高考典型例题
高考数学三角函数典型例题

三角函数典型例题1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 【解析】:(Ⅰ)由2sin ab A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A CA A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.2 .在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C .(Ⅰ)求角B 的大小; (Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ⋅的最大值是5,求k 的值.【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C . 即2sin A cos B =sin B cos C +sin C cos B =sin(B +C )∵A +B +C =π,∴2sin A cos B =sinA . ∵0<A <π,∴sin A ≠0. ∴cos B =21.∵0<B <π,∴B =3π. (II)m n ⋅=4k sin A +cos2A . =-2sin 2A +4k sin A +1,A ∈(0,32π)设sin A =t ,则t ∈]1,0(.则m n ⋅=-2t 2+4kt +1=-2(t -k )2+1+2k 2,t ∈]1,0(. ∵k >1,∴t =1时,m n ⋅取最大值. 依题意得,-2+4k +1=5,∴k =23.3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin=++CB A .I.试判断△ABC 的形状;II.若△ABC 的周长为16,求面积的最大值.【解析】:I.)42sin(22sin 2cos 2sin 2sin ππ+=+=+-C C C C C 2242πππ==+∴C C 即,所以此三角形为直角三角形.II.ab ab b a b a 221622+≥+++=,2)22(64-≤∴ab 当且仅当b a =时取等号,此时面积的最大值为()24632-.4 .在ABC ∆中,a 、b 、c 分别是角A . B .C 的对边,C =2A ,43cos=A , (1)求BC cos ,cos 的值; (2)若227=⋅BCBA ,求边AC 的长。【解析】:(1)81116921cos 22cos cos 2=-⨯=-==A A C47sin ,43cos ;873sin ,81cos ====A A C C 得由得由()169814387347cos cos sin sin cos cos =⨯-⨯=-=+-=∴C A C A C A B (2)24,227cos ,227=∴=∴=⋅ac B ac BCBA ① 又a A a c A C C c A a 23cos 2,2,sin sin ==∴== ② 由①②解得a=4,c=625169483616cos 2222=⨯-+=-+=∴B ac c a b 5=∴b ,即AC 边的长为5.5 .已知在ABC ∆中,A B >,且A tan 与B tan 是方程0652=+-x x 的两个根.(Ⅰ)求)tan(B A +的值;(Ⅱ)若AB 5=,求BC 的长.【解析】:(Ⅰ)由所给条件,方程0652=+-x x 的两根tan 3,tan 2A B ==.∴tan tan tan()1tan tan A B A B A B ++=-231123+==--⨯(Ⅱ)∵180=++C B A ,∴)(180B A C +-= .由(Ⅰ)知,1)tan(tan =+-=B A C,∵C 为三角形的内角,∴sin C =∵tan3A =,A 为三角形的内角,∴sin A =, 由正弦定理得:sin sin AB BCC A=∴BC ==6 .在ABC∆中,已知内角A .B .C所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小; (II)如果2b=,求ABC ∆的面积ABC S ∆的最大值。【解析】:(1)//m n ⇒ 2sinB(2cos 2B2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3 ∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,已知b=2,由余弦定理,得:4=a 2+c 2-ac≥2a c-ac=ac(当且仅当a=c=2时等号成立) ∵△ABC 的面积S △ABC =12 acsinB=34ac ≤ 3∴△ABC 的面积最大值为 3②当B=5π6时,已知b=2,由余弦定理,得:4=a 2+c 2+3ac≥2ac +3ac=(2+3)ac (当且仅当a=c =6-2时等号成立) ∴ac≤4(2-3)∵△ABC 的面积S △ABC =12 acsinB=14ac≤ 2- 3∴△ABC 的面积最大值为2- 37 .在ABC ∆中,角A . B .C 所对的边分别是a ,b ,c ,且.21222ac b c a=-+ (1)求B CA 2cos 2sin2++的值; (2)若b =2,求△ABC 面积的最大值. 【解析】:(1) 由余弦定理:cosB=142sin 2A C++cos2B= 41-(2)由.415sin ,41cos ==B B 得 ∵b =2, a2+c 2=12ac +4≥2ac ,得ac ≤38, S △ABC =12ac si nB ≤315(a =c 时取等号) 故S △ABC 的最大值为3158 .已知)1(,tan >=a a α,求θθπθπ2tan )2sin()4sin(⋅-+的值。 【解析】aa -12;9 .已知()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(I)化简()f α(II)若α是第三象限角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值。 【解析】10.已知函数f(x)=sin 2x+3sinxcosx+2cos 2x,x ∈R.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x ∈R)的图象经过怎样的变换得到?【解析】:(1)1cos 23()2(1cos 2)2x f x x x -=++3132cos 2223sin(2).62x x x π=++=++()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈即,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)先把sin 2y x =图象上所有点向左平移12π个单位长度, 得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3sin(2)62y x π=++的图象。 11.已知⎪⎪⎭⎫ ⎝⎛-=23,23a ,)4cos ,4(sin xx b ππ=,b a x f ⋅=)(。 (1)求)(x f 的单调递减区间。(2)若函数)(x g y =与)(x f y =关于直线1=x 对称,求当]34,0[∈x 时,)(x g y =的最大值。【解析】:(1))34sin(34cos 234sin 23)(ππππ-=-=x x x x f ∴当]223,22[34ππππππk k x++∈-时,)(x f 单调递减 解得:]8322,8310[k k x ++∈时,)(x f 单调递减。 (2)∵函数)(x g y =与)(x f y =关于直线1=x 对称∴⎥⎦⎤⎢⎣⎡--=-=34)2(sin 3)2()(ππx x f x g⎪⎭⎫⎝⎛+=⎥⎦⎤⎢⎣⎡--=34cos 3342sin 3πππππx x∵]34,0[∈x ∴⎥⎦⎤⎢⎣⎡∈+32,334ππππx ∴]21,21[34cos -∈⎪⎭⎫⎝⎛+ππx ∴0=x时,23)(max =x g 12.已知cos 2sin αα=-,求下列各式的值;(1)2sin cos sin 3cos αααα-+; (2)2sin2sin cos ααα+【解析】:1cos 2sin ,tan 2ααα=-∴=-(1)1212sin cos 2tan 1421sin 3cos tan 3532αααααα⎛⎫⨯-- ⎪--⎝⎭===-++-+ (2)2222sin 2sin cos sin 2sin cos sin cos αααααααα++=+ 2222112tan 2tan 322tan 15112ααα⎛⎫⎛⎫-+⨯- ⎪ ⎪+⎝⎭⎝⎭===-+⎛⎫-+ ⎪⎝⎭13.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+(I)求函数()f x 的最大值与最小正周期;(II)求使不等式3()2f x ≥成立的x 的取值集合。 【解析】14.