用方程思想解几何题

合集下载

茶陵县五中九年级数学上册第二章一元二次方程6应用一元二次方程第1课时利用一元二次方程解决几何问题教案

茶陵县五中九年级数学上册第二章一元二次方程6应用一元二次方程第1课时利用一元二次方程解决几何问题教案

6 应用一元二次方程第1课时利用一元二次方程解决几何问题【知识与技能】使学生会用一元二次方程解应用题.【过程与方法】进一步培养学生将实际问题转化为数学问题的能力和分析问题、解决问题的能力,培养学生运用数学的意识.【情感态度】通过列方程解应用题,进一步体会运用代数中方程的思想方法解应用题的优越性.【教学重点】实际问题中的等量关系如何找.【教学难点】根据等量关系设未知数列方程.一、情境导入,初步认识列方程解应用题的步骤是什么?①审题,②设未知数,③列方程,④解方程,⑤答.【教学说明】初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题,一元二次方程的应用.二、思考探究,获取新知问题:有一张长6尺,宽3尺的长方形桌子,现用一块长方形台布铺在桌面上,如果台布的面积是桌面面积的2倍,且四周垂下的长度相同,试求这块台布的长和宽各是多少?(精确到0.1尺)分析:设四周垂下的宽度为x尺时,可知台布的长为(2x+6)尺,宽为(2x+3)尺,利用台布的面积是桌面面积的2倍构建方程可获得结论.解:设四周垂下的宽度为x尺时,依题意可列方程为(6+2x)(3+2x)=2×6×3.整理方程,得2x2+9x-9=0.解得x1≈0.84,x2≈-5.3(不合题意,舍去).即这块台布的长约为7.7尺,宽约为4.7尺.【教学说明】注意引导学生分析、理清题目中的数量关系,挖掘已知条件与要解决问题,激发学生解决问题的欲望,体会数形结合思想的应用.三、运用新知,深化理解1.见教材P52例1.2.直角三角形的两条直角边的和为7,面积是6,则斜边长为( B )A.37B.5C.38D.73.从正方形铁皮的一边切去一个2cm宽的长方形,若余下的长方形的面积为48cm2,则原来正方形的铁皮的面积为64cm2.4.如图,在一幅矩形地毯的四周镶有宽度相同的花边,地毯中间的矩形图案的长为6m,宽为3m,若整个地毯的面积为40m2,求花边的宽.解:设花边的宽为x m,依题意有(6+2x)(3+2x)=40,解得x1=1,x2=112-(不合题意应舍去).即花边的宽度为1m.5.如右图是长方形鸡场的平面示意图,一边靠墙,另外三边用竹篱笆围成,且竹篱笆总长为35m.(1)若所围的面积为150m2,试求此长方形鸡场的长和宽;(2)如果墙长为18m,则(1)中长方形鸡场的长和宽分别是多少?(3)能围成面积为160m2的长方形鸡场吗?说说你的理由.分析:如图,若设BC = x m,则AB的长为352x-m,若设AB = x m,则BC=(35-2x)m,再利用题设中的等量关系,可求出(1)的解;在(2)中墙长a = 18m意味着BC边长应小于或等于18m,从而对(1)的结论进行甄别即可;(3)中可借助(1)的解题思路构建方程,依据方程的根的情况可得到结论.解:(1)设BC=xm,则AB=CD=352x-m,依题意可列方程为x·352x-=150,解这个方程,得x1=20,x2=15.(2)当墙长为18m时,显然BC=20m时,所围成的鸡场会在靠墙处留下一个缺口,不合题意,应舍去,此时所围成的长方形鸡场的长与宽只能是15m和10m;(3)不能围成面积为160m2的长方形鸡场,理由如下:设BC = x m,由(1)知AB=352x-m,从而有x·352x-=160,方程整理为x2-35x+320=0.此时Δ=352-4×1×320=1225-1280<0,原方程没有实数根,从而知用35m的篱笆按图示方式不可能围成面积为160m2的鸡场.6.如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动.当其中一点到达终点时,另一点也随之停止运动.(1)如果P,Q同时出发,几秒钟后,可使△PCQ的面积为8cm2?(2)点P,Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半?分析:(1)如果P,Q同时出发,x s后,AP=xcm,PC=(6-x)cm,CQ=2xcm,此时△PCQ的面积为12×2x(6-x),令该式=8,由此等量关系列出方程求出符合题意值;(2)△ABC的面积的一半等于12×12AC·BC=12(cm2),令12×2x(6-x)=12,判断该方程是否有解,若有解则存在,否则不存在.解:(1)设xs后,可使△PCQ的面积为8cm2.由题意得AP=xcm,PC=(6-x)cm,CQ=2xcm,则12·(6-x)·2x=8.整理,得x2-6x+8=0,解得x1=2,x2=4.所以P,Q同时出发2s或4s后可使△PCQ的面积为8cm2.(2)由题意,得S△AB C=12AC·BC=12×6×8=24(cm2),令12×2x×(6-x)=12×24,x2-6x+12=0,b2-4ac=62-4×12=-12<0,该方程无实数解,所以不存在使得△PCQ的面积等于△ABC的面积的一半的时刻.四、师生互动、课堂小结1.