程和曲线E的方程,化简写出根与系数关系,求得MN、PQ,由1PQMN=求得m的值,从而求得直线l的方程.【详解】 (1)设(),C x y ,则,sin x y θθ⎧=⎪⎨=⎪⎩,即cos sin yθθ⎧=⎪⎨⎪=⎩, 所以2212x y +=,所以E 的方程为2212x y +=.(2)由题意知,直线l 的斜率不为0,设直线:1l x my =-,()()()1122,,,,,p p M x y N x y P x y .联立2221,1x y x my ⎧+=⎨=-⎩,消去x ,得()22+2210m y my --=,此时()281m ∆=+0>,且12222m y y m +=+,12212y y m =-+又由弦长公式得MN =整理得2212m MN m ++. 又122+=22p y y m y m =+,所以2212p p x my m -=-=+,所以222222p m PQ x m ++=+,所以1PQMN =, 所以21m =,即1m =±.综上,当1m =±,即直线l 的斜率为±1时,MN PQ =, 此时直线l 为10x y ±-=. 【点睛】求解直线和圆锥曲线相交所得弦长,往往采用设而不求,整体代入的方法来求解.。
[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)
![[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)](https://img.taocdn.com/s3/m/ea53aff8ba1aa8114531d97e.png)
[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)1.函数的思想函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。
经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等。
2.方程的思想方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。
方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系。
3.函数思想与方程思想的联系函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x轴交点问题,方程f(x)=a有解,当且公当a 属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。
4.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点;(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=nbax)((n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
运用方程思想解决几何问题“六法”_

1
6
所以2
S△ABC =3.
x2 -1
2
x+1
5=0,解 得 x1 =3- ,
2
2
x2 =3+
3+
6
6
(舍去),此时Байду номын сангаас 求 出 AF =6- 3-
=
2
2
(
)
6
所 以 存 在 直 线 EF 将 Rt△ABC 的 周 长 与
<5.
2
解法探究
2024 年 1 月下半月
面积同时平分,且 AE 的长为3-
解 x1 = 3,
又 3+x1 =3+ 3>4,所
x2 =- 3(舍去).
6
.
2
1
(ⅱ )若点 F 与 B 重合,如图 9,由 S△AEB = S△ABC
2
可知 E 为 AC 的 中 点,由 于 BC <AB ,故 BC +CE <
AE +AB ,所以不存在满足题设要求的直线 EF .
分线,
已知 BD =2
0,
EF=1
5,求
EF 平 分 Rt△ABC 的 周 长,设
解:设矩 形 的 长 AB =x,
图5
宽 BC =y.在 Rt△BAD 中,
BD2 = AD2 + AB2 ,即
2
因为 EF 是 BD 的垂直平分线,则有 BO=
x2 +y2 =2
0.
所以 △OFD≌△OEB.
所以 OE=OF=7.
°,所 以 可 得
71
解法探究
2024 年 1 月下半月
△BED ∽△BCA .
DE BD
k
9+k
巧用方程思想妙解几何试题

‘ . .
=
因 此 LB D 的 度 数 为 10 . A 0。
三 求 图 形 的 面 积
因此s = × × :5k , △。 ÷ 5 6 1(m)建筑用地及绿
D
例 5 如 图 5 A, C三 个 村 , B, 庄在一条东西走 向的公路沿线 上 , A =2 i, C = k , B k B n 3 i 在 村 的 正 E n 北方 向有 一 _ 村 , 得 / D : D 测 _A C 4 。今 将 AA C 区 域 规 划 为 开 发 5. D
C
区, 除其中 4 i k 的水 塘外 , n 均作 为
在 AA E中 , LA B+LB E=10 B 2 E A 8。
I (0 + 1(  ̄2 3 。 ) P
1 0o。 .
6。 0 ):1O 8。
在 R AA G中 , ( t C 有 一2 +( 一 ) 5. ) 3 = 解 这 个 方 程 得 。 6 : 一1 舍 去 ) = , ( .
;。。。.。。.。。。 +..+..+++
D
例 2 如 图 2 四边 形 A C 为 梯 , BD
形 ,B/ D, B A /C LA C=9 。 A =9厘 0 ,B
米 , C= B 8厘 米 , D =7厘 米 , 为 A C D
的 中点 , 过 作 A 的 垂 线 交 B D C
=
= 6,
r + 卢= ,
①
l+ =0 +t 口 3。 O .