已知向量)1,32(cos --=αm,)1,(sin α=n ,m 与n 为共线向量,且]0,2[πα-∈(Ⅰ)求ααcos sin +的值;(Ⅱ)求αααcos sin 2sin -的值.。【解析】:(Ⅰ) m 与n 为共线向量, 0sin )1(1)32(cos =⨯--⨯-∴αα, 即32cos sin =+αα(Ⅱ) 92)cos (sin 2sin 12=+=+ααα ,972sin -=∴α2)cos (sin )cos (sin 22=-++αααα ,916)32(2)cos (sin 22=-=-∴αα 又]0,2[πα-∈ ,0cos sin <-∴αα,34cos sin -=-αα 因此,127cos sin 2sin =-ααα15.如图,A,B,C,D 都在同一个与水平面垂直的平面内,B,D 为两岛上的两座灯塔的塔顶。测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC=0.1km 。试探究图中B,D 间距离与另外哪两点距离相等,然后求B,D 的距离(计算结果精确到0.01km,2≈1.414,6≈2.449)【解析】:在ACD ∆中,DAC ∠=30°,ADC ∠=60°-DAC ∠=30°, 所以CD=AC=0.1又BCD ∠=180°-60°-60°=60°,故CB 是CAD ∆底边AD 的中垂线,所以BD=BA 在ABC ∆中,ABCACBCA AB ∠=∠sin sin ,即AB=2062351sin 60sin +=︒︒AC因此,km 33.020623≈+=BD故 B .D 的距离约为0.33km 。 16.已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式;(Ⅱ)当[,]122x ππ∈,求()f x 的值域. 【解析】: (1)由最低点为2(,2)3M π-得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2π,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上的242sin(2)2,)133ππϕϕ⨯+=-+=-即sin( 故42,32k k Z ππϕπ+=-∈ 1126k πϕπ∴=- 又(0,),,()2sin(2)266f x x πππϕϕ∈∴==+故(2)7[,],2[,]122636x x πππππ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266x ππ+=即2x π=时,()f x 取得最小值-1,故()f x 的值域为[-1,2]17.如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C 三点进行测量,已知50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m=,求∠DEF 的余弦值。【解析】:作//DMAC 交BE 于N ,交CF 于M .22223017010198DF MF DM =+=+=, 222250120130DE DN EN =+=+=,2222()90120150EF BE FC BC =-+=+=在DEF ∆中,由余弦定理,2222221301501029816cos 2213015065DE EF DF DEF DE EF +-+-⨯∠===⨯⨯⨯ 18.已知51cos sin =+θθ,),2(ππθ∈, 求(1)sin cos θθ-(2)33sin cos θθ-(3)44sin cos θθ+【解析】:(1)3344791337sin cos (2)sin cos (3)sin cos 5125625θθθθθθ-=-=+= 19.已知函数)sin(ϕω+=x A y (0>A , 0ω>,πϕ<||)的一段图象如图所示,(1)求函数的解析式;(2)求这个函数的单调递增区间。
高考数学复习----《极点极线问题》典型例题讲解

高考数学复习----《极点极线问题》典型例题讲解【典型例题】例1、(2022·全国·高三专题练习)已知椭圆的离心率为,短轴长为(1)求椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,若过点且斜率不为0的直线l 与椭圆C 交于M 、N 两点,直线AM 与BN 相交于点Q .证明:点Q在定直线上.【解析】(1)因为椭圆的离心率,,,又因为,所以,,所以椭圆C 的方程为. (2)解法一:设直线,,, ,可得, 所以.直线AM 的方程:① 直线BN 的方程:② 由对称性可知:点Q 在垂直于x 轴的直线上, 联立①②可得.因为, ()2222:10x y C a b a b+=>>12()4,0P 1212c a ∴=2a c ∴=2b =b ∴=222233b a c c =−==1c =2a =22143x y +=:4MN x ty =+()11,M x y ()22,N x y 224143x ty x y =+⎧⎪⎨+=⎪⎩()223424360t y ty +++=12212224343634t y y t y y t −⎧+=⎪⎪+⎨⎪=⎪+⎩()1122y y x x =++()2222y y x x =−−1221212623ty y y y x y y ++=−121223y y t y y +=−所以所以点Q 在直线上.解法二:设,,,两两不等, 因为P ,M ,N 三点共线,所以, 整理得:.又A ,M ,Q 三点共线,有:① 又B ,N ,Q 三点共线,有②将①与②两式相除得:即, 将即 代入得:解得(舍去)或,(因为直线与椭圆相交故) 所以Q 在定直线上.【点晴】求解直线与圆锥曲线定点定值问题:关键在于运用设而不求思想、联立方程和韦达定理,构造坐标点方程从而解决相关问题.例2、(2022·全国·高三专题练习)已知,分别是双曲线的左,右顶点,直线()122112212121362262133y y y y ty y y y x y y y y −+++++===−−1x =()11,M x y ()22,N x y ()33,Q x y 123,,x x x ()()()()22122212122222121212313144444444x x y y y y x x x x x x ⎛⎫⎛⎫−− ⎪ ⎪⎝⎭⎝⎭=⇒=⇒=−−−−−−()12122580x x x x −++=313122y y x x =++323222y y x x =−−()()()()2222121332231231222222222y x y x x x x y x x y x ++⎛⎫++=⇒= ⎪−−−−⎝⎭()()()()()()222121221212312224223124x x x x x x x x ⎛⎫−+ ⎪++⎝⎭==−−⎛⎫−− ⎪⎝⎭()()()()()()2211212331212122224222224x x x x x x x x x x x x x x +++++⎛⎫+== ⎪−−−−++⎝⎭()12122580x x x x −++=()12125402x x x x =+−=233292x x ⎛⎫+= ⎪−⎝⎭34x =31x =BQ 34x ≠1x =A B 22:14y E x −=l(不与坐标轴垂直)过点,且与双曲线交于,两点. (1)若,求直线的方程;(2)若直线与相交于点,求证:点在定直线上.【解析】设直线的方程为,设,,把直线与双曲线 联立方程组,,可得,则, (1),,由,可得, 即①,②, 把①式代入②式,可得,解得,, 即直线的方程为或. (2)直线的方程为,直线的方程为, 直线与的交点为,故,即,进而得到,又, 故,解得 故点在定直线上. 【点晴】方法点晴:直线与圆锥曲线综合问题,通常采用设而不求,结合韦达定理求解.例3、(2022·全国·高三专题练习)已知椭圆与轴的交点(点A 位于点的上方),为左焦点,原点到直线. ()2,0N E C D 3CN ND =l AC BD P P l 2x my =+()11,C x y ()22,D x y l E 22214x my y x =+⎧⎪⎨−=⎪⎩()224116120m y my −++=1212221612,4141m y y y y m m +=−=−−()112,CN x y =−−()222,ND x y =−3CN ND =123y y =−22841m y m =−22212341y m −=−22281234141m m m ⎛⎫−= ⎪−−⎝⎭2120m =m =l 0y −−=0y +−=AC ()1111y y x x =++BD ()2211yy x x =−−AC BD P ()1111y x x ++()2211yx x =−−()1113y x my ++()2211y x my =−+122121311my y y x x my y y ++=−+()121234m y y y y =−+()()122121212133391433134y y y y y x x y y y y y −++−++===−−−−++12x =P 12x =()2222:10,0x y C a b a b+=>>y ,A B B F O FA(1)求椭圆的离心率;(2)设,直线与椭圆交于不同的两点,求证:直线与直线的交点在定直线上.【解析】(1)设的坐标为,由面积法有,椭圆的离心率. (2)若,由(1) 得椭圆方程为,联立方程组化简得:,由,解得:.由韦达定理得:,, 设,的方程是,的方程是, 联立化简得,即, 所以直线与直线的交点在定直线上.C 2b =4y kx =+C ,M N BM AN G F (),0c −bc =∴C c e a ==2b =a =∴22184x y +=22284x y y kx ⎧+=⎨=+⎩()222116240k x kx +++=()232230k ∆=−>232k >M x +N x 21621k k −=+Mx N x 22421k =+()()44M M N N M x ,kx ,N x ,kx ++MB 62M M kx y x x +=−NA 22N Nkx y x x +=+()2282223211163421N M N M N N MN k x kx x x x k y k x x x k ⎛⎫+ ⎪+++⎝⎭===−++1Gy =BM AN G。