回顾、整理并总结,让学生在活动中积累实践经验,理解建立数学模型的重要性.2.独立完成以上例题.1.布置作业:教材“习题2.9”中第2、3、4题.2.完成练习册中相应练习.本课时无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己的机会,在此过程中发现并总结学生存在的思维误区,便于今后的教学.课堂上注意激发学生的学习热情,帮助学生形成积极主动的求知态度.实际问题与二次函数一、知识点1、实物抛物线一般步骤①据题意,结合函数图象求出函数解析式;②确定自变量的取值范围;②据图象,结合所求解析式解决问题.2、实际问题中求最值①分析问题中的数量关系,列出函数关系式;②研究自变量的取值范围;③确定所得的函数;④检验x的值是否在自变量的取值范围内,并求相关的值;④解决提出的实际问题.3、结合几何图形①根据几何图形的性质,探求图形中的关系式;③根据几何图形的关系式确定二次函数解析式;④利用配方法等确定二次函数的最值,解决问题二、标准例题:例1:如图,斜坡AB长10米,按图中的直角坐标系可用y=33-x+5表示,点A,B分别在x轴和y轴上.在坡上的A处有喷灌设备,喷出的水柱呈抛物线形落到B处,抛物线可用y=13-x2+bx+c表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?【答案】(1)y=-1 3x2+433x+5;(2)当x=532时,水柱离坡面的距离最大,最大距离为254;(3)水柱能越过树,理由见解析【解析】(1)∵AB=10、∠OAB=30°,∴OB=12AB=5、OA =10×32=53,则A(53,0)、B(0,5),将A、B坐标代入y=-13x2+bx+c,得:17553035b cc⎧-⨯++=⎪⎨⎪=⎩,解得:4335bc⎧=⎪⎨⎪=⎩,∴抛物线解析式为y=-13x2+433x+5;(2)水柱离坡面的距离d=-13x2+433x+5-(-33x+5)=-13x2+533x=-13(x2-53x)=-13(x-532)2+254,∴当x=532时,水柱离坡面的距离最大,最大距离为254;(3)如图,过点C作CD⊥OA于点D,∵AC =2、∠OAB =30°, ∴CD =1、AD =3, 则OD =43,当x =43时,y =-13×(43)2+433×43+5=5>1+3.5, 所以水柱能越过树.总结:本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.例2:某兴趣小组想借助如图所示的直角墙角(两边足够长),用20m 长的篱笆围成一个矩形ABCD (篱笆只围,AB BC 两边),设AB x =m .(1)若花园的面积为962m ,求x 的值;(2)若在P 处有一棵树与墙,CD AD 的距离分别是11m 和5m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.【答案】(1)x 的值为8或12;(2)当9x =时,S 的值最大,最大值为99【解析】解:(1)(20)96x x -=,18x =,212x =x 的值为8或12(2)依题意得52011x x ≥⎧⎨-≥⎩,得59x ≤≤ 2(20)(10)100S x x x =-=--+当59x ≤≤时,S 随x 的增大而增大,所以,当9x =时,S 的值最大,最大值为99总结:此题主要考查二次函数的应用,解题的关键是根据题意找到等量关系与不等关系进行求解. 例3:一家商店销售某种商品,平均每天可售出20件,每件盈利40元为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件(1)若降价3元,则平均每天销售数量为件;(2)求每件商品降价多少元时,该商店每天销售利润为1200元?(3)求每件商品降价多少元时,该商店每天销售利润的最大值是多少元?【答案】(1)26;(2)每件商品应降价10元时,该商店每天销售利润为1200元;(3)当每件商品降价1 5元时,该商店每天销售利润最大值为1250元.【解析】(1)若降价3元,则平均每天销售数量为20+2×3=26件.故答案为:26;(2)设每件商品应降价x元时,该商店每天销售利润为1200元,根据题意,得(40﹣x)(20+2x)=1200 整理,得x2﹣30x+200=0,解得:x1=10,x2=20要求每件盈利不少于25元∴x2=20应舍去,解得x=10答:每件商品应降价10元时,该商店每天销售利润为1200元.(3)设每件商品降价n元时,该商店每天销售利润为y元则:y=(40﹣n)(20+2n)y=﹣2n2+60n+800n=﹣2<0∴y有最大值当n=15时,y有最大值=1250元,此时每件利润为25元,符合题意即当每件商品降价15元时,该商店每天销售利润最大值为1250元.总结:本题主要考查一元二次方程的应用问题,特别注意函数的取值范围,再求最大值是要先分析函数的取值范围,在计算函数值的最大值.例4:随着5G技术的发展,人们对各类5G产品的使用充满期待.某公司计划在某地区销售第一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可用1122p x=+来描述。