② 一① , 得 =3 。 . 0一
・
.
②
设 B ,0 F= F=8一 F= 贝 E A . 根据勾股定 理得 E 2 E 曰 . F =B +
列一元二次方程解几何问题

9
2 (中考·黔西南州)某校准备修建一个面积为180平方
米的矩形活动场地,它的长比宽多11米,设场地的
宽为x米,则可列方程为( )
A.x(x-11)=180
B.2x+2(x-11)=180
C.x(x+11)=180
D.2x+2(x+11)=180
4.四周一片( ),听不到一点声响。 5.越是在紧张时刻,越要保持头脑的( )。
八、句子工厂。
1.世界上有多少人能亲睹她的风采呢? (陈述 句)
_________________________________ ______ ______ ______ ______ ______ ______ ______ 2.达·芬奇的“蒙娜丽莎”是全人类文 化宝库 中一颗 璀璨的 明珠。 (缩写 句子) ___________________________________ ______ ______ ______ ______ ______ ______ ____ 3.我在她面前只停留了短短的几分钟。 她已经 成了我 灵魂的 一部分 。(用 关联词 连成一 句话) __________________________________ ______ ______ ______ ______ ______ ______ _____
1、世上没有绝望的处境,只有对处境 绝望的 人。 2、挑水如同武术,武术如同做人。循序 渐进, 逐步实 现目标 ,才能 避免许 多无谓 的挫折 。
3、别想一下造出大海,必须先由小河川 开始。 4、自信是所有成功人士必备的素质之一 ,要想 成功, 首先必 须建立 起自信 心,而 你若想 在自己 内心建 立信心 ,即应 像洒扫 街道一 般,首 先将相 当于街 道上最 阴湿黑 暗之角 落的自 卑感清 除干净 ,然后 再种植 信心, 并加以 巩固。 信心建 立之后 ,新的 机会才 会随之 而来。
用一元二次方程解几何问题

为7x cm,依题意得
(27 18x)(21 14x) 3 27 21 4
解得
x1
6
3 4
3
(不合意,舍去),x2
=
6—3 4
3
∴上、下边衬的宽均为 1.8 cm ,左、右
边衬的宽均为 1.4 cm
感悟新知
思考:如果换一种设未知数的方法,是否可以更简单
地解决上面的问题? 请你试一试.
解: 设正中央的矩形两边长分别为9x cm,7x cm.
认知基础练
6 用配方法解一元二次方程x2+2x-1=0, 可将方程配方为( A ) A.(x+1)2=2 B.(x+1)2=0 C.(x-1)2=2 D.(x-1)2=0
认知基础练
3 【2020·贵阳十七中期中】将代数式x2-10x+5配方 后,发现它的最小值为( B ) A.-30 B.-20 C.-5 D.0
方法技巧练
【点拨】根据a2+b2=12a+8b-52,可以求得a,b的 值 , 由 a , b , c 为 正 整 数 且 是 △ABC 的 三 边 长 , c 是 △ABC的最短边长,即可求得c的值.
方法技巧练
解:将已知等式两边同时加上 2, 得 x2+x12+2+2x+1x=2, 即x+1x2+2x+1x=2. 设 x+1x=y,则x+1x2+2x+1x=2 可化为 y2+2y =2.配方,得 y2+2y+1=2+1,∴(y+1)2=3.
方法技巧练
开平方,得 y+1=± 3. 解得 y1= 3-1,y2=- 3-1. ∴x+1x= 3-1 或 x+1x=- 3-1. 经检验,不存在实数 x 使 x+1x= 3-1,故舍去. ∴x+1x=- 3-1.