2023年高考数学复习----排列组合错位排列典型例题讲解

2023年高考数学复习----排列组合错位排列典型例题讲解【典型例题】例25.编号为1、2、3、4、5的5个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的坐法有()A.10种B.20种C.30种D.60种【答案】B【解析】先选择两个编号与座位号一致的人,方法数有2510C=,另外三个人编号与座位号不一致,方法数有2,所以不同的坐法有10220⨯=种.故选:B例26.将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为()A.90B.135C.270D.360【答案】B【解析】根据题意,分以下两步进行:(1)在6个小球中任选2个放入相同编号的盒子里,有2615C=种选法,假设选出的2个小球的编号为5、6;(2)剩下的4个小球要放入与其编号不一致的盒子里,对于编号为1的小球,有3个盒子可以放入,假设放入的是2号盒子.则对于编号为2的小球,有3个盒子可以放入,对于编号为3、4的小球,只有1种放法.综上所述,由分步乘法计数原理可知,不同的放法种数为1533135⨯⨯=种.故选:B.例27.若5个人各写一张卡片(每张卡片的形状、大小均相同),现将这5张卡片放入一个不透明的箱子里,并搅拌均匀,再让这5人在箱子里各摸一张,恰有1人摸到自己写的卡片的方法数有()A.20 B.90 C.15 D.45【答案】D【解析】根据题意,分2步分析:①先从5个人里选1人,恰好摸到自己写的卡片,有15C种选法,②对于剩余的4人,因为每个人都不能拿自己写的卡片,因此第一个人有3种拿法,被拿了自己卡片的那个人也有3种拿法,剩下的2人拿法唯一,所以不同的拿卡片的方法有11153345C C C⋅⋅=种.故选:D.。
2023年高考数学----两角相等(构造全等)的立体几何问题典型例题讲解

2023年高考数学----两角相等(构造全等)的立体几何问题典型例题讲解【规律方法】 构造垂直的全等关系 【典型例题】例1.如图,已知三棱柱−111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交A B 于E ,交A C 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.【解析】(1)证明:M Q ,N 分别为BC ,11B C 的中点,底面为正三角形, ∴=1B N BM ,四边形1BB NM 为矩形,⊥111A N B C ,∴1//BB MN ,11//AA BB Q ,∴1//AA MN , ⊥11MN B C Q ,⊥111A N B C ,⋂=1MN A N N , ∴⊥11B C 平面1A AMN ,⊂11B C Q 平面11EB C F , ∴平面⊥1A AMN 平面11EB C F ,综上,1//AA MN ,且平面⊥1A AMN 平面11EB C F .(2)解:Q 三棱柱上下底面平行,平面11EB C F 与上下底面分别交于11B C ,EF ,∴11////EF B C BC ,//AO Q 面11EB C F ,⊂AO 面1A MNA ,面⋂1AMNA 面=11EB C F PN ,∴//AO PN ,四边形APNO 为平行四边形, O Q 是正三角形的中心,=AO AB ,∴=13A N ON ,=3AM AP ,===113PN BC B C EF ,由(1)知直线1B E 在平面1A AMN 内的投影为PN ,直线1B E 与平面1A AMN 所成角即为等腰梯形11EFC B 中1B E 与PN 所成角, 在等腰梯形11EFC B 中,令=1EF ,过E 作⊥11EH B C 于H , 则===113PN B C EH ,=11B H,=1B E∠==111sin B H B EH B E, ∴直线1B E 与平面1A AMN.例2.如图,在锥体−P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB,==PA PD =2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角−−P AD B 的余弦值.【解析】(1)取AD 的中点G ,连接PG ,BG ,在∆ABG 中,根据余弦定理可以算出==BG ,发现+=222AG BG AB ,可以得出⊥AD BG ,又//DE BG ∴⊥DE AD ,又=PA PD ,可以得出⊥AD PG ,而⋂=PG BG G , ∴⊥AD 平面PBG ,而⊂PB 平面PBG , ∴⊥AD PB ,又//PB EF , ∴⊥AD EF .又⋂=EF DE E , ∴⊥AD 平面DEF .(2)由(1)知,⊥AD 平面PBG ,所以∠PGB 为二面角−−P AD B 的平面角,在∆PBG 中,==PG ,=BG ,=2PB ,由余弦定理得+−∠==⋅222cos 2PG BG PB PGB PG BG ,因此二面角−−P AD B 的余弦值为.本课结束。
高考数学复习----《数形结合》典型例题讲解

高考数学复习----《数形结合》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()2x f x x =+,2()log g x x x =+,()2sin h x x x =+的零点分别为a ,b ,c 则a ,b ,c 的大小顺序为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【解析】由()2sin 0h x x x =+=得0x =,0c ∴=,由()0f x =得2x x =−,由()0g x =得2log x x =−.在同一平面直角坐标系中画出2x y =、2log y x =、y x =−的图像, 由图像知a<0,0b >,a c b ∴<<.故选:D例2、(2023·江苏·高三专题练习)已知正实数a ,b ,c 满足2e e e e c a a c −−+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】22e e e e e e e e c a a c c c a a −−−−⇒+=+−=−,故令()e e x x f x −=−,则()e e c c f c −=−,()e e a a f a −=−.易知1e ex x y −=−=−和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a −−<,故由题可知,2e e e e e e c c a a a a −−−−=−>−,即()()f c f a >,则0c a >>.易知222log 3log log 2b =+>,2log 2c c =−,作出函数2log y x =与函数2y x =−的图像,如图所示,则两图像交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例3、(2023·全国·高三专题练习)已知e ππe e ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x −'=>, 由()0f x ¢>,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0x f x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >,所以()()πe f f <,即ln πln e πe<, 所以eln ππln e <,所以e πln πln e <,又ln y x =递增,所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦, 在同一坐标系中作出xy =与y x =的图像,如图:由图像可知在()2,4中恒有x x >, 又2π4<<,所以ππ>, 又e y x =在()0,∞+上单调递增,且ππ>所以e πe πe π=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<,故选:A例3、(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()lng x x =,()31h x x =−的“躺平点”分别为α,β,则α,β的大小关系为( )A .