[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)

[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)

[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)1.函数的思想函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。

函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。

经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等。

2.方程的思想方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系。

3.函数思想与方程思想的联系函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x轴交点问题,方程f(x)=a有解,当且公当a 属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。

4.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点;(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=nbax)((n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

运用方程思想解决几何问题“六法”_

运用方程思想解决几何问题“六法”_
sαAB +a -PB =0.


所以2
S△ABC =3.
x2 -1

x+1
5=0,解 得 x1 =3- ,


x2 =3+
3+


(舍去),此时Байду номын сангаас 求 出 AF =6- 3-



(
)

所 以 存 在 直 线 EF 将 Rt△ABC 的 周 长 与
<5.

解法探究
2024 年 1 月下半月
面积同时平分,且 AE 的长为3-
解 x1 = 3,
又 3+x1 =3+ 3>4,所
x2 =- 3(舍去).




(ⅱ )若点 F 与 B 重合,如图 9,由 S△AEB = S△ABC

可知 E 为 AC 的 中 点,由 于 BC <AB ,故 BC +CE <
AE +AB ,所以不存在满足题设要求的直线 EF .
分线,
已知 BD =2
0,
EF=1
5,求
EF 平 分 Rt△ABC 的 周 长,设
解:设矩 形 的 长 AB =x,
图5
宽 BC =y.在 Rt△BAD 中,
BD2 = AD2 + AB2 ,即

因为 EF 是 BD 的垂直平分线,则有 BO=
x2 +y2 =2
0.
所以 △OFD≌△OEB.
所以 OE=OF=7.
°,所 以 可 得
71
解法探究
2024 年 1 月下半月
△BED ∽△BCA .
DE BD
k
9+k

巧用方程思想妙解几何试题

巧用方程思想妙解几何试题

‘ . .

因 此 LB D 的 度 数 为 10 . A 0。
三 求 图 形 的 面 积
因此s = × × :5k , △。 ÷ 5 6 1(m)建筑用地及绿

例 5 如 图 5 A, C三 个 村 , B, 庄在一条东西走 向的公路沿线 上 , A =2 i, C = k , B k B n 3 i 在 村 的 正 E n 北方 向有 一 _ 村 , 得 / D : D 测 _A C 4 。今 将 AA C 区 域 规 划 为 开 发 5. D

区, 除其中 4 i k 的水 塘外 , n 均作 为
在 AA E中 , LA B+LB E=10 B 2 E A 8。
I (0 + 1(  ̄2 3 。 ) P
1 0o。 .
6。 0 ):1O 8。
在 R AA G中 , ( t C 有 一2 +( 一 ) 5. ) 3 = 解 这 个 方 程 得 。 6 : 一1 舍 去 ) = , ( .
;。。。.。。.。。。 +..+..+++

例 2 如 图 2 四边 形 A C 为 梯 , BD
形 ,B/ D, B A /C LA C=9 。 A =9厘 0 ,B
米 , C= B 8厘 米 , D =7厘 米 , 为 A C D
的 中点 , 过 作 A 的 垂 线 交 B D C

