用方程思想解几何图形题针对初一
人教版数学七年级上册第四章几何图形初步—线段的计算热点归纳【含答案】

线段的计算热点题型归纳一、直接计算例 如图,AB=40,点C 为AB 的中点,点D 为CB 上的一点,点E 是BD 的中点,且EB=5,求CD 的长。
解:因为AB=10.点C 为AB 的中点,所以CB=AB=×40=20.1212因为点E 为BD 的中点,EB=5,所以BD=2EB=10,所以CD=CB-BD=20-10=10巩固练习:1.如图,P 是线段AB 上一点,点M 、N 分别为AB 、AP 的中点,若AB=16,BP=6,求线段MN 的长2.如图,已知线段AD=6cm,线段AC=BD=4cm,E 、F 分别是线段AB 、CD 的中点,求线段EF 的长。
二、方程思想例.如图,线段AB 上有两点M 、将AB 分成2:3两部分,点N 将AB分成4:1两部分,且线段MN=8cm,则AM 、NB 的长各为多少?解:依题意,设AM=2X,那么BM=3X,AB=5X.由AN:NB=4:1,得AN=AB=4X,BN=AB=x,4515即有4x-2x=8,解得x=4,所以AM=2x=2×4=8(cm),则AM 、BN 的长分别为8cm 、4cm.变式练习:如图,线段AB 上有两点M,N,AM:MB=5:11,AN:NB=5:7,MN=1.5,求AB 的长。
巩固练习:1.如图,线段AB 被点C 、D 分成了3:4:5三部分,且AC 的中点M 和DB 的中点N 之间的距离是40cm,求AB 的长。
2.如图,已知线段AB 上有两点C 、D,AD=35,BC=44,AC=,求23BD 线段AB 的长。
三、分类讨论的思想例 已知线段AB=14cm,在直线AB 上有一点C,且BC=4cm,,M 是线段AC 的中点,求线段AM 的长。
解:(1)当点C 在线段AB 上时因为M 是线段AC 的中点,所以AM=AC,又因为C=AB-12BC,AB=14cm,BC=4cm,所以AM=(AB-AC)= (14-4)=5cm.1212(2)当点C 在线段AB 的延长线上时,如图因为M 是线段AC 的中点,所以AM=AC,又因为12AC=AB+C,AB=14cm,BC=4cm,所以AM=(AB+C)= (14+4)=9cm.1212变式练习已知线段AB 、BC 在同一直线上,AB=5,BC=2,求AC 的长。
人教版七年级数学上册第四章 专题训练(九) 线段计算中的数学思想及动点问题 作业练习题

2.如图,AB=6 cm,点 C 是线段 AB 的中点,点 D 在 CB 上,且 CD =12 DB,求 AD 的长.
解:因为 AB=6 cm,点 C 是线段 AB 的中点, 所以 AC=CB=12 AB=3(cm), 因为点 D 在 CB 上且 CD=12 DB, 所以 CD=13 CB=1(cm), 所以 AD=AC+CD=3+1=4(cm)
5.如图,点C,D,E将线段AB分成2∶3∶4∶5四部分,M,P,Q,N 分别是线段AC,CD,DE,EB的中点,且MN=21,求线段PQ的长度.
解:设AC=2x,则CD=3x,DE=4x,EB=5x,于是有MC=x,EN= 2.5x,由题意得,MN=MC+CD+DE+EN,又因为MN=21,可得x+ 3x+4x+2.5x=21,解得x=2.所以PQ =PD+DQ=0.5(CD+DE)=3.5x= 7.
3.如图,已知线段AB=13 cm,BC=9 cm,点M是线段AC的中点.
(1)求线段AC的长度; (2)在线段CB上取一点N,使得NB=2CN,求线段MN的长.
解:(1)因为 AB=13 cm,BC=9 cm,所以 AC=AB-BC=13-9=4 (cm) (2)因为 M 是线段 AC 的中点,所以 MC=12 AC=12 ×4=2 (cm).因为 NB= 2CN,所以 CN=13 BC=3(cm).所以 MN=MC+CN=2+3=5 (cm)
类型五 角的计算中的动点问题 8.如图①,直线DE上有一点O,过点O在直线DE上方作射线OC,将 一直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条直角边OA 在射线OD上,另一边OB在直线DE上方.将直角三角板绕着点O按每秒 10°的速度逆时针旋转一周,设旋转时间为t秒. (1)当直角三角板旋转到如图②所示的位置时,OA恰好平分∠COD,此 时,∠BOC与∠BOE之间有何数量关系?请说明理由;
方程思想在解决几何问题中的运用

龙源期刊网
方程思想在解决几何问题中的运用
作者:郭永兰
来源:《甘肃教育》2018年第15期
【关键词】数学教学;几何问题;方程思想
【中图分类号】 G633.6 【文献标识码】 A
【文章编号】 1004—0463(2018)15—0125—01
方程思想是初中数学中的基本思想。
方程思想是从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法。
这种思想在代数、几何及生活实际中有着广泛的应用。
一般人们把代数称为“数”,把几何图形称为“形”,往往认为方程属于“数”的范畴,只有在解代数问题时才会想到运用方程,而解几何问题时会把方程抛之脑后,其实“数”与“形”在一定条件下是可以相互转化的。
有些几何问题表面上看起来与代数问题无关,只要找到几何图形中隐含的等量关系,就可以利用代数方法“列方程”来解决。
下面举例谈谈方程思想在解决几何问题中的经典运用。
一、运用直角三角形的边与角的关系
在运用三角函数(直角三角形的边与角的关系)解决问题的过程中,往往把所求的量看作未知量,其余有关的量用含有未知量的式子表示出来并集中在一个直角三角形中,再通过直角三角形的边与角的关系列出关于未知量的方程以达到求解的目的。
总之,方程思想应用非常广泛,而熟练地利用方程思想解决问题,要做到以下两点:第一要具备用方程思想解题的意识。
第二要根据已知条件,寻找等量关系列方程。
数学思想是数学的精髓和灵魂,是对数学内容的一种本质认识。
作为数学教师,更应该以培养学生数学思想为目标,让孩子们拥有终身受益的数学思想方法。
编辑:张昀。
方程思想在初中几何中的运用

方程思想在初中几何中的运用作者:吴春红来源:《天津教育·中》2020年第12期【摘要】初中阶段所涉及的各种知识点中都有方程思想的影子,方程思想从本质上说是一种同代数相关的思想,因此部分几何问题似乎同方程思想没有联系,不过在解决这类问题的过程中人们往往发现没有方程思想的参与是行不通的。