认知基础练
2 将代数式a2+4a-5变形,结果正确的是( D ) A.(a+2)2-1 B.(a+2)2-5 C.(a+2)2+4 D.(a+2)2-9
解题技巧专题:勾股定理与面积问题、方程思想压轴题七种模型全攻略(学生版)

解题技巧专题:勾股定理与面积问题、方程思想压轴题七种模型全攻略【考点导航】目录【典型例题】【类型一三角形中,利用面积求斜边上的高】【考点二结合乘法公式巧求面积或长度】【考点三巧妙割补求面积】【考点四“勾股树”及其拓展类型求面积】【考点五几何图形中的方程思想-折叠问题(利用等边建立方程)】【考点六几何图形中的方程思想-公边问题(利用公边建立方程)】【考点七实际问题中的方程思想】【典型例题】【类型一三角形中,利用面积求斜边上的高】1(2023春·新疆阿克苏·八年级校联考阶段练习)若一个直角三角形的两条直角边长分别是5cm 和12cm ,则斜边上的高为多少()A.8013B.13C.6D.6013【变式训练】1(2023春·内蒙古鄂尔多斯·八年级统考期末)如图,在2×2的方格中,小正方形的边长是1,点A 、B 、C 都在格点上,则AC 边上的高为()A.5B.322 C.355D.322(2023春·辽宁朝阳·八年级校考期中)如果一个等腰三角形的腰长为13,底边长为24,那么它底边上的高为()A.12B.24C.6D.53(2022·全国·八年级课时练习)如图,在网格中,每个小正方形的边长均为1.点A、B,C都在格点上,若BD是△ABC的高,则BD的长为.4(2023春·安徽合肥·八年级校考期末)如图所示,在边长为单位1的网格中,△ABC是格点图形,求△ABC中AB边上的高.5如图,在Rt△ABC中,∠C=90°,AC=8,在△ABE中,DE是AB边上的高,DE=12,S△ABE=60.(1)求BC的长.(2)求斜边AB边上的高.6(2023秋·全国·八年级专题练习)在△ABC中,∠C=90°,AC=3,CB=4,CD是斜边AB上高.(1)求△ABC的面积;(2)求斜边AB;(3)求高CD.【类型二结合乘法公式巧求面积或长度】1已知在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,若a+b=10cm,c=8cm,则Rt△ABC的面积为()A.9cm2B.18cm2C.24cm2D.36cm2【变式训练】1在△ABC中,AD是BC边上的高,AD=4,AB=410,AC=5,则△ABC的面积为()A.18B.24C.18或24D.18或302直角△ABC三边长分别是x,x+1和5,则△ABC的面积为.【类型三巧妙割补求面积】1(2023春·河南许昌·八年级校考期中)如图,在四边形ABCD中,已知∠B=90°,∠ACB=30°,AB=6,AD=13,CD=5.(1)求证:△ACD是直角三角形;(2)求四边形ABCD的面积.【变式训练】1(2023春·内蒙古呼伦贝尔·八年级校考期中)如图所示,是一块地的平面图,其中AD=4米,CD=3米,AB=13米,BC=12米,∠ADC=90°,求这块地的面积.2(2023春·安徽马鞍山·八年级校考期末)已知a,b,c是△ABC的三边,且a=23,b=36,c=66.(1)试判断△ABC的形状,并说明理由;(2)求△ABC的面积.3(2023春·山东菏泽·八年级校考阶段练习)四边形草地ABCD中,已知AB=3m,BC=4m,CD= 12m,DA=13m,且∠ABC为直角.(1)求这个四边形草地的面积;(2)如果清理草地杂草,每平方米需要人工费20元,清理完这块草地杂草需要多少钱?4(2022春·重庆綦江·八年级校考阶段练习)计算:如图,每个小正方形的边长都为1.(1)求线段CD与BC的长;(2)求四边形ABCD的面积;(3)求证:∠BCD=90°.【类型四“勾股树”及其拓展类型求面积】1(2023秋·重庆渝中·八年级重庆巴蜀中学校考期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是6、10、4、6,则最大正方形E的面积是()A.20B.26C.30D.52【变式训练】1(2023·广西柳州·校考一模)如图,∠BDE=90°,正方形BEGC和正方形AFED的面积分别是289和225,则以BD为直径的半圆的面积是()A.16πB.8πC.4πD.2π2(2023春·全国·八年级专题练习)如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=;以Rt△ABC的三边向外作等边三角形,其面积分别为S1,S2,S3,则S1,S2,S3三者之间的关系为.3(2023春·八年级课时练习)已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别记作a、b、c.