αβ≥B .αβ>C .αβ≤D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln a α=, 令()1ln G x x x=−,则α为()G x 的零点, 可知()G x 在定义域()0,∞+内单调递增,且()()1110,e 10eG G =-<=->, ∴()1,e α∈;又∵()31h x x =−,则()23h x x '=, 由题意可得:3213ββ−=,令()3231H x x x =−−,则β为()H x 的零点,()()23632H x x x x x '=−=−,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞−,()2,+∞内单调递增,在()0,2内单调递减,当(),2x ∈−∞时,()()010H x H ≤=−<,则()H x 在(),2−∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =−<=>,则()3,4β∈, 综上所述:()3,4β∈;故αβ<.故选:D.。
高考数学百大经典例题 算术平均数与几何平均数

典型例题一例1 已知R c b a ∈,,,求证.222ca bc ab c b a ++≥++ 证明:∵ ab b a 222≥+, bc c b 222≥+,ca a c 222≥+, 三式相加,得)(2)(2222ca bc ab c b a ++≥++,即.222ca bc ab c b a ++≥++说明:这是一个重要的不等式,要熟练掌握.典型例题二例2 已知c b a 、、是互不相等的正数,求证:abc b a c c a b c b a 6)()()(222222>+++++ 证明:∵0222>>+a bc c b ,, ∴abc c b a 2)(22>+同理可得:abc b a c abc c a b 2)(2)(2222>+>+,. 三个同向不等式相加,得abc b a c c a b c b a 6)()()(222222>+++++ ①说明:此题中c b a 、、互不相等,故应用基本不等式时,等号不成立.特别地,b a =,c b ≠时,所得不等式①仍不取等号.典型例题三例3 求证)(2222222c b a a c c b b a ++≥+++++.分析:此问题的关键是“灵活运用重要基本不等式ab b a 222≥+,并能由)(2c b a ++这一特征,思索如何将ab b a 222≥+进行变形,进行创造”.证明:∵ab b a 222≥+,两边同加22b a +得222)()(2b a b a +≥+.即2)(222b a b a +≥+.∴)(222122b a b a b a +≥+≥+.同理可得:)(2222c b c b +≥+,)(2222a c a c +≥+. 三式相加即得)(2222222c b a a c c b b a ++≥+++++.典型例题四例4 若正数a 、b 满足3++=b a ab ,则ab 的取值范围是 . 解:∵+∈R b a ,, ∴323+≥++=ab b a ab ,令ab y =,得0322≥--y y ,∴3≥y ,或1-≤y (舍去).∴92≥=ab y ,∴ ab 的取值范围是[).,9+∞说明:本题的常见错误有二.一是没有舍去1-≤y ;二是忘了还原,得出[)+∞∈,3ab .前者和后者的问题根源都是对ab 的理解,前者忽视了.0≥ab 后者错误地将2y 视为ab .因此,解题过程中若用换元法,一定要对所设“元”的取值范围有所了解,并注意还原之.典型例题五例5 (1)求41622++=x x y 的最大值. (2)求函数1422++=x x y 的最小值,并求出取得最小值时的x 值. (3)若0,0>>y x ,且2=+y x ,求22y x +的最小值.解:(1)41622++=x x y 13163)1(162222+++=+++=x x x x .3326=≤即y 的最大值为.3当且仅当13122+=+x x 时,即22=x 2±=x 时,取得此最大值.(2)1141142222-+++=++=x x x x y 3142=-⋅≥ ∴ y 的最小值为3,当且仅当11422+=+x x ,即4)1(22=+x ,212=+x ,1±=x 时取得此最小值.(3)∴ xy y x 222≥+ ∴222)()(2y x y x +≥+即2)(222y x y x +≥+∵2=+y x ∴222≥+y x 即22y x +的最小值为2. 当且仅当4==y x 时取得此最小值.说明:解这类最值,要选好常用不等式,特别注意等号成立的条件.典型例题六例6 求函数xx y 321--=的最值. 分析:本例的各小题都可用最值定理求函数的最值,但是应注意满足相应条件.如:0≠x ,应分别对0,0<>x x 两种情况讨论,如果忽视+∈R x 的条件,就会发生如下错误:∵ 6213221)32(1321-=⋅-≤+-=--=xx x x x x y ,.621max -=y 解:当0>x 时,03,02>>x x ,又632=⋅xx , 当且仅当x x 32=,即26=x 时,函数x x 32+有最小值.62 ∴ .621max -=y 当0<x 时,03,02>->-x x ,又6)3()2(=-⋅-xx , 当且仅当x x 32-=-,即26+=x 时,函数)32(x x +-最小值.62 ∴ .621min +=y典型例题七例7 求函数91022++=x x y 的最值.分析:291991)9(2222≥+++=+++=x x x x y .但等号成立时82-=x ,这是矛盾的!于是我们运用函数xx y 1+=在1≥x 时单调递增这一性质,求函数)3(1≥+=t tt y 的最值.解:设392≥+=x t ,∴t t x x y 191022+=++=.当3≥t 时,函数tt y 1+=递增. 故原函数的最小值为310313=+,无最大值.典型例题八例8 求函数4522++=x x y 的最小值.分析:用换元法,设242≥+=x t ,原函数变形为)2(1≥+=t tt y ,再利用函数)2(1≥+=t tt y 的单调性可得结果.或用函数方程思想求解.解:解法一: 设242≥+=x t ,故).2(14522≥+=++=t t t x x y212121212121121)()11()(2t t t t t t t t t t y y t t --=-+-=-≥>,设. 由202121><-t t t t ,,得:0121>-t t ,故:21y y <. ∴函数)2(1≥+=t t t y 为增函数,从而25212=+≥y . 解法二: 设242≥=+t x ,知)2(1≥+=t tt y ,可得关于t 的二次方程012=+-yt t ,由根与系数的关系,得:121=t t .又2≥t ,故有一个根大于或等于2,设函数1)(2+-=yt t t f ,则0)2(≤f ,即0124≤+-y ,故25≥y .说明:本题易出现如下错解:2414452222≥+++=++=x x x x y .要知道,41422+=+x x 无实数解,即2≠y ,所以原函数的最小值不是2.错误原因是忽视了等号成立的条件.当a 、b 为常数,且ab 为定值,b a ≠时,ab ba >+2,不能直接求最大(小)值,可以利用恒等变形ab b a b a 4)(2+-=+,当b a -之差最小时,再求原函数的最大(小)值.典型例题九例9 ,4,0,0=+>>b a b a 求2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a 的最小值.分析:此题出现加的形式和平方,考虑利用重要不等式求最小值. 解:由,4=+b a ,得.2162)(222ab ab b a b a -=-+=+ 又,222ab b a ≥+得ab ab 2216≥-,即4≤ab .21111222⎪⎭⎫ ⎝⎛+++≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∴b b a a b b a a .225244444422=⎪⎭⎫ ⎝⎛+≥⎪⎭⎫ ⎝⎛+=ab 故2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a 的最小值是225.说明:本题易出现如下错解:8441212112222=+=⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∴b b a a b b a a ,故2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a 的最小值是8.错误的原因是,在两次用到重要不等式当等号成立时,有1=a 和1=b ,但在4=+b a 的条件下,这两个式子不会同时取等号(31==b a 时,).