所以,教师应培养学生掌握问题中“隐形”条件并借助此类条件对数学问题加以解决的能力,也就是要培养学生将方程思想运用于各类数学问题解决的能力。
本文就方程思想在初中几何中的运用做了一点探索。
【关键词】方程思想;几何;运用中图分类号:G633.63 文献标识码:A 文章编号:0493-2099(2020)35-0141-02The Application of Equation Thought in Junior Middle School Geometry(Xiting Junior High School, Tongzhou District, Nantong City, Jiangsu Province,China)WU Chunhong【Abstract】The various knowledge points involved in the junior high school stage have the shadow of equation thinking. Equation thinking is essentially a kind of algebra-related thinking.Therefore, some geometric problems seem to have no connection with equation thinking, but they are solving such problems. In the process, people often find that the participation without equation thought is not feasible. Therefore, teachers should cultivate students' ability to master the "invisible" conditions in problems and use such conditions to solve mathematical problems, that is, to cultivate students' ability to apply equation thinking to solving various mathematical problems. This article does a little exploration on the application of equation thinking in junior high school geometry.【Keywords】Thoughts of equation;Geometry; Application一、初中几何知识概况在初中数学学科中,方程思想是始终涉及其中的,初中阶段几何教学中的知识点主要涉及针对三角形、圆形以及四边形的求解。
解题技巧专题:勾股定理与面积问题、方程思想压轴题七种模型全攻略(学生版)

解题技巧专题:勾股定理与面积问题、方程思想压轴题七种模型全攻略【考点导航】目录【典型例题】【类型一三角形中,利用面积求斜边上的高】【考点二结合乘法公式巧求面积或长度】【考点三巧妙割补求面积】【考点四“勾股树”及其拓展类型求面积】【考点五几何图形中的方程思想-折叠问题(利用等边建立方程)】【考点六几何图形中的方程思想-公边问题(利用公边建立方程)】【考点七实际问题中的方程思想】【典型例题】【类型一三角形中,利用面积求斜边上的高】1(2023春·新疆阿克苏·八年级校联考阶段练习)若一个直角三角形的两条直角边长分别是5cm 和12cm ,则斜边上的高为多少()A.8013B.13C.6D.6013【变式训练】1(2023春·内蒙古鄂尔多斯·八年级统考期末)如图,在2×2的方格中,小正方形的边长是1,点A 、B 、C 都在格点上,则AC 边上的高为()A.5B.322 C.355D.322(2023春·辽宁朝阳·八年级校考期中)如果一个等腰三角形的腰长为13,底边长为24,那么它底边上的高为()A.12B.24C.6D.53(2022·全国·八年级课时练习)如图,在网格中,每个小正方形的边长均为1.点A、B,C都在格点上,若BD是△ABC的高,则BD的长为.4(2023春·安徽合肥·八年级校考期末)如图所示,在边长为单位1的网格中,△ABC是格点图形,求△ABC中AB边上的高.5如图,在Rt△ABC中,∠C=90°,AC=8,在△ABE中,DE是AB边上的高,DE=12,S△ABE=60.(1)求BC的长.(2)求斜边AB边上的高.6(2023秋·全国·八年级专题练习)在△ABC中,∠C=90°,AC=3,CB=4,CD是斜边AB上高.(1)求△ABC的面积;(2)求斜边AB;(3)求高CD.【类型二结合乘法公式巧求面积或长度】1已知在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,若a+b=10cm,c=8cm,则Rt△ABC的面积为()A.9cm2B.18cm2C.24cm2D.36cm2【变式训练】1在△ABC中,AD是BC边上的高,AD=4,AB=410,AC=5,则△ABC的面积为()A.18B.24C.18或24D.18或302直角△ABC三边长分别是x,x+1和5,则△ABC的面积为.【类型三巧妙割补求面积】1(2023春·河南许昌·八年级校考期中)如图,在四边形ABCD中,已知∠B=90°,∠ACB=30°,AB=6,AD=13,CD=5.(1)求证:△ACD是直角三角形;(2)求四边形ABCD的面积.【变式训练】1(2023春·内蒙古呼伦贝尔·八年级校考期中)如图所示,是一块地的平面图,其中AD=4米,CD=3米,AB=13米,BC=12米,∠ADC=90°,求这块地的面积.2(2023春·安徽马鞍山·八年级校考期末)已知a,b,c是△ABC的三边,且a=23,b=36,c=66.(1)试判断△ABC的形状,并说明理由;(2)求△ABC的面积.3(2023春·山东菏泽·八年级校考阶段练习)四边形草地ABCD中,已知AB=3m,BC=4m,CD= 12m,DA=13m,且∠ABC为直角.(1)求这个四边形草地的面积;(2)如果清理草地杂草,每平方米需要人工费20元,清理完这块草地杂草需要多少钱?4(2022春·重庆綦江·八年级校考阶段练习)计算:如图,每个小正方形的边长都为1.(1)求线段CD与BC的长;(2)求四边形ABCD的面积;(3)求证:∠BCD=90°.