= 6,
r + 卢= ,

l+ =0 +t 口 3。 O .
② 一① , 得 =3 。 . 0一



设 B ,0 F= F=8一 F= 贝 E A . 根据勾股定 理得 E 2 E 曰 . F =B +

列一元二次方程解几何问题

列一元二次方程解几何问题
3 mm的附着物,而导致流通截面减少至原来 的 4 .求这根水管原来的内壁直径.
9
2 (中考·黔西南州)某校准备修建一个面积为180平方
米的矩形活动场地,它的长比宽多11米,设场地的
宽为x米,则可列方程为( )
A.x(x-11)=180
B.2x+2(x-11)=180
C.x(x+11)=180
D.2x+2(x+11)=180
4.四周一片( ),听不到一点声响。 5.越是在紧张时刻,越要保持头脑的( )。
八、句子工厂。
1.世界上有多少人能亲睹她的风采呢? (陈述 句)
_________________________________ ______ ______ ______ ______ ______ ______ ______ 2.达·芬奇的“蒙娜丽莎”是全人类文 化宝库 中一颗 璀璨的 明珠。 (缩写 句子) ___________________________________ ______ ______ ______ ______ ______ ______ ____ 3.我在她面前只停留了短短的几分钟。 她已经 成了我 灵魂的 一部分 。(用 关联词 连成一 句话) __________________________________ ______ ______ ______ ______ ______ ______ _____
1、世上没有绝望的处境,只有对处境 绝望的 人。 2、挑水如同武术,武术如同做人。循序 渐进, 逐步实 现目标 ,才能 避免许 多无谓 的挫折 。
3、别想一下造出大海,必须先由小河川 开始。 4、自信是所有成功人士必备的素质之一 ,要想 成功, 首先必 须建立 起自信 心,而 你若想 在自己 内心建 立信心 ,即应 像洒扫 街道一 般,首 先将相 当于街 道上最 阴湿黑 暗之角 落的自 卑感清 除干净 ,然后 再种植 信心, 并加以 巩固。 信心建 立之后 ,新的 机会才 会随之 而来。

用一元二次方程解几何问题

用一元二次方程解几何问题

为7x cm,依题意得
(27 18x)(21 14x) 3 27 21 4
解得
x1
6
3 4
3
(不合意,舍去),x2
=
6—3 4
3
∴上、下边衬的宽均为 1.8 cm ,左、右
边衬的宽均为 1.4 cm
感悟新知
思考:如果换一种设未知数的方法,是否可以更简单
地解决上面的问题? 请你试一试.
解: 设正中央的矩形两边长分别为9x cm,7x cm.
认知基础练
6 用配方法解一元二次方程x2+2x-1=0, 可将方程配方为( A ) A.(x+1)2=2 B.(x+1)2=0 C.(x-1)2=2 D.(x-1)2=0
认知基础练
3 【2020·贵阳十七中期中】将代数式x2-10x+5配方 后,发现它的最小值为( B ) A.-30 B.-20 C.-5 D.0
方法技巧练
【点拨】根据a2+b2=12a+8b-52,可以求得a,b的 值 , 由 a , b , c 为 正 整 数 且 是 △ABC 的 三 边 长 , c 是 △ABC的最短边长,即可求得c的值.
方法技巧练
解:将已知等式两边同时加上 2, 得 x2+x12+2+2x+1x=2, 即x+1x2+2x+1x=2. 设 x+1x=y,则x+1x2+2x+1x=2 可化为 y2+2y =2.配方,得 y2+2y+1=2+1,∴(y+1)2=3.
方法技巧练
开平方,得 y+1=± 3. 解得 y1= 3-1,y2=- 3-1. ∴x+1x= 3-1 或 x+1x=- 3-1. 经检验,不存在实数 x 使 x+1x= 3-1,故舍去. ∴x+1x=- 3-1.
认知基础练
2 将代数式a2+4a-5变形,结果正确的是( D ) A.(a+2)2-1 B.(a+2)2-5 C.(a+2)2+4 D.(a+2)2-9