排除错误的办法是看都取等号时,与题设是否有矛盾.典型例题十例10 已知:+∈R c b a ,,,求证:c b a cab b ac a bc ++≥++. 分析:根据题设,可想到利用重要不等式进行证明.证明:.2,222c bac a bc c ab abc b ac a bc ≥+=≥+即同理:a cab b ac b c ab a bc 2,2≥+≥+ ).(22c b a c ab b ac a bc ++≥⎪⎭⎫⎝⎛++∴.c b a cab b ac a bc ++≥++∴说明:证明本题易出现的思维障碍是:(1)想利用三元重要不等式解决问题;(2)不会利用重要不等式ab ba ≥+2的变式;(3)不熟练证明轮换对称不等式的常用方法.因此,在证明不等式时,应根据求证式两边的结构,合理地选择重要不等式.另外,本题的证明方法在证轮换对称不等式时具有一定的普遍性.典型例题十一例11设R e d c b a ∈、、、、,且8=++++e d c b a ,1622222=++++e d c b a ,求e 的最大值.分析:如何将22b a +与b a +用不等式的形式联系起来,是本题获解的关键.算术平均数与几何平均数定理ab b a 222≥+两边同加22b a +之后得222)(21b a b a +≥+. 解:由222)(21b a b a +≥+,则有 ,)(41])()[(212222222d c b a d c b a d c b a +++≥+++≥+++.5160)8(411622≤≤⇒-≥-∴e e e.51656=时,当最大值e d c b a ====说明:常有以下错解:abcd cd ab d c b a e 4)(21622222≥+≥+++=-, 448abcd d c b a e ≥+++=-.故abcd e abcd e ≥-≥-4222)48(,4)16(. 两式相除且开方得516014)8(1622≤≤⇒≥--e e e .错因是两不等式相除,如211,12>>,相除则有22>. 不等式222)(21b a b a +≥+是解决从“和”到“积”的形式.从“和”到“积”怎么办呢?有以下变形:222)(21b a b a +≥+或)(21222b a b a +≥+.典型例题十二例12 已知:0>y x >,且:1=xy ,求证:2222≥-+yx y x ,并且求等号成立的条件.分析:由已知条件+∈R y x ,,可以考虑使用均值不等式,但所求证的式子中有y x -,无法利用xy y x 2≥+,故猜想先将所求证的式子进行变形,看能否出现)(1)(y x y x -+-型,再行论证.证明:,1.0,0=>-∴>>xy y x y x 又yx xyy x y x y x -+-=-+∴2)(222 yx y x -+-=2)( .22)(2)(2=-⋅-≥y x y x等号成立,当且仅当)(2)(y x y x -=-时..4,2,2)(222=+=-=-∴y x y x y x ,6)(,12=+∴=y x xy.6=+∴y x由以上得226,226-=+=y x 即当226,226-=+=y x 时等号成立.说明:本题是基本题型的变形题.在基本题型中,大量的是整式中直接使用的均值不等式,这容易形成思维定式.本题中是利用条件将所求证的式子化成分式后再使用均值不等式.要注意灵活运用均值不等式.典型例题十三例13 已知00>>y x ,,且302=++xy y x ,求xy 的最大值. 分析:由302=++xy y x ,可得,)300(230<<+-=x xxy , 故)300(2302<<+-=x x x x xy ,令xx x t +-=2302.利用判别式法可求得t (即xy )的最大值,但因为x 有范围300<<x 的限制,还必须综合韦达定理展开讨论.仅用判别式是不够的,因而有一定的麻烦,下面转用基本不等式求解.解法一:由302=++xy y x ,可得,)300(230<<+-=x xxy . xx x x x x xy +-+++-=+-=264)2(34)2(23022⎥⎦⎤⎢⎣⎡+++-=264)2(34x x 注意到16264)2(2264)2(=+⋅+≥+++x x x x . 可得,18≤xy . 当且仅当2642+=+x x ,即6=x 时等号成立,代入302=++xy y x 中得3=y ,故xy 的最大值为18.解法二:+∈R y x , ,xy xy y x ⋅=≥+∴22222, 代入302=++xy y x 中得:3022≤+⋅xy xy 解此不等式得180≤≤xy .下面解法见解法一,下略.说明:解法一的变形是具有通用效能的方法,值得注意:而解法二则是抓住了问题的本质,所以解得更为简捷.典型例题十四例14 若+∈R c b a 、、,且1=++c b a ,求证:8111111≥⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-c b a .分析:不等式右边的数字“8”使我们联想到可能是左边三个因式分别使用基本不等式所得三个“2”连乘而来,而abca cb a a a 2111≥+=-=-. 证明:acb a a a +=-=-111,又0>a ,0>b ,0>c , a bc a c b 2≥+∴,即a bca a 21≥-. 同理b ca b 211≥-,cab c 211≥-, 8111111≥⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∴c b a .当且仅当31===c b a 时,等号成立. 说明:本题巧妙利用1=++c b a 的条件,同时要注意此不等式是关于c b a 、、的轮换式.典型例题十五例15 设+∈R c b a 、、,求证:)(2222222c b a a c c b b a ++≥+++++.分析:本题的难点在于222222a c c b b a +++、、不易处理,如能找出22b a +与b a +之间的关系,问题可得到解决,注意到:b a b a b a b a ab b a +≥+⇒+≥+⇒≥+)(2)()(222222222,则容易得到证明.证明:2222222)(2)(22b a ab b a b a ab b a +≥++≥+∴≥+, ,于是.)(222222b a b a b a +=+≥+ 同理:)(2222c b c b +≥+,)(2222a c a c +≥+. 三式相加即得:)(2222222c b a a c c b b a ++≥+++++.说明:注意观察所给不等式的结构,此不等式是关于c b a 、、的轮换式.因此只需抓住一个根号进行研究,其余同理可得,然后利用同向不等式的可加性.典型例题十六例16 已知:+∈R b a 、(其中+R 表示正实数)求证:.ba ab b a b a b a 112222222+≥≥⎪⎪⎭⎫ ⎝⎛+≥+≥+ 分析:要证明的这一串不等式非常重要,222b a +称为平方根,2b a +称为算术平均数,ab 称为几何平均数,ba 112+称为调和平均数.证明:().0412222222≥-=⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+b a b a b a .222222⎪⎭⎫ ⎝⎛+≥⎪⎪⎭⎫ ⎝⎛+∴b a b a +∈R b a 、∴2222ba b a +≥+,当且仅当“b a =”时等号成立. .0)(412222≥-=⎪⎪⎭⎫ ⎝⎛+-+b a b a b a ∴222⎪⎪⎭⎫⎝⎛+≥+b a b a ,等号成立条件是“b a =” ,0)(41222≥-=-⎪⎪⎭⎫ ⎝⎛+b a ab b a ∴ab b a ≥⎪⎪⎭⎫⎝⎛+22,等号成立条件是“b a =”.ba abab b a b a ab ab ba ab +-+=+-=+-2)(2112 .0)()2(2≥+-=+-+=ba b a ab b a ab b a ab∴ba ab 112+≥,等号成立条件是“b a =”.说明:本题可以作为均值不等式推论,熟记以上结论有利于处理某些复杂不等式的证明问题.本例证明过程说明,不等式性质中的比较法是证明不等式的最基本、最重要的方法.典型例题十七例17 设实数1a ,1b ,1c ,2a ,2b ,2c 满足021>a a ,2111b c a ≥,2222b c a ≥,求证2212121)())((b b c c a a +≥++.分析:由条件可得到1a ,2a ,1c , 2c 同号.为方便,不妨都设为正.将求证式子的左边展开后可看出有交叉项21c a 和12c a 无法利用条件,但使用均值不等式变成乘积后,重新搭配,可利用条件求证.证明:同号.2121,,0a a a a ∴>同理,由22222111b c a b c a ≥≥,知1a 与1c 同号,2a 与2c 同号∴1a ,1c ,2a ,2c 同号.不妨都设为正. 122122112121))((c a c a c a c a c c a a +++=++∴122122212c a c a b b ⋅++≥221122212c a c a b b ⋅++= 222122212b b b b ⋅++≥ ||2212221b b b b ++=221212221)(2b b b b b b +=++≥,即2212121)())((b b c c a a +≥++.