【类型四“勾股树”及其拓展类型求面积】1(2023秋·重庆渝中·八年级重庆巴蜀中学校考期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是6、10、4、6,则最大正方形E的面积是()A.20B.26C.30D.52【变式训练】1(2023·广西柳州·校考一模)如图,∠BDE=90°,正方形BEGC和正方形AFED的面积分别是289和225,则以BD为直径的半圆的面积是()A.16πB.8πC.4πD.2π2(2023春·全国·八年级专题练习)如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=;以Rt△ABC的三边向外作等边三角形,其面积分别为S1,S2,S3,则S1,S2,S3三者之间的关系为.3(2023春·八年级课时练习)已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别记作a、b、c.如图1,分别以△ABC的三条边为边长向外作正方形,其正方形的面积由小到大分别记作S1、S2、S3,则有S1+S2=S3,(1)如图2,分别以△ABC的三条边为直径向外作半圆,其半圆的面积由小到大分S1、S2、S3,请问S1+S2与S3有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答S1+S2与S3有怎样的数量关系;(3)若Rt△ABC中,AC=6,BC=8,求出图4中阴影部分的面积.4(2023春·江西南昌·八年级南昌市第三中学校考期中)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①如图2,3,4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,面积分别为S1,S2,S3,利用勾股定理,判断这3个图形中面积关系满足S1+S2=S3的有个.②如图5,分别以直角三角形三边为直径作半圆,设图中两个月牙形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,也满足S1+S2=S3吗?若满足,请证明;若不满足,请求出S1,S2,S3的数量关系.(2)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,则a2+b2+c2+d2=.【类型五几何图形中的方程思想-折叠问题(利用等边建立方程)】1(2023春·河南许昌·八年级统考期中)已知直角三角形纸片ABC的两直角边长分别为6,8,现将△ABC 按如图所示的方式折叠,使点A与点B重合,则CE的长是()A.54B.74C.154D.254【变式训练】1(2023春·湖北咸宁·八年级校考阶段练习)如图,有一块直角三角形纸片,∠C=90°,AC=4,BC= 3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()A.34B.1.5 C.53D.32(2023春·山东菏泽·八年级统考期中)如图,Rt△ABC中,∠B=90°,AB=4,BC=6,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N,则线段CN的长为.3(2023·辽宁葫芦岛·统考二模)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,点D是AC的中点,点E是斜边AB上一动点,沿DE所在直线把△ADE翻折到△A DE的位置,A D交AB于点F.若△BA F为直角三角形,则AE的长为.4(2022秋·河北张家口·八年级统考期中)在△ABC中,∠C=90°,点D、E分别在AC、AB边上(不与端点重合).将△ADE沿DE折叠,点A落在A 的位置.(1)如图①,当A 与点B重合且BC=3,AB=5.①直接写出AC的长;②求△BCD的面积.(2)当∠A=37°.①A 与点E在直线AC的异侧时.如图②,直接写出∠A EB-∠A DC的大小;②A 与点E在直线AC的同侧时,且△A DE的一边与BC平行,直接写出∠ADE的度数.【类型六几何图形中的方程思想-公边问题(利用公边建立方程)】1如图,在△ABC中,AB=10,BC=9,AC=17,则BC边上的高为.【变式训练】1已知:如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,CD=3,BD=5,则AC=.2如图,在Rt△ABC和Rt△ADE中,∠B=∠D=90°,AC=AE,BC=DE,延长BC,DE交于点M.(1)求证:点A在∠M的平分线上;(2)若AC∥DM,AB=12,BM=18,求BC的长.【类型七实际问题中的方程思想】1(2022·全国·八年级)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地⋯⋯”翻译成现代文为:如图,秋千绳索OA悬挂于O点,静止时竖直下垂,A点为踏板位置,踏板离地高度为一尺(AC=1尺).将它往前推进两步(EB⊥OC于点E,且EB=10尺),踏板升高到点B位置,此时踏板离地五尺(BD=CE=5尺),则秋千绳索(OA或OB)长尺.【变式训练】1(2022·全国·八年级课时练习)如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸2(2022·河南·金明中小学八年级期中)《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高短2尺;斜放,门对角线长恰好是竿长的2倍.问门高、门宽各为多少?3(2022·重庆市求精中学校八年级期中)在一条东西走向的河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.4(2022·浙江·浦江县实验中学八年级期中)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC'D',最后折叠形成一条线段BD .某家装厂设计的折叠床是AB=4cm,BC=8cm,(1)此时CD为 cm;(2)折叠时,当AB⊥BC′时,四边形ABC′D′的面积为cm2.。
运用方程思想求解初中几何问题例析

D
B
C
图3
分析:要求∆ABC的面积,就要先求AB的长度。 解:设AB=x,CD=y,求边长AB,根据已知条件列出
— 134 —
Copyright©博看网 . All Rights Reserved.