如图1,分别以△ABC的三条边为边长向外作正方形,其正方形的面积由小到大分别记作S1、S2、S3,则有S1+S2=S3,(1)如图2,分别以△ABC的三条边为直径向外作半圆,其半圆的面积由小到大分S1、S2、S3,请问S1+S2与S3有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答S1+S2与S3有怎样的数量关系;(3)若Rt△ABC中,AC=6,BC=8,求出图4中阴影部分的面积.4(2023春·江西南昌·八年级南昌市第三中学校考期中)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①如图2,3,4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,面积分别为S1,S2,S3,利用勾股定理,判断这3个图形中面积关系满足S1+S2=S3的有个.②如图5,分别以直角三角形三边为直径作半圆,设图中两个月牙形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,也满足S1+S2=S3吗?若满足,请证明;若不满足,请求出S1,S2,S3的数量关系.(2)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,则a2+b2+c2+d2=.【类型五几何图形中的方程思想-折叠问题(利用等边建立方程)】1(2023春·河南许昌·八年级统考期中)已知直角三角形纸片ABC的两直角边长分别为6,8,现将△ABC 按如图所示的方式折叠,使点A与点B重合,则CE的长是()A.54B.74C.154D.254【变式训练】1(2023春·湖北咸宁·八年级校考阶段练习)如图,有一块直角三角形纸片,∠C=90°,AC=4,BC= 3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()A.34B.1.5 C.53D.32(2023春·山东菏泽·八年级统考期中)如图,Rt△ABC中,∠B=90°,AB=4,BC=6,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N,则线段CN的长为.3(2023·辽宁葫芦岛·统考二模)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,点D是AC的中点,点E是斜边AB上一动点,沿DE所在直线把△ADE翻折到△A DE的位置,A D交AB于点F.若△BA F为直角三角形,则AE的长为.4(2022秋·河北张家口·八年级统考期中)在△ABC中,∠C=90°,点D、E分别在AC、AB边上(不与端点重合).将△ADE沿DE折叠,点A落在A 的位置.(1)如图①,当A 与点B重合且BC=3,AB=5.①直接写出AC的长;②求△BCD的面积.(2)当∠A=37°.①A 与点E在直线AC的异侧时.如图②,直接写出∠A EB-∠A DC的大小;②A 与点E在直线AC的同侧时,且△A DE的一边与BC平行,直接写出∠ADE的度数.【类型六几何图形中的方程思想-公边问题(利用公边建立方程)】1如图,在△ABC中,AB=10,BC=9,AC=17,则BC边上的高为.【变式训练】1已知:如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,CD=3,BD=5,则AC=.2如图,在Rt△ABC和Rt△ADE中,∠B=∠D=90°,AC=AE,BC=DE,延长BC,DE交于点M.(1)求证:点A在∠M的平分线上;(2)若AC∥DM,AB=12,BM=18,求BC的长.【类型七实际问题中的方程思想】1(2022·全国·八年级)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地⋯⋯”翻译成现代文为:如图,秋千绳索OA悬挂于O点,静止时竖直下垂,A点为踏板位置,踏板离地高度为一尺(AC=1尺).将它往前推进两步(EB⊥OC于点E,且EB=10尺),踏板升高到点B位置,此时踏板离地五尺(BD=CE=5尺),则秋千绳索(OA或OB)长尺.