初中数学有哪些解题的思想方法

初中数学有哪些解题的思想方法

初中数学有哪些解题的思想方法
1,首先也是最重要的是转化思想。

无论是求解还是证明题,最核心的方法就是转化法。

例如要证明a=b,又已知a=c就设法证明b=c即可。

已知MN垂直平分线段AB,则MA=MB。

这样转化就用到了已知条件得到了新的条件,无形中离答案近了一步!
2.按类别讨论想法。

几何题如果没有图形,往往会有两个答案甚至更多。

最常见的是等腰三角形问题。

3,方程思想。

很多几何题需要利用勾股定理和相似作为等量关系列方程求出来。

还有些题则需要设x,但不需要列方程,最后x可以抵消。

4、整体思路。

需要用到一些复杂的求导过程,几何代数就是用这个思路来解题的。

比如郭的数学公益课,我们可以用整体论的思维去解一元二次方程。

5,数形结合思想。

解各类函数问题经常用到,数缺形时少直观,形少数时难入微,数形结合百般好,数形结合百般好,隔离分家万事休。

如果不能体会数形结合的妙处,不可能学好函数!
6、临界值思想。

经常用到求取值范围的问题。

郭老师,有十几年的初中数学教学经验,是数学教研组成员,辅导全国各地的学生。

开设公益教学课程:郭数学公益课系列,每天发布初中数学各章节考点及解题方法。

欢迎关注,免费学习。

用方程思想解几何题市公开课获奖课件省名师示范课获奖课件

用方程思想解几何题市公开课获奖课件省名师示范课获奖课件

8
A B'
D
?x 6-x
6E
6-x
106Biblioteka BC102
8
A B'
D
?x
6E
6-x
10 6
B
C
10
2
8
A B'
?x 1
2
6E
10
B
10
D
6
3
C
A
2x Bx E
6+x
D
2x-3
F
3
6
C
A
2x B xE
6+x
D
32x 3
2x-3
F
3
6
C
A
6+x
D
2x
60° 32x 3
3x
2x-3
F
B x 6+E x
(3)令 y3=x, 设其图象与抛物线 C1 的交点的横坐标为 x0,x′0,且 x0<x′0,
∵抛物线 C2 可看作是抛物线 y=12x2 左右平移得到的, 观察图象,随着抛物线 C2 向右不断平移,x0,x′0 值不断增大, ∴当满足 2<x≤m 时,y2≤x 恒成立时,m 的最大值在 x′0 处取得. 可得,当 x0=2 时,所对应的 x′0 即为 m 的最大值.
于是将 x0=2 代入12(x-h)2=x,有12(x-h)2=2, 解得 h=4 或 h=0(舍),
∴y1=12(x-4)2, 此时,由 y2=y3,得12(x-4)2=x,解得 x0=2,x′0=8, ∴m 的值最大为 8.
A B'
D

6E
B
C
10
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
解:(1)∵y1=12x2-x+1=12(x-1)2+12, ∴抛物线 C1 的顶点坐标为1,12. (2)①根据题意,可得点 A(0,1), ∵F(1,1), ∴AB∥x 轴,得 AF=BF=1, ∴A1F+B1F=2;
.
②P1F+Q1F=2 成立; 理由如下,如图,过点 P(xp,yp)作 PM⊥AB 于点 M.则 FM=1-xp,PM=1-yp, (0<xp<1),∴Rt△PMF 中,由勾股定理, 得 PF2=FM2+PM2=(1-xp)2+(1-yp)2,又点 P(xp,yp)在抛物线 C1 上, 得 yp=12(xp-1)2+12,即(xp-1)2=2yp-1, ∴PF2=2yp-1+(1-yp)2=y2p,即 PF=yp. 过点 Q(xQ,yQ)作 QN⊥AB,与 AB 的延长线交于点 N, 同理可得 QF=yQ. ∵∠PMF=∠QNF=90°,∠MFP=∠NFQ,∴△PMF∽△QNF, 有QPFF=PQMN,这里,PM=1-yp=1-PF,QN=yQ-1=QF-1, ∴QPFF=Q1-F-PF1,即P1F+Q1F=2.
24 BC=8,则斜边AB上的高线CD=———5———
面积不变性
B
2、如图, ⊿ABC中,D、E是AB、AC上的
点,且DE∥BC,若DE=2,BC=3,BD=1,
则AD的长是———2———
相似性质
D
.
B
C
A D
A
E C
3、如图,⊙O的弦AB⊥半径OE于D,若AB=12,
DE=2,则⊙O的半径是———1—0——
3.设好未知数后,要尽量把已知条件在图上标出来; 4. 要尝试一题多解,选择最优方案
.
如图,在 ABCD中,AE、AF是两条高
线,∠EAF=60°,CE=6,CF=3,
(1)求线段BE的长。
(2)求 ABCD的面积。 A
D
60°
F
B E
3 C
6
1
2.
3
4
2
8
A B'
x? 1
2
6E
10
B
10
.
D
6
A、B为顶点的三角形和以点
P、C、D为顶点的三角形相
似?若存在,这样的点P有
几个?它们到点A的距离是 多少?若不存在,请说明理 由。
D
C
6
.
如图,在直角梯形ABCD中,∠A=90°,
AB∥CD,AB=1,CD=6,
(2)若设AD=m,在线段
A 1B
AD上存在唯一的一个点P,
P
使得以点P、A、B为顶点的
.
如图,已知矩形ABCD中,E是AB上一点, 沿EC折叠,使点B落在AD边的B‘处,若AB=6, BC=10,求AE的长。
A B'
D