关于x、y的方程组,然后进行求解即可。
C
A
∵ Rt∆BDC∽Rt∆ABC,
的思路便明朗了,即设出EF长,用两种不同的方式表示 ∆ABD的面积,建立方程。
形的性质建立起等量关系,从而解决问题。数学家华罗 庚说:“数形结合百般好,隔裂分家万事休。”把直观的
解:如图4,过点E作EF⊥AC,垂足为F。设EF=x。
几何图形与抽象的数量关系结合起来,能够把复杂问题
因为C D为A B 边上的高,所以C D⊥ A B,∠A D C =90°。
简单化,把抽象问题具体化,从而优化解题路径。当教师 赋予几何求解以代数意义时,对其元素之间的关系进行
在Rt ∆ A DC中,∠A DC = 90°,于是CD 2+A D 2=AC2。 由于AC=10,CD=8,所以AD=6。
因为A E平分∠C A B且 E F⊥ AC,C D⊥ A B,所以 EF=ED。
=
10 。 5
分析:过E点作∆ACE的高EF,根据角平分线的性质
以上仅通过几个典型例题来引导学生把握方程思想
得知EF =ED。由已知条件可求出A D = 6。由于∆ ACD的面 积还可以表示为∆ ACE和∆ A ED的面积之和,这样本题
的精髓,强化学生利用方程思想解决问题的意识。其中 关键是挖掘已知条件,根据三角形、四边形、圆等几何图
2021 年第 22 期
SCIENCE FANS
教育教学 4
七年级上册 第四章 几何图形初步 教材分析 文字稿及例题解析含答案

第四章《几何图形初步》教材分析一、教材分析1.本章地位和作用本章是初中阶段“图形与几何”领域的第一章,是初中几何的起始章节,在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,初步尝试用数学的眼光观察立体图形与平面图形,分析它们之间的关系.并通过对线段和角等一些简单几何图形的再认识,初步接触由实验几何向推理几何的过渡.本章内容是几何知识的重要基础,对后续几何的学习有很重要的意义和作用.(1)内容上:本章分为两部分,第一部分“几何图形”,从观察现实生活中的各种物体抽象出几何图形或几何概念,体会几何图形的抽象性特点和数学的抽象性.第二部分“线段、角”是平面几何中最基础也是最重要的图形,有关线段和角的概念、公理、性质,相关的画法、计算、推理、几何语言与图形语言之间的转化能力,对今后几何学习将起到导向作用.(2)方法上:三种数学语言(文字语言、符号语言、图形语言)的转化贯穿于学习的始终.要学会用分析法、综合法思考解决几何问题,这也是今后解决几何问题的基本方法.(3)思想上:这一章中所涉及到从具体到抽象的思想、把立体图形转化为平面图形的思想、代数方法解决几何问题的思想、数形结合的思想、运动变换的思想、分类讨论的思想、方程的思想以及应用意识的渗透.2.本章学习目标(1)通过从实物和具体模型的抽象,了解几何图形、立体图形与平面图形以及几何体、平面和曲面、直线和曲线、点等概念.(2)能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合体得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象相应的几何体,制作立体模型,在平面图形和立体图形相互转换的过程中,培养空间观念和空间想象力.(3)进一步认识直线、射线、线段的概念,掌握它们的符号表示;掌握基本事实:“两点确定一条直线”、“两点之间,线段最短”,了解它们在生活和生产中的应用;理解两点间距离的意义,能度量两点间的距离;了解平面上两条直线具有相交和不相交两种位置关系;会比较线段的大小;理解线段的和、差及线段中点的概念,会画一条线段等于已知线段.(4)理解角的概念,掌握角的符号表示;会比较角的大小;认识度、分、秒,并会进行简单的换算,会计算角的和与差.了解角的平分线、余角、补角的概念,知道余角和补角的性质.(5)初步认识几何图形是描述现实世界的重要工具,初步应用几何图形的知识解决一些简单的实际问题,培养学习图形和几何知识的兴趣,通过交流活动,初步形成积极参与数学活动、主动与他人合作交流的意识.3.本章知识结构图重点:(1)几何与图形的基本概念,线段、角的基本知识,图形与几何的知识与客观实际的联系.(2)熟悉一些基本的几何语言,养成良好的几何作图的习惯,体会和模仿几何计算的较为规范的书写方式.(3)结合立体图形与平面图形的互相转化的学习,来发展空间观念以及一些重要的概念、性质.难点:(1)概念的抽象性:能由实物形状想象(抽象)出几何图形,由几何图形想象出实物形状.(2)对图形的表示方法,对几何语言的认识与运用.(3)根据文字作图的训练,注意到其中可能蕴含的分类讨论等情形.5.本章共16课时,具体分配如下(仅供参考):4.1 几何图形 4 课时4.2 直线、射线、线段 3 课时4.3 角 5 课时4.4 课题学习 2 课时小结 2 课时二、教学建议1. 总体教学建议(1) 教学中要注意与小学知识内容的衔接,要在已有的知识基础上教学,避免不适当的重复.【小学要求】:对于一些简单几何体和平面图形有一些感性的了解,能结合实例了解线段、射线和直线,了解一些几何体和平面图形的基本特征,知道周角、平角,了解周角、平角、钝角、直角、锐角之间的大小关系,能辨认从不同方向(前面、侧面、上面)看到的物体的形状图,能认识最简单的几何体(长方体、正方体和圆柱)的展开图.(2)要善于利用模型、生活实物、图片、多媒体工具演示等要学生充分去体验激发学生兴趣.多从生活中的实物出发,让学生感受到图形普遍存在于我们的周围,运用信息技术工具的展现丰富多彩的图形,进行动态演示.在实践中培养学生学习的兴趣.对于一些抽象的概念、性质等,也可借助实物或多媒体,让学生在探索中逐步理解这些知识. (3)要重视画图技能的培养.应注意要求学生养成良好的习惯,画图要认真,图应该画得清楚、干净,并能很好地表现图形之间的位置关系.