【变式训练】1(2022·全国·八年级课时练习)如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸2(2022·河南·金明中小学八年级期中)《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高短2尺;斜放,门对角线长恰好是竿长的2倍.问门高、门宽各为多少?3(2022·重庆市求精中学校八年级期中)在一条东西走向的河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.4(2022·浙江·浦江县实验中学八年级期中)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC'D',最后折叠形成一条线段BD .某家装厂设计的折叠床是AB=4cm,BC=8cm,(1)此时CD为 cm;(2)折叠时,当AB⊥BC′时,四边形ABC′D′的面积为cm2.。
三角形问题中的数学思想方法

三角形问题中的数学思想方法数学思想和方法是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂.因此,在解三角形题过程中准确快捷的关键是正确运用数学思想方法.这里对三角形解题时常用的分类讨论思想、整体思想、方程思想、转化思想、数形结合思想等举例予以说明,以供同学们学习参考应用.一、分类讨论思想由于题目的约束较弱(条件趋一般)或图形位置的变化常常使同一问题具有多种形态,因而有必要考查全面(所有不同情况)才能把握问题的实质.此种情况下应当进行适当分类,就每种情形研究讨论结论的正确性.例1 在等腰三角形中,一腰上的中线把它的周长分为15cm 和6cm 两部分,求三角形各边的长.分析:要注意等腰三角形有两边相等, 一腰上的中线把它的腰分成的两段相等.由于问题中未指明哪一段为15cm ,哪一段为6cm ,故需分类讨论.解:设腰长为xcm ,底边为ycm ,即AB=x ,则AD=CD=21x ,BC=y ⑴ 若x+21x=6时,则y+21x=15. 由x+21x=6得x=4.把x=4代入y+21x=15得y=13. 因为4+4<13,所以不能构成三角形. ⑵ 若x+21x=15时,则y+21x=6. 由x+21x=15得x=10.把x=10代入y+21x=15得y=1. 10+1>10符合题意, 所以三角形三边分别为10cm 、10cm 、1cm.例2 已知非直角三角形ABC 中,∠A=45°,高BD 和CE 所在直线交于H ,求∠BHC 的度数.分析:三角形的形状不同,高的交点的位置也就不同.高的交点可能在三角形内部,也可能在三角形外部,故应分两种情况加以讨论.解:⑴当△ABC 为锐角三角形时(图2)∵BD 、CE 是△ABC 的高, ∠A=45°, ∴∠ADB=∠BEH=90°. 在△ABD 中, ∠ABD=180°-90°-45°=45°.图1图2ABC D H E∵∠BHC 是△BHE 的外角, ∴∠BHC=90°+45°=135°. ⑵当△ABC 为钝角三角形时(图3)∵H 是△ABC 两条高所在直线的交点 ∠A=45°, ∴∠ABD=180°-90°-45°=45°.在Rt △BEH 中, ∠BHC=180°-90°-45°=45°. ∴∠BHC 的度数是135°或45°.注意:涉及三角形高的问题,常常会因为高的位置而需要讨论,否则就会漏解. 二、整体思想研究某些数学问题时,往往不是以问题的某个组成部分为着眼点,而是将待解决的问题看作一个整体,通过研究问题的整体形式,整体结构做整体处理后,达到解决问题的目的.例3 如图4,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数.分析:观察图形可得,图由一个四边形和一个三角形构成,可根据四边形和三角形的内角和定理求度数之和.解:因为∠A +∠C+∠E=180°, 又因为∠B+∠D+∠F+∠G=360°,所以∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.剖析:例题中若直接求出每一角的度数再求其和显然是做不到的.因此,设法整体求值是解题的关键.事实上,有些数学问题,如果从局部去考虑,拘泥于常规,则举步维艰.如果从全局着手,突破常规,则会柳暗花明.三、方程思想求值时,当问题不能直接求出时,一般需要设未知数继之建立方程.用解方程的方法求出结果,这也是解题中常见的具有导向作用的一种思想.例4 如图5,在△ABC 中,∠B =∠C ,∠1=∠2,∠BAD=40°.求∠EDC. 分析:利用三角形的外角性质,设法建立关于∠EDC 的方程. 解:设∠EDC=x.