说明:本题是根据题意分析得1a ,1c ,2a ,2c 同号,然后利用均值不等式变形得证.换一个角度,由条件的特点我们还会联想到使用二次方程根的判别式,可能会有另一类证法.实际上,由条件可知1a ,1c ,2a ,2c 为同号,不妨设同为正.又∵2111b c a ≥,2222b c a ≥,∴211144b c a ≥,222244b c a ≥.不等式021121≥++c x b x a ,022222≥++c x b x a 对任意实数x 恒成立(根据二次三项式恒为正的充要条件),两式相加得0)()(2)(2121221≥+++++c c x b b x a a ,它对任意实数x 恒成立.同上可得:2212121)())((b b c c a a +≥++.典型例题十八例18 如下图所示,某畜牧基地要围成相同面积的羊圈4间,一面可利用原有的墙壁,其余各面用篱笆围成,篱笆总长为36m .问每间羊圈的长和宽各为多少时,羊圈面积最大?分析:可先设出羊圈的长和宽分别为x ,y ,即求xy 的最大值.注意条件3664=+y x 的利用.解:设每间羊圈的长、宽分别为x ,y ,则有3664=+y x ,即1832=+y x .设xy S = ,623223218xy y x y x =⋅≥+=227,227≤≤∴S xy 即 上式当且仅当y x 32=时取“=”.此时⎩⎨⎧===,1832,32y x y x ⎪⎩⎪⎨⎧==∴.3,29y x ∴羊圈长、宽分别为29m ,3m 时面积最大. 说明:(1)首先应设出变量(此处是长和宽),将题中条件数学化(即建立数学模型)才能利用数学知识求解;(2)注意在条件1832=+y x 之下求积xy 的最大值的方法:直接用不等式y x y x 3223218⋅≥+=,即可出现积xy .当然,也可用“减少变量”的方法:22218261)218(261)218(31)218(31⎪⎭⎫ ⎝⎛-+⋅≤-⋅⋅=-⋅==→-=x x x x x x xy S x y ,当且仅当x x 2182-=时取“=”.典型例题十九例19 某单位建造一间地面面积为12m 2的背面靠墙的矩形小房,房屋正面的造价为1200元/m 2,房屋侧面的造价为800 元/m 2,屋顶的造价为5800元.如果墙高为3m ,且不计房屋背面的费用,问怎样设计房屋能使总造价最低,最低总造价是多少元?分析:这是一个求函数最小值的问题,关键的问题是设未知数,建立函数关系.从已知条件看,矩形地面面积为12m 2,但长和宽不知道,故考虑设宽为x m ,则长为x 12m ,再设总造价为y .由题意就可以建立函数关系了.解:设矩形地面的正面宽为x m ,则长为x12m ;设房屋的总造价为y .根据题意,可得: 5800280012312003+⨯⋅⋅+⋅=xx y 5800576003600++=xx 580016236005800)16(3600+⋅⨯≥++=xx x x )(34600580028800元=+= 当xx 16=,即4=x 时,y 有最小值34600元. 因此,当矩形地面宽为4m 时,房屋的总造价最低,最低总造价是34600元.说明:本题是函数最小值的应用题,这类题在我们的日常生活中经常遇到,有求最小值的问题,也有求最大值的问题,这类题都是利用函数式搭桥,用均值不等式解决,解决的关键是等号是否成立,因此,在解这类题时,要注意验证等号的成立.典型例题二十例20 某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每1m 长造价40元,两侧墙砌砖,每1m 长造价45元,顶部每1m 2造价20元.计算:(1)仓库底面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 分析:用字母分别表示铁栅长和一堵砖墙长,再由题意翻译数量关系.解:设铁栅长为x m ,一堵砖墙长为y m ,则有xy S =.由题意得(*).32002045240=+⨯+xy y x应用算术平均数与几何平均数定理,得 ,201202012020904023200S S xyxy xyy x +=+=+⋅≥,1606≤+∴S S 即:.0)10)(10(≤--S S,010,016≤-∴>+S S从而:.100≤S因此S 的最大允许值是2100m ,取得此最大值的条件是y x 9040=,而100=xy ,由此求得15=x ,即铁栅的长应是m 15.说明:本题也可将xS y =代入(*)式,导出关于x 的二次方程,利用判别式法求解. 典型例题二十一例21 甲、乙两地相距km s ,汽车从甲地匀速行驶到乙地,速度不超过km/h c ,已知汽车每小时的运输成本........(以元为单位)由可变部分和固定部分组成:可变部分与速度km/h v 的平方成正比,且比例系数为b ;固定部分为a 元.(1)把全程运输成本y 元表示为速度km/h v 的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?分析:这是1997年的全国高考试题,主要考查建立函数关系式、不等式性质(公式)的应用.也是综合应用数学知识、思想和方法解决实际问题的一道优秀试题.解:(1)依题意知汽车从甲地匀速行驶到乙地所用的时间为h vs ,全程运输成本为 )(2bv va s v s bv v s a y +=⋅+⋅=. 故所求函数为)(bv ba s y +=,定义域为)0(c v ,∈. (2)由于vb a s 、、、都为正数, 故有bv ba s bv v as ⋅⋅≥+2)(, 即ab s bv vas 2)(≥+. 当且仅当bv v a =,即ba v =时上式中等号成立. 若cb a ≤时,则ba v =时,全程运输成本y 最小; 当c b a ≤,易证c v <<0,函数)()(bv v a s v f y +==单调递减,即c v =时,)(m i n bc ca s y +=. 综上可知,为使全程运输成本y 最小,在c b a ≤时,行驶速度应为b av =; 在c b a ≤时,行驶速度应为c v =.。
高考数学复习----《函数的奇偶性的综合应用》典型例题讲解

高考数学复习----《函数的奇偶性的综合应用》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 在(],3−∞上单调递增,且()3f x +为偶函数,则不等式()()12f x f x +>的解集为( )A .51,3⎛⎫ ⎪⎝⎭B .()5,1,3⎛⎫−∞⋃+∞ ⎪⎝⎭C .(),1−∞D .()1,+∞【答案】B【解析】∵()3f x +为偶函数, ∴()()33f x f x −+=+,即函数()f x 关于3x =对称,又函数()f x 在(],3−∞上单调递增,∴函数()f x 在[)3,+∞上单调递减,由()()12f x f x +>,可得1323x x +−<−,整理得,23850x x −+>,解得1x <或53x >. 故选:B .例2、(2023·全国·高三专题练习)设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,不等式()()24f x f x ≥的解集为( )A .(][),04,−∞+∞UB .[]0,4C .(][),02,−∞⋃+∞D .[]0,2【答案】C 【解析】根据题意,当0x ≥时,()2f x x =,所以()f x 在[0,)+∞上为增函数,因为()f x 是定义在R 上的奇函数,所以()f x 在R 上为增函数,因为20x ≥,所以24()f x x =,24124x f x ⎛⎫= ⎪⎝⎭, 所以221()42x f x f ⎛⎫= ⎪⎝⎭, 所以不等式()()24f x f x ≥可化为2()2x f f x ⎛⎫≥ ⎪⎝⎭, 所以22x x ≥,解得0x ≤或2x ≥, 所以不等式()()24f x f x ≥的解集为(][),02,−∞⋃+∞,故选:C例3、(2023·全国·高三专题练习)已知偶函数()f x 的定义域为R ,且当0x ≥时,()11x f x x −=+,则使不等式()2122f a a −<成立的实数a 的取值范围是( ) A .()1,3−B .()3,3−C .()1,1−D .(),3−∞【答案】A 【解析】当0x ≥时,()()12121111x x f x x x x +−−===−+++,所以()f x 在[)0,∞+上单调递增, 且()132f =,不等式()2122f a a −<即为()()223f a a f −<. 又因为()f x 是偶函数,所以不等式()()223f a a f −<等价于()()223f a a f −<, 则223a a −<,所以,222323a a a a ⎧−<⎨−>−⎩,解得13a −<<. 综上可知,实数a 的取值范围为()1,3−,故选:A .例4、(2023·全国·高三专题练习)定义在R 上的奇函数()f x 在(,0]−∞上单调递增,且(2)2f −=−,则不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭的解集为( ) A .10,100⎛⎫ ⎪⎝⎭B .1,100⎛⎫+∞ ⎪⎝⎭C .