在画图的过程中,一方面培养学生的绘图技能,同时也培养学生严谨、认真的学习态度,形成良好的个性品质.在这方面老师也应起到良好的示范作用. (4)要重视几何语言的教学.几何图形是“空间与图形”的研究对象,对它的一般描述表示是按“几何模型→图形→文字→符号”这种程序进行的.其中,图形是将几何模型第一次抽象后的产物,也是形象、直观的语言;文字语言是对图形的描述、解释与讨论;符号语言则是对文字语言的简化和再次抽象.显然,首先建立的是图形语言,其次是文字语言,再次是符号语言,最后形成的是对于研究对象的三种数学语言的综合描述,有了这种整体认识,三种语言达到融汇贯通的程度,就能基本把握对象了.要注意概念的定义和性质的表述,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.准确的几何语言应当贯穿课堂、作业、课外习题等各个环节,逐步训练学生的几何推理表达. 这些不仅是学习好本章的关键,同时对于学好以后各章也是很重要的.(5)在学习中通过对比(如直线、射线、线段)和类比(线段和角)加深理解. (6)注意训练几何推理书写方式,纠正用算术式进行几何计算的习惯: 【“旧”习惯】90245÷=【“新”写法】11904522COB AOB ∠=∠=⨯= 【为什么习惯要“改”?】体现了图形语言和符号语言的对应;体现了推理的过程;从算术思维到代数思维.(7)要通过立体图形的三视图与展开图发展空间概念(不要过于总结规律).(8)要注重基本概念与性质的教学. 例如:①在研究直线、线段、射线的有关概念时,容易出现延长直线或延长射线之类的错误,在用两个大写字母表示射线时,忽视第一个字母表示的是这条射线的顶点.②直线有这样一个重要性质:经过两点有一条直线,并且只有一条直线.即两点确定一条直线.线段有这样一条重要性质:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.这两个性质是研究几何图形的基础,复习时应抓住性质中的关键性字眼,不能出现似是而非的错误.③注意线段的中点是指把线段分成相等的两条线段的点;而连结两点间的线段的长度,叫做这两点的距离.这里应特别注意线段与距离的区别,即距离是线段的长度,是一个量;线段则是一种图形,它们之间是不能等同的.④在复习角的概念时,应注意理解两种方式来描述,即一种是从一些实际问题中抽象地概括出来,即有公共端点的两条射线组成的图形,叫做角;另一种是用旋转的观点来定义,即一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.角的两种定义都告诉我们这样一些事实:(1)角有两个特征:一是角有两条射线,二是角的两条射线必须有公共端点,两者缺一不可;(2)由于射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边的长短无关;(3)当角的大小一旦确定,它的大小就不因图形的位置、图形的放大或缩小而改变.如一个37°的角放在放大或缩小若干倍的放大镜下它仍然是37°不能误认为角的大小也放大或缩小若干倍.另外对角的表示方法中,当用三个大写字母来表示时,顶点的字母必须写在中间,在角的两边上各取一点,将表示这两个点的字母分别写在顶点字母的两旁,两旁的字母不分前后.⑤在研究互为余角和互为补角时,容易混淆这两个概念.常常误认为互为余角的两个角的和等于180°,互为补角的两个角的和等于90°.(9)要准确把握好教学要求总体上说,起始章的教学要求不宜过高,要充分保护学生学习积极性,避免产生畏难情绪,但是基础知识要落实扎实,养成规范的表达分析习惯,为后续学习打好基础,因此要注意根据学生具体情况来把握教学要求.①立体图形和平面图形、点线面体的概念要求学生在实际背景中认识、理解这些概念,体会抽象的过程,而不是通过形式化的描述让学生接受概念.②视图的知识对于三视图大部分内容是安排在第29章“视图与投影”中的.在这一章,没有给出严格的三视图的概念,是要求能从一组图形中辨认出是从什么方向看得到的图形,能说出从不同方向看一些最基本的几何体(长方体、正方体、圆柱、圆锥、球)以及它们的简单组合所能得到的图形(对于语言难以表达的,可画出示意图,基本形状正确即可,不做尺寸要求).③展开图的要求教材从展开和折叠两个方面都有要求,且教材中的习题中出现正方体表面有图案的情况,这也是中考的一个热点.圆锥的侧面展开图在后面的章节还要再学习,其余的多面体的展开图很少涉及,所以尽可能多做一些练习,尽量在本章中过关.在教学中,可以从看图分析图形特点进行想象或先动手做再分析图形,两方面同时进行.正方体的11种展开图,在操作中理解展开和折叠的过程,从不同的分类角度认识展开图.④推理能力的要求教科书是按照“简单说理”“说理”“推理”“用符号表示推理”不同层次分阶段逐步加深安排的.在本章,不仅要求学生通过观察、思考、探究等活动归纳出图形的概念和性质,还要“简单说理”.直线和线段性质的应用、余角和补角的性质的得出等都有简单说理的成分.教学中要注意利用这里“简单说理”的因素,为后面逐步让学生养成言之有据的习惯作准备.规范的推理形式,学生虽然一开始接受有些困难,随着教学的深入不断地纠正、强化,学生是可以掌握的,为以后的几何学习起到示范作用.本章中线段的中点、角平分线、互余、互补、同角的余角(补角)相等,等角的余角(补角)相等,要从文、图、式三方面加深理解,并加以应用,要配上适当的练习,巩固学生的说理.(10)关于本章作图的要求:①作一条线段等于已知线段②作已知线段的中点③作一个角等于已知角④作一个角的平分线2.各小节教学建议4.1.1 立体图形与平面图形知识点1:在实际背景中了解立体图形和平面图形的概念,体会抽象的过程,能举出实例.教学建议:1.理解从模型→图形,就是数学化的过程.2.能够认清N棱柱和N棱锥,圆柱和圆锥,注意“棱”字和“锥”字的写法;能区分棱柱(锥)与圆柱(锥),能区分圆形和球体,不要求但也可以认识棱台或圆台.