因为∠1是△DEC 的外角,所以∠1=x+∠C. 又因为∠1=∠2,所以∠2=x+∠C.又因为∠2是△ABD 的外角,所以∠ADC=∠B+∠BAD. 所以∠B+∠BAD =∠2+x ,即∠B+40°=∠C+2x. 因为∠B =∠C ,所以2x=40°,解得x=20°.A BDHCE图3图5AEGFB CD图4剖析:方程是解决很多数学问题的重要工具,很多数学问题可以通过构造方程而获解.事实上,用设未知数的方法表示所求,可使计算过程书写简便,也易于表明角与角之间的关系.四、转化思想用简单、已学过的知识解决复杂、未知的知识,把复杂的问题转化为简单的问题,将陌生的问题转化为熟悉的问题来解.这种解题思想叫转化思想.例5 如图6,求五角星各顶角之和.分析:因为∠A 、∠B 、∠C 、∠D 、∠E 较分散,本例中又不 知其度数,因此,应设法将它们集中起来,将问题转化为三角形 来处理.根据三角形外角性质和内角和定理可以求解.解:因为∠1=∠C+∠E ,∠2=∠B+∠D ,又因为∠1+∠2+∠A=180°,所以∠A+∠B+∠C+∠D+∠E=180°.点拨:此题还可以连接CD 求解.当我们求多个角之和不能直接计算时,应考虑转化为三角形求解.五、数形结合思想例6 如图7,在△ABC 中,已知AD 是角平分线, ∠B=60°,∠C=45°,求∠ADB 和∠ADC 的度数.分析:在△ABD 中,∠ADB 是一个内角,它等于180°-∠B -∠BAD ,故求出∠BAD 即可求出∠ADB 的度数,这由已知条件不难求得;同理可求出∠ADC 的度数.解:在△ABC 中,∵∠B=60°, ∠C=45°, ∠B+∠C+∠BAC=180°, ∴∠BAC=180°-∠B -∠C=180°-60°-45°=75°. 又∵AD 是角平分线, ∴∠BAD=∠DAC=21∠BAC=37.5°. 在△ABD 中,∠ADB=180°-∠B -∠BAD=180°-60°-37.5°=82.5°. 同理∠ADC=180°-∠C -∠DAC=180°-45°-37.5°=97.5°.点拨:几何与代数是患难兄弟,密不可分.在求解几何题中,通常数与形要结合起来才能打开思路,进行运算.否则,一头舞水,扑朔迷离,茫然不知所措.图6A D 图7数学思想方法在三角形中的应用一、方程思想方法:例1、已知:等腰三角形的周长是24cm ,腰长是底边长的2倍,求腰长.分析:根据等腰三角形的周长=腰长+腰长+底边长和腰长是底边长的2倍,可设一腰长的长为xcm ,可列方程为x +2x +2x =24,解之即可.解:(1)设底边长x cm ,则腰长为2x cm x +2x +2x =24 x =4.8∴腰长=2x =2×4.8=9.6 (cm)点拨:用设未知数,找相等关系,列方程来解,体现了几何问题用代数方法解和方程思想.二、分类讨论的思想方法:例2、已知斜三角形ABC 中,∠A=45°,高BD 和CE 所在直线交于H ,求∠BHC 的度数.分析:三角形的形状不同,高的交点的位置也就不同,斜三角形包括锐角三角形和钝角三角形,故应分两种情况讨论.图1ACD解:∵△ABC 为斜三角形,∴△ABC 可能是锐角三角形,也可能是钝角三角形, (1) 当△ABC 为锐角三角形时(如图1), ∵BD 、CE 是△ABC 的高,∠A=45°, ∴∠ADB=∠BEH=90°,∴∠ABD=90°-45°=45°,∴∠BHC=∠ABH+∠BEH=45°+90°=135°.(2)当△ABC为钝角三角形时(如图2),H为△ABC的两条高所在直线的交点,∠A=45°,∴∠ABD=90°-45°=45°,在Rt△EBH中,∠BHC= 90°-∠ABD=90°-45°=45°.综上所述,∠BHC的度数是135°或45°.点拨:当问题出现的结果不唯一时,我们就需要分不同的情况来解决,这就是分类的思想.此类问题的出现,往往会被同学们忽视,或考虑不全面,希望大家在平时就要养成分类解析的习惯.本题易犯的错误是只考虑锐角三角形的情况,而造成解答不全面的错误.三、转化的数学思想方法:例3、如图3,已知五角星形的顶点分别为A、B、C、D、E,请你求出∠A+∠B+∠C+∠D+∠E的度数.分析:直接求这五个角的度数和显然比较难,又考虑到此图中提供的角应与三角形有关,我们应该想办法将这几个角转化成三角形的内角,然后利用三角形的内角和定理求解.解法一:∵∠1是△CEM的外角,∴∠1=∠C+∠E,∵∠2是△BDN的外角,∴∠1=∠B+∠D.在△AMN中,由三角形内角和定理,得∠A+∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=180°.