(0,100)D .(100,)+∞【答案】D【解析】因为函数()f x 为奇函数,所以()()f x f x −=−,又(2)2f −=−,(2)2f =, 所以不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭,可化为()2(lg )422f x f >=, 即()(lg )2f x f >,又因为()f x 在(,0]−∞上单调递增,所以()f x 在R 上单调递增,所以lg 2x >,解得100x >.故选:D .例5、(2023春·广西·高三期末)()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则()()20232022f f +−=( )A .-1B .12−C .12D .1【答案】A 【解析】()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则 1111111222222f x f x f x f x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−++=−++⇒−+++=− ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. ∴()()40451404512023202212222f f f f ⎛⎫⎛⎫+−=++−+=− ⎪ ⎪⎝⎭⎝⎭. 故选:A 例6、(2023春·甘肃兰州·高三兰化一中校考阶段练习)若函数f (x )=e e sin x x x x −−+−,则满足()()22ln 102x f a x f ⎛⎫−++≥ ⎪⎝⎭恒成立的实数a 的取值范围为( )A .12ln 2,2⎡⎫−+∞⎪⎢⎣⎭B .1(ln 2,)4−+∞C .[7,)4+∞D .[3,)2+∞ 【答案】A 【解析】因为()e e sin ()x x f x x x f x −−−=−+=−,所以()f x 是R 上的奇函数,由()e +e cos 1x x f x x −'=+−cos 11cos 0x x ≥−=+≥ ,所以()f x 是R 上的增函数, 所以2(2ln(1))02x f a x f ⎛⎫−++≥ ⎪⎝⎭等价于: 22(2ln(1))22x x f a x f f ⎛⎫⎛⎫−+≥−=− ⎪ ⎪⎝⎭⎝⎭即22ln(1)2x a x −+≥−, 所以22ln(1)2x a x ≥−++, 令2()2ln(1)2x g x x =−++, 则问题转化为:max ()a g x ≥,因为()()g x g x −=且定义域为R ,所以()g x =22ln(1)2x x −++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =−++, ()()22122()111x x x x g x x x x x +−−−+'=−+==−+++, 则当()0,1x ∈时,()0g x '>;当()1,x ∈+∞时,()0g x '<; 所以()g x 在()0,1上单调递增,在()1,+∞上单调递减,可得:max 1()(1)2ln 22g x g ==−, 即12ln 22a ≥−, 故选:A . 本课结束。
高考排列组合典型例题

排列组合典型例题例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数.分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是2、4、6、8的四位偶数〔这是因为零不能放在千位数上〕.由此解法一与二.如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅〔个〕. ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:)(283914A A A -⋅个 ∴ 没有重复数字的四位偶数有22961792504)(28391439=+=-⋅+A A A A 个.解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有281515A A A ⋅⋅个干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个〔包括0在〕,百位,十位从余下的八个数字中任意选两个作排列,有281414A A A ⋅⋅个∴ 没有重复数字的四位偶数有2296281414281515=⋅⋅+⋅⋅A A A A A A 个.解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.没有重复数字的四位数有39410A A -个.其中四位奇数有)(283915A A A -个∴ 没有重复数字的四位偶数有2296=个说明:这是典型的简单具有限制条件的排列问题,上述四种解法是根本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.典型例题二例2 三个女生和五个男生排成一排〔1〕如果女生必须全排在一起,可有多少种不同的排法.〔2〕如果女生必须全分开,可有多少种不同的排法.〔3〕如果两端都不能排女生,可有多少种不同的排法.〔4〕如果两端不能都排女生,可有多少种不同的排法.解:〔1〕〔捆绑法〕因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法. 〔2〕〔插空法〕要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.〔3〕解法1:〔位置分析法〕因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. 解法2:〔间接法〕3个女生和5个男生排成一排共有88A 种不同的排法,从中扣除女生排在首位的7713A A ⋅种排法和女生排在末位的7713A A ⋅种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有6623A A ⋅种不同的排法,所以共有1440026623771388=+-A A A A A 种不同的排法.解法3:〔元素分析法〕从中间6个位置中挑选出3个来让3个女生排入,有36A 种不同的排法,对于其中的任意一种排活,其余5个位置又都有55A 种不同的排法,所以共有144005536=⋅A A 种不同的排法,〔4〕解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.说明:解决排列、组合〔下面将学到,由于规律一样,顺便提及,以下遇到也同样处理〕应用问题最常用也是最根本的方法是位置分析法和元素分析法.假设以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.假设以元素为主,需先满足特殊元素要求再处理其它的元素.间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快. 捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.典型例题三例3 排一有5个歌唱节目和4个舞蹈节目的演出节目单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题高考题解析例1 He was very nervous(紧张的). I noticed his hand______.A.to shake B.shake C.shaking D.shaken解析notice有名词的词性,意思是“通知,布告”. notice 作为及物动词,意思是“注意,看到”,可接名词、代词或从句作宾语;它还可以带复合宾语,即notice sb. /sth. do /doing sth.。
其中不带to的不定式do sth.强调整个过程;现在分词doing sth.强调动作的进行,这与动词see, watch, hear等词的用法相似。
根据句意和句子结构应选择C项来强调动作的进行性,即当时的情景。
D项是过去分词,与宾语无被动关系,因为shake在这里用作不及物动词,意思是“发抖”。
答案C例2(2000高考春招题)The picture ______ on the wall is painted by my nephew.A.having hung B.hanging C.hangs D.being hung解析hang在此作为不及物动词,用现在分词作定语修饰picture,表示此刻正在悬挂的状态。
答案B例3 I should have been there, but I ______ not find the time.A.would B.could C.might D.should解析本题的难度不大,前面是虚拟语气的句子,后面则是实际情况,情况动词could指出当时的情况不允许。
情态动词在英语里尽管数量不大,但不好把握,应在应用中不断地总结,找出规律。