知识点2:从不同角度看立体图形得到平面图形.教学建议:简单几何体要求会画图;复杂几何体能想象、辨认、说明即可.知识点3:立体图形的展开图.教学建议:1.对于立体图形展开图,学生首先要分析认清立体图形的空间结构,可以把每个面都标上它的位置名称,在展开后方便分清每个面所达到的位置.正方体的11种展开图,不要求学生记忆,重要的是展开和折叠的过程.鼓励学生自己动手尝试.圆锥的侧面展开图在后面圆一章中还能够再学习,其余的多面体的展开图很少涉及,所以尽可能多做一些练习,尽量在本章中过关.2. 通过“展开”和“围成”两种途径认识常见几何体的展开图.尽量提供学生动手操作的机会.4.1.2 点、线、面、体知识点:能从几何实体中抽象出点、线、面、体;知道“…动成…”.教学建议:这部分学生在小学阶段就有了相应的体验,关键是学生能进一步抽象理解这些概念,如对点的认识,它只表示一个位置,没有大小,甚至于无法画出来.这里还要说明线分直线和曲线,面分平面和曲面.4.2 直线、射线、线段知识点1:三种基本几何图形的概念、表示、作图、性质教学建议:联系:射线、线段是直线的一部分,反向延长射线得到直线,两方延长线段得到直线.区别:名称图像表示延伸端点度量直线 1.直线AB(或直线BA)2.直线l 向两端无限延伸0 不可度量射线 1.射线AB2.射线l 向一端无限延伸1 不可度量线段 1.线段AB(或线段BA)2.线段a不可延伸 2 可度量知识点2:几何语言和作图;点和直线教学建议:1.应该学会“过某点”、“点在线上/外”、“相交于某点”、“延长(到某点)”、“在某线上截取”、“连接AB”、“作直线/射线/线段AB”、“有且只有”等说法,并能画出相应的图形.2.学生在书写时可能会出现用小写字母表示点的问题.知识点3:尺规作图:作一条线段等于已知线段;叠合法比较两条线段的长度大小教学建议:要让学生理解为什么在“射线”上截取,在直线或线段上截取行不行.知识点4:线段的中点、N等分点的概念教学建议:1.强调中点必须在线段上,可以提出探究性问题“MA=MB,能否断言M就是线段AB的中点?”,可以要学生利用尺规作图进行探究.2.合理利用中点进行推理.知识点5:线段的和差倍分教学建议:1.注意规范符号语言的书写,要求学生模仿,从现在起必须变算术式为几何语言.2.建议此时不上难题、综合题,目的是先解决“三种语言”的问题,也为后续研究角的计算打好基础,分散难点.4.3.1 角知识点1:角的两种定义方法教学建议:1.通常情况下角的范围是(0,180].2.明确角的分类.3.在第二种定义下,说明角的范围可以进一步扩展到0和大于180的角.知识点2:角的三种表示方法教学建议:1.角的表达规范问题.2.书写时尽量写成简洁的表达形式.知识点3:角的大小、单位制、方位角教学建议:1.度分秒的转换、计算是难点,学生对于60进制的换算还是不太适应.2.一般方位,都统一用“北偏X”或“南偏X”表示;在图中标记角度.4.3.2 角的比较与运算知识点1:叠合法比较角度大小;角分线的概念;角度和差倍分的计算教学建议:1.类比“线段”的研究来学习“角”.可以从以下方面作类比:①定义、图形、符号表示②测量:测量工具、测量方法、度量单位③比较大小:两条线段/两个角的大小关系的方法④特殊位置:线段的等分点、角等分线⑤和差倍分运算:感受运算中的推理和方程思想⑥角的作图:感受作图中的方案设计2.典型习题:A CM BN4.3.3 余角和补角知识点:余角和补角的概念和计算教学建议:1.明确这两个概念仅表示数量关系、不涉及位置关系;但反过来,特殊的位置关系(垂直、邻补角)则往往会出现两个角互为余角/补角,可以用来计算角的大小.2.可以考虑将性质写成“已知-求证-证明”的形式,让学生初步感受几何中的推理和证明.4.4 课题学习制作长方体形状的包装纸盒通过这一学习体会长方体(立体图形)与其侧面展开图(平面图形)之间的关系.教学建议:可以安排与立体图形展开图教学结合进行.第四章几何图形初步小结复习1.建立完善的认知结构,体会一些数学思想方法的应用.2.注重渗透数学思想方法:分类讨论思想、方程思想、数形结合思想等等.分类讨论思想例1.两条相交直线与另外一条直线在同一平面内,求它们的交点个数?分析由于题设条件中并没有明确这三条直线的具体位置,所以应分情况讨论.前两条的关系很确定,当画第三条时,会出现分类,或平行于某一条,或相交于同一个点,或相交不在同一个点等三种情况.说明:在过平面上若干点可以画多少条直线,应注意这些点的分情况讨论;或在画其它的图形时,应注意图形的各种可能性.例2.点A,B,C 在同一条直线上,AB=3 cm,BC=1 cm.求AC的长.方程思想在处理有关角的大小,线段大小的计算时常需要通过列方程来解决.例.如果一个角的补角是150°,求这个角的余角.分析若设这个角的大小为x°,则这个角的余角是90°-x,于是由这个角的补角是150°可列出方程求解.数形结合思想例.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN,求∠NEM的度数.说明:对于几何中的一些概念、性质及关系,应把几何意义与数量关系结合起来加以认识,达到形与数的统一.三、几个主要知识点1.从不同方向看例1.将两个大小完全相同的杯子(如图1-甲)叠放在一起(如图1-乙),则从上往下看图乙,得到的平面图形是()第解析:从上面往下看,可以看到上面杯子的底和两杯子的口都是圆形,应用实线表示,故选C. 例2.图2是一个几何体的实物图,从正面看这个几何体,得到的平面图形是()解析:此几何体由上下两部分组成,从正面看上面的几何体,看到的是一个等腰梯形,从正面看下面的几何体,看到的是一个长方形,再根据上面的几何体放置的位置特征,应选C. 2.展开与折叠例3.如图3所示的平面图形中,不可能围成圆锥的是()解析:圆锥的展开图是一个圆和一个扇形,D 选项中是一个圆和一个三角形,不能围成圆锥,故选D.