6E
B
C
10
1
2.
3
4
如图,在直角梯形ABCD中,∠A=90°,
AB∥CD,AB=1,CD=6,
(1)若AD=5,在线段AD
A 1B
上是否存在点P,使得以点P、
P
.
用方程思想解应用题的一般步骤:
①审 ②设 ③列 ④解 ⑤验 ⑥答
.
1、Rt⊿ABC中,∠C= Rt∠, AC=6,
24 BC=8,则斜边AB上的高线CD=———5———
B
2、如图, ⊿ABC中,D、E是AB、AC上的 点,且DE∥BC,若DE=2,BC=3,DB=1则
AD的长是———2———
D
C
.
A D
B
[综合训练 2] 已知抛物线 C1∶y1=12x2-x+1,点 F(1,1). (1)求抛物线 C1 的顶点坐标; (2)①若抛物线 C1 与 y 轴的交点为 A,连接 AF,并延长交抛物 线 C1 于点 B,求证:A1F+B1F=2; ②取抛物线 C1 上任意一点 P(xP,yP)(0<xP<1),连接 PF,并延 长交抛物线 C1 于点 Q(xQ,yQ),试判断P1F+Q1F=2 是否成立?请说 明理由; (3)将抛物线 C1 作适当的平移,得抛物线 C2∶y2=12(x-h)2,若 2<x≤m 时,y2≤x 恒成立,求 m 的最大值.
勾股定理
o
A
D
B
E
4 、在 R A t B 中 , C CR ,tA B A C 2,Si n4B ,
5
求 A的 C. 长 AC=8
A
解直角三角形中边角关系
.
B
C
如图,EB是直径,O是圆心,CB、CD切半圆于B、 D、CD交BE延长线于A点,若BC=6,AD=2AE, 求半圆的面积。
C
D
A
E
O
B
3
C
.
ቤተ መጻሕፍቲ ባይዱ A
2x
6+x
30°
Bx E
6
D
2x-3
F
3
C
.
A
B
P
D
C
.
A
B
P
A
B
D
.
综合训练1
1 在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高, 点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,
设AE=x,△AEF的面积为y. ( 1)求线段AD的长; (2)若EF⊥AB,当点E在线段AB上移动时, ①求y与x的函数关系式(写出自变量x的取值范围) ②当x取何值时,y有最大值?并求其最大值; (3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜 边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平 分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.
三角形和以点P、C、D为顶
点的三角形相似?求m的取
值范围。
D
C
6
.
如图,在直角梯形ABCD中,∠A=90°,
AB∥CD,AB=1,CD=6,
(3)设AD=m,若在线段
AD上存在两个点P,使得以 点P、A、B为顶点的三角形 和以点P、C、D为顶点的三
角形相似?求m的值。
A 1B
P
D
C
6
.
课堂小结
1.要善于用方程思想解决几何问题; 2.几何图形中常用的等量关系是: ①面积不变性 ② 勾股定理 ③ 相似三角形 的性质 ④直角三角形的边与角的关系 ;
3
C
2
8
A B'
D
?x 6-x
6E
6-x
10
6
B
C
10
.
2
8
A B'
D
?x
6E
10 6
6-x
B
C
10
.
2
8
A B'
?x 1
2
6E
10
B
10
.
D
6
3
C
A
2x Bx E
6+x
D
2x-3
F
3
6
C
.
A
6+x
D
2x Bx E
32x3
6
2x-3
F
3
C
.
A
6+x
D
2x
60° 32x3
3x
2x-3
F
B x 6+Ex 6
B
.
C
A D
A
E C
3、如图,⊙O的弦AB⊥半径OE于D,若AB=12,
DE=2,则⊙O的半径是———1—0——
o
A
D
B
E
4 、在 R A t B 中 , C CR ,tA B A C 2,Si n4B ,
5
求 A的 C. 长 AC=8
A
B
C
.
常用的等量关系:
1、Rt⊿ABC中,∠C= Rt∠, AC=6,
相关文档
最新文档