解法二:如图4,连结CD,在△BOE和△COD中,∠5=∠6,∵∠3+∠4+∠6=∠B+∠E+∠5=180°,∴∠3+∠4=∠B+∠E.在△ACD中,∠A+∠ACE+∠ADC=180°,∴∠A+∠ACE+∠ADC+∠3+∠4+∠ADB=180°,∴∠A+∠B+∠C+∠D+∠E=180°.点拨:在遇到不熟悉的数学问题时,要善于研究分析该问题的结构,通过“拼”、“拆”、“合”、“分”等方法将之转化为熟悉问题来解决.这种将不熟悉的数学问题转化为熟悉的数学问题来解决,这就是转化的思想.在运用三角形知识解决有关问题时,通过添加辅助线将一般图形转化为三角形来解决是常用解答方法之一.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①审 ②设 ③列 ④解 ⑤验 ⑥答
双塔初中 李晋珍
1、Rt⊿ABC中,∠C= 90°, AC=6,
24
BC=8,则斜边AB上的高线CD=————5——
B
2、如图, ⊿ABC中,D、E是AB、AC上的 点,且DE∥BC,若DE=2,BC=3,DB=1则
AD的长是———2———
24 BC=8,则斜边AB上的高线CD=———5———
面积不变性
B
2、如图, ⊿ABC中,D、E是AB、AC上的
点,且DE∥BC,若DE=2,BC=3,BD=1,
则AD的长是———2———
相似性质
D
B
C
A D
A
E C
3、如图,⊙O的弦AB⊥半径OE于D,若AB=12,
DE=2,则⊙O的半径是———1—0——
F
3
C
A
B
B
A
P
D
C
A
B
P
A
B
D
D
B
C
A D
A
E C
3、如图,⊙O的弦AB⊥半径OE于D,若AB=12,
DE=2,则⊙O的半径是———1—0——
o
AD
B
E
4、 如图,在RtABC中, C 90°, AB AC 2, SinB 4 ,
5
求AC的长. AC=8
A
B
C
常用的等量关系:
1、Rt⊿ABC中,∠C=90°,AC=6,
1
2
3
4
如图,在直角梯形ABCD中,∠A=90°,
AB∥CD,AB=1,CD=6,
(1)若AD=5,在线段AD上是否存 A 1 B
在点P,使得以点P、A、B为顶点 P 的三角形和以点P、C、D为顶点的
三角形相似?若存在,这样的点P有
几个?它们到点A的距离是多少?
若不存在,请说明理由。
D
C
6
反思:点的个数与方程解的个数有什么联系?
如图,在直角梯形ABCD中,∠A=90°,
AB∥CD,AB=1,CD=6,
(2)若设AD=l,在线段AD
上存在唯一的一个点P,使 得以点P、A、B为顶点的三 角形和以点P、C、D为顶点
的三角形相似?求l的取值范
围。
A 1B
P
D
C
6
如图,在直角梯形ABCD中,∠A=90°,
AB∥CD,AB=1,CD=6,
4. 要尝试一题多解,选择最优方案.
如图,在 ABCD中,AE、AF是两条高
线,∠EAF=60°,CE=6,CF=3,
(1)求线段BE的长。
(2)求 ABCD的面积。 A
D
60°
F
B E
3 C
6
1
2
3
4
2
8
A B'
x? 1
2
6E
10
B
10
D
6
3
C
2
8
A B'
D
?x 6-x
6E
6-x
10
6
B
C
10
A 1B
(3)设AD=l,若在线段AD
上存在两个点P,使得以点P、
P
A、B为顶点的三角形和以点
P、C、D为顶点的三角形相
似?求l的值。
D
C
6
课堂小结
1.要善于用方程思想解决几何问题; 2.几何图形中常用的等量关系是: ①面积不变性 ② 勾股定理
③ 相似三角形 的性质
④直角三角形的边与角的关系 ; 3.设好未知数后,要尽量把已知条件在图上标 出来;
勾股定理
o
AD
B
E
4、 如图,在RtABC中, C 90°, AB AC 2, SinB 4 ,
5
求AC的长. AC=8
A
解直角三角形中边角关系
B
C
如图,已知矩形ABCD中,E是AB上一点, 沿EC折叠,使点B落在AD边的B‘处,若AB=6, BC=10,求AE的长。
A B'
D
?
6E
B
C
10
2
8
A B'
D
?x
6E
6-x
10 6
B
C
10
2
8
A B'
?x 1
2
6E
10
B
10
D
6
3
C
A
2x Bx E
6+x
D
2x-3
F
3
6
C
A
6+x
D
2x Bx E
32x 3
6
2x-3
F
3
C
A
6+x
D
60° 32x 3
2x 3x
2x-3
F
B x 6+Ex 6
3
C
A
6+x
30°
2x
Bx E
6
D
2x-3