例4.图4是正方体的展开图,原正方体相对两个面上的数字之和的最小值是DC B A 图1图2图3图4________.解析:将正方体的展开图折成正方体,可以得到2与6两个面相对,3与4两个面相对,1与5两个面相对,所以相对两个面上的数字之和的最小值是:1+5=6.故填6. 3 .线段的性质与计算例5. 在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是___________.解析:本题是线段性质的实际应用,根据线段的性质直接得到答案. 应填“两点之间,线段最短. ”例6.如图5,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =12,AC =8,则CD=______.解析:由图可知,CB=AB-AC=12-8=4. 又因为D 是BC 的中点,所以CD=12BC=2.故填2. 4. 角度的计算例7.如图6所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC ,则∠2的度数是()A. 20°B. 25°C. 30°D. 70°解析:由∠1=40°及平角定义,可求出∠BOC 的度数,由角平分线的定义,通过∠BOC=2∠2可求出∠2的度数.因为∠1=40°,所以∠BOC=180°-∠AOC=140°. 又因为OD 是∠BOC 的平分线,所以∠2=12∠BOC=70°. 故选D. 例8.如图7,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点,已知OE ⊥AB ,∠BOD=45°,则∠COE 的度数是()A. 125°B. 135°C. 145°D. 155° 解析:因为OE ⊥AB ,所以∠BOE=90°.因为∠BOD=45°,所以∠DOE=45°. 所以∠COE=180°-∠DOE=135°. 故选B. 5. 余角与补角例9.(1)已知∠α=20°,则∠α的余角等于度.(2)一个角的补角是36°35′,这个角是.12ABO C D 图6ACBEDO 图7 图5解析:(1)由余角定义,∠α的余角为:90°-20°=70°.故填70.(2)由补角定义,这个角是:180°-36°35′=143°25′.故填143°25′.6. 规律探究问题例10.平面上不重合的两点确定1条直线,不同三点最多可确定3条直线,若平面上不同的八个点最多可确定直线()A. 25条B. 26条C. 27条D. 28条解析:用n 表示平面上的点数,当n=2时,有1条直线;当n=3时,最多有直线:2+1=3(条);当n=4时,最多有直线: 3+2+1=6(条),…,由此可见,平面内有n 个点时,最多可画出2)1(-n n 条直线. 所以平面上不同的八个点最多可确定直线:8(81)2-=28(条).故选D.四、易错点点拨举例易错点1 对概念、性质把握不准例1 有下列说法:①直线是射线长度的2倍;②线段AB 是直线BA 的一部分;③直线、射线、线段中,线段最短. 其中说法正确的有( )A. 3个B. 2个C. 1个D. 0个错解:选A.分析:错解没有真正理解直线、射线的延伸性,这种延伸决定了直线、射线不能度量其长度,不能比较其长短,所以①③是错误的.正解:选C.易错点2 角的表示错误例2如图1所示,∠1,∠2,∠3用字母怎样表示?错解:∠1可表示为∠A ,∠2可表示为∠D ,∠3可表示为∠C.分析:错误的原因在于不能正确理解角的表示方法,同一顶点处有多个角时,必须用三个字母表示.正解:∠1可表示为∠CAD ,∠2可表示为∠ADC ,∠3可表示为∠ECF.易错点3换算之间的错误A CB D E1 2 3 图1例3计算:(1)30°52′+43°50′;(2)106°9′-34°58′.错解:(1)30°52′+43°50′=74°2′;(2)106°9′-34°58′=71°51′.分析:与度、分、秒有关的角度计算,应把度、分、秒分别计算,同时还要注意它们之间是60进制.错解错在把度、分、秒之间的进制当成了100进制.正解:(1)30°52′+43°50′ =(30°+43°)+(52′+50′)=73°102′=74°42′;(2)106°9′-34°58′=(105°+69′)-(34°+58′)=(105°-34°)+(69′-58′)=71°11′.易错点4 拼图识图错误例4如果将标号为A,B,C,D的正方形沿图中的虚线剪开后从新拼接得到标号为P,Q,M,N的四个图形,如图2所示,A,B,C,D分别与哪个图形对应?图2错解:A与P对应,B与Q对应,C与M对应,D与N对应.分析:本题错误的原因是观察图形不细心,像这样的问题,最好动手剪一剪,拼一拼.正解:A与M对应,B与P对应,C与Q对应,D与N对应.。
用方程思想解几何题市公开课获奖课件省名师示范课获奖课件

8
A B'
D
?x 6-x
6E
6-x
106Biblioteka BC102
8
A B'
D
?x
6E
6-x
10 6
B
C
10
2
8
A B'
?x 1
2
6E
10
B
10
D
6
3
C
A
2x Bx E
6+x
D
2x-3
F
3
6
C
A
2x B xE
6+x
D
32x 3
2x-3
F
3
6
C
A
6+x
D
2x
60° 32x 3
3x
2x-3
F
B x 6+E x
(3)令 y3=x, 设其图象与抛物线 C1 的交点的横坐标为 x0,x′0,且 x0<x′0,
∵抛物线 C2 可看作是抛物线 y=12x2 左右平移得到的, 观察图象,随着抛物线 C2 向右不断平移,x0,x′0 值不断增大, ∴当满足 2<x≤m 时,y2≤x 恒成立时,m 的最大值在 x′0 处取得. 可得,当 x0=2 时,所对应的 x′0 即为 m 的最大值.