答案B例4(2003 NMET)A cook will be immediately fired if he is found ______ in the kitchen.A.smoke B.smoking C.to smoke D.smoked 解析“吸烟”是与“发现”同时发生的行为,故选现在分词作补足语。
本题由find sb. doing sth.变为被动语态后的句型。
smoking则成为主语补足语。
答案B例5 Why not try ______ the back door if they can’t hear you on the front door?A.to knock at B.to knock on C.knockingdown D.knocking on解析try这个动词在使用中作及物动词有两种形式:一种是try to do sth.“想要(尽力)做某事”;另一种是try doing sth.“试做某事(看结果如何)”。
根据句子的意思,“在敲前门听不到的情况下,你为什么不试着敲一下后门呢?”因此,正确答案为D。
还应注意:“knock at”相当于“knock on”;“knock down”的意思是“撞倒”答案D例6 The changes in the city will cost quite a lot, ______ they will save us money in the long run.A.or B.since C.for D.but解析分析前后两句话并不存在因果关系,都用了将来时态。
前句中要花去很多钱和后句中要节省钱存在转折关系,是并列句。
答案D例7 There was terrible noise ______ the sudden burst of light.A.followed B.following C.to be followed D.being followed解析本题含意是“随着突然而来的亮光是可怕的声音”,noise与follow是主谓关系,该用现在分词following作noise的定语,表示当时动作进行的状态。
答案B例8 I need ______ there by bike, but something is wrong with my bike. It needs ______.A.going; to be repaired B.going; being repairedC.to go; to repair D.to go; repairing解析动词need, require, want作“需要被”解,而且主语多是事物且其后跟动词作它的宾语时,必须用动名词或不定式的被动式。
这时,动名词的主动式表示被动意义。
如:The window needs(requires, wants)cleaning(to be cleaned).答案D例9 As you’ve never been there before, I’ll have someone ______ you the way.A.to show B.show C.showing D.showed解析have之后若接不带to的不定式作宾补,往往强调主语的主观意态,意为“使某人做某事”,不定式动作往往发生在have 之后,有时动作还没做;若接现在分词作宾补,则分词动作含有进行之意,即“使某人正在干某事或处于某种状态”。
答案B例10 That’s not a match. We’re playing chess just for_______.(2001年上海市高考题)A.habit B.bobby C.fun D.game解析所设语境“That’s not a match”说明(这次)下棋不像比赛那么严肃,所以不能用habit(习惯),hobby(爱好),game(运动)。
评析该题既可结合所设语境,运用语境中名词意义的辨别来选择正确选项,也可以将for fun(= just for fun; for the fun of it; just in fun)当作一习惯用语,意为“取悦;非认真地;笑话”,如:I’m learning to cook, just for the fun of it.我正在学校做饭,做着玩而已。
答案C例11(1)He _______ some French while he was away on a business trip in paris. (2003年上海高考试题)A.made out B.picked up C.gave up D.took in (2)You can often _______ packs of used stamps very cheaply.A.pick up B.take up C.put up D.keep up(3)I can _______ up the programme _______ my radio.A.pick; in B.pick; on C.take; from D.make; in 解析(1)句意为“当他出差在巴黎的时候他开始学会一些法语”,pick up有“学会”的意思。
答案为B。
(2)take up有“从事;占据(时、空间)”之意;put up和keep up分别作“张贴;举起”和“保持”讲,均不合题意。
此题答案为A,意思是“(便宜地/无意中)得到或买到”。
(3)“通过收音机”可用over(on)the radio;pick up此处指“接收(节目)”。
答案B例12 Nick is looking for another job, because he feels that nothing he does _______ his boss. (2000年北京市高考试题)A.serves B.satisfies C.promises D.supports 解析句意为“Nick正在寻找另一个工作,因为他觉得他所做的一切不能使老板满意”。
答案B选题角度:本素材是挑选出考查本单元语言点的高考题进行例题解析,通过对具体例题的A,B.C.D四个选项所涉及的所有知识点作详细的解说点拨,使学生进一步掌握和巩固好本单元的语言点,提高他们的学习能力。
误点批答例1 ENT代表什么?误:What is ENT stood for?正:What does ENT stand for?精析stand for“代表;主张”,不可用于被动结构。
如:The UK stands for the United Kingdom.He stood for freedom of speech for everyone.例2我没有剩下什么钱了。
误:I haven’t got any money leaving.正:I haven’t got any money left.精析left表示“剩下的”,常出现在名词和anything nothing, nobody之后,用在there be句型中。
如:There are two eggs left, if you are hungry. 如果你饿了,那里还有两个鸡蛋。
例3他拒绝我使用他的字典。
误:He refused me to use his dictionary.正:He refused to let me use his dictionary.正:He didn’t allow me to use his dictionary.精析refuse后可接不定式作宾语,但不能跟不定式作宾语补足语,不能跟动名词或that从句。
例4咱们假装士兵吧。
误:Let’s pretend being soldiers.正:Let’s pretend to be soldiers.正:Let’s pretend that we are soldiers.精析pretend后接不定式或that从句,不可接动名词。
例5除了做饭,她什么都能干。
误:She can do everything but to cook.正:She can do everything but cook.精析but用在all, me, nobody, nothing, everything, where, who等词之后表示“除了”,相当于except,其后的动词用不定式形式。
如果其前的谓语动词是do,不定式不带to,如是其他动词,必须带to。
例6我建议他再试一次。
误:I suggest him to try a second time.误:I suggest him trying a second time.误:I suggest him tries a second time.误:My suggestion is that he tries a second time.正:I suggest he(should)try a second time.正:My suggestion is that he(should)try a second time.精析“建议某人干某事”不能说suggest sb. doing /to do sth.而要用suggest doing sth.或suggest(that)sb.(should)do sth.在名词suggestion后的表语从句、同位语从句中,谓语动词也要用“should+动词原形”表示虚拟,should常省略。