于是将 x0=2 代入12(x-h)2=x,有12(x-h)2=2, 解得 h=4 或 h=0(舍),
∴y1=12(x-4)2, 此时,由 y2=y3,得12(x-4)2=x,解得 x0=2,x′0=8, ∴m 的值最大为 8.
A B'
D
?
6E
B
C
10
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a=10°
解得 ∠
所以这个角的度数是10 °
精品课件
例2. 点O在直线AB上,OC为射线,
∠1与∠2的度数
∠1比∠2的3倍少1这隐0°是含,求图的形数中量 关系,体现
解:∵ 3 ∠2 - ∠1=10的了数°数学形思结想合。
∠1+ ∠2=180°
C
∴ ∠1 =132.5°, ∠2=47.5°
12
A
O
x 3.设:设未知数 ,用代数式表示其他量 ;
4.列:根据相等关这系是列列出方方程程解;应用 5.解并检验方程题的最解关是键否的正一确步、符合题意; 6.答:写出答案.
精品课件
精品课件
典型例题
例1. 一个角的补角比它的余角的2倍多10°,求这个角。
解:设这个角为∠ a ,根据题意得
(180°- ∠ a) -2(90°- ∠ a)=10°
弦图
精品课件
赵爽 东汉末至三国时代吴国人 为《周髀算经》作注,并
著有《勾股圆方图说》。
参考:.hk
课堂小结
1.要善于用方程思想解决几何图形问题; 2.几何图形中现在常用的等量关系是: ①线段的和差倍分的关系 ②角的和差倍分的关系以及互余角、互补角、对顶角的性质。 3.设好未知数后,要尽量把已知条件在图上标出来; 4. 要尝试一题多解,选择最优方案
精品课件
温故知新
小亮用30元去买故事书和参考书,共5本, 单价分别为3元和8元,两种书各买了几本?
1、你有几种方法解答这个问题? 2、列方程(组)解应用题的一般步骤有哪些?
精品课件
列方程解应用题的一般步骤是:
1.审:分析题中已知量、未知量各是什么,
明确各量之间的关系;
2.找:根据题意找出等量关系;
B
精品课件
练习一
1.若一个角的余角的补角比这个角的补角小50°,则
这个角为
20°
2.有两个角,它们的比为7:3,而它们的差为72°,则这
两个角的度数分别为
126°、54°
精品课件
练习一
3.如图,AB是街道,点O表 示一家超市,点C、D是两个
居民小区,设计人员不小心把∠1、 ∠2、 ∠3的度数
弄丢了,身边没有量角器,只知道∠1- ∠2= ∠2 -∠3,
精品课件
用方程思想解几何图形题
精品课件
笛卡尔曾在《思维的法则》一书中提出过一个 解决各种问题的“万能方法”:
任何问题→数学问题→代数问题→方程求解
可见利用图形中的数量关系,建立方程,把几何问题转化成代数 问题,是一种非常重要的方法。
精品课件
方程思想
在解决数学问题时,有一种从未知转化为已知的手 段就是通过设元,寻找已知与未知之间的等量关系, 构造方程或方程组,然后求解方程完成未知向已知 的转化,这种解决问题的思想称为方程思想.
a
b
a b
b
精品课件
a-b
平方差公式
完全平方公式
精品课件
勾股定理的证明
b a
c
精品课件
(a + b)2=c2 + 4(½ab)
a2+2ab+b2=c2 + 2ab
a2 + b2 = c2
c
c2= (a b)2 + 4(½ab)
= a2 2ab + b2 + 2ab
精品课件
c2= a2 + b2
则∠2 的度数是
60°
C
D
2
13
A
O
B
精品课件
4、如图,直线AB,CD交于点O, ∠ AOE=90 °, ∠ AOC:∠ COE=5:4,则∠ AOD=( )
D
O
B
A
C E
精品课件
巩固提高
如图,直线AB⊥CD,垂足为点O,EF
是经过点O的一条直线∠COE= 1 ∠AOE,那 么∠COF的度数是( ) 4
CEAOFD NhomakorabeaB
精品课件
典型例题
例3. 如图,点A、B、C是直线l上 的三个点,若AC=6,BC=2AB, 求AB的长。
●
●
A
B
●
C
l
精品课件
练习二
如图,点C为线段AB上一点AC:CB=3:2,
D、E两点分别为AC、AB的中点,若线段 DE=2,求AB的长。
●
●
●
●
●
A
DE C
B
精品课件
利用面积法证明