高数专插本试题及答案

合集下载

广东专插本(高等数学)模拟试卷30(题后含答案及解析)

广东专插本(高等数学)模拟试卷30(题后含答案及解析)

广东专插本(高等数学)模拟试卷30(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数f(χ)=χ3sinχ是( )A.奇函数B.偶函数C.有界函数D.周期函数正确答案:B2.设函数在χ=0处连续,则a= ( ) A.0B.1C.2D.3正确答案:B3.有( )A.一条垂直渐近线,一条水平渐近线B.两务垂直渐近线,一条水平渐近线C.一条垂直渐近线,两条水平渐近线D.两条垂直渐近线,两条水平渐近线正确答案:A4.设函数f?(2χ-1)=eχ,则f(χ)= ( )A.B.C.D.正确答案:D5.下列微分方程中,其通解为y=C1cosχ+C2sinχ的是( ) A.y?-y?=0B.y?+y?=0C.y?+y=0D.y?-y=0正确答案:C填空题6.设函数f(χ)=2χ+5,则f[f(χ)-1]=______。

正确答案:4χ+137.如果函数y=2χ2十aχ+3在χ=1处取得极小值,则a=______。

正确答案:-48.设f(χ)=e2χ,则不定积分=_____。

正确答案:eχ+C9.设方程χ-1+χey确定了y是的隐函数,则dy=______。

正确答案:10.微分方程y?-y?=0的通解为______。

正确答案:y=C1+C2eχ(C1,C2为任意常数)解答题解答时应写出推理、演算步骤。

11.求极限。

正确答案:由于当χ→0时,χ4是无穷小量,且,故可知,当χ→0时,1-e-32-3χ2,故所以12.已知参数方程。

正确答案:所以则13.求不定积分∫χ.arctanxdx。

正确答案:14.已知函数f(χ)处处连续,且满足方程求。

正确答案:方程两边关于χ求导,得f(χ)=2χ+sin2χ+χ.cos2χ.2+(-sin2χ).2 =2χ+2χcos2χ,f?(χ)=2+2cos2χ+2χ.(-2sin2χ)=2(1+cos2χ)-4χsin2χ,所以,。

广东专插本(高等数学)模拟试卷54(题后含答案及解析)

广东专插本(高等数学)模拟试卷54(题后含答案及解析)

广东专插本(高等数学)模拟试卷54(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.设函f(χ)=( ) A.-1B.0C.1D.不存在正确答案:D解析:极限不存在,本题应选D.2.设函数f(χ)=lnsinχ,则df(χ)=( )A.B.-cotχdχC.cotχdχD.tanχdχ正确答案:C解析:d(lnsinχ)=cosχdχ=cotχdχ,故应选C.3.f′(χ2)=(χ>0),则f(χ)=( )A.2χ+CB.2+CC.χ2+CD.+C正确答案:B解析:令t=χ2则χ=,f′(χ)=(χ>0),f(χ)=∫f′(χ)dχ=+C,故应选B.4.如果使函数f(χ)=在点χ=0处连续,应将其在点χ=0处的函数值补充定义为( )A.0B.2C.-1D.1正确答案:D解析:若f(χ)在χ=0处连续需补充定义f(0)=1,故本题选D.5.设pn=,qn=,n=1,2,…,则下列命题中正确的是( )A.若an条件收敛,则Pn与qn都收敛B.若an绝对收敛,则Pn与qn都收敛C.若an条件收敛,则Pn与qn的敛散性都不定D.若an绝对收敛,则Pn与qn的敛散性都不定正确答案:B解析:an绝对收敛都收敛,an条件收敛都发散,一个收敛,一个发散an发散,故本题选B.填空题6.设=6,则a=_______.正确答案:-1解析:=6,则(1+0)(1+2.0)(1+3.0)+a=0,a=-1.7.已知曲线y=χ2+χ-2上点M处的切线平行于直线y-5χ-1,则点M的坐标为_______.正确答案:(2,4)解析:y′=2χ+1=5,则χ=2,故M点坐标为(2,4).8.已知f(χ)=χ2+cosχ+∫01f(χ)dχ,则f(χ)=_______.正确答案:χ+cosχ++sin1解析:令f(χ)=χ2+cosχ+C,则f(χ)=χ2+cosχ+(χ2+cosχ+C)dχ,f(χ)=即C=,C=+sin1,故f(χ)=χ+cosχ++sin1.9.微分方程y?-y′=0的通解为_______.正确答案:y=C1+C2eχ解析:微分方程的特征方程为λ2-λ=0,则特征根为λ1=0,λ2=1,故微分方程的通解为y=C1+C2eχ(C1,C2为任意常数).10.若函数f(χ)=在χ=0处连续,则a=_______.正确答案:6解析:即=3,故a=6.解答题解答时应写出推理、演算步骤。

2023年专转本高数试卷

2023年专转本高数试卷

2023年专转本高数试卷一、选择题(每题3分,共30分)1. 函数y = (1)/(√(x - 1))的定义域是()A. (1,+∞)B. [1,+∞)C. (-∞,1)D. (-∞,1]2. 若f(x)=sin x,则f^′(x)=()A. cos xB. -cos xC. sin xD. -sin x3. ∫ x^2dx=()A. (1)/(3)x^3+CB. x^3+CC. (1)/(2)x^2+CD. 2x + C4. 极限lim_x→ 0(sin x)/(x)=()A. 0.B. 1.C. ∞D. 不存在。

5. 设y = e^xcos x,则y^′=()A. e^xcos x - e^xsin xB. e^xcos x+e^xsin xC. -e^xsin xD. e^xsin x6. 函数y = x^3-3x^2+1的单调递增区间是()A. (-∞,0)∪(2,+∞)B. (0,2)C. (-∞,1)∪(1,+∞)D. (1,+∞)7. 已知向量→a=(1,2, - 1),→b=(2, - 1,3),则→a·→b=()A. -1.B. 1.C. 3.D. -3.8. 定积分∫_0^1x^2dx=()A. (1)/(3)B. (1)/(2)C. 1.D. 2.9. 二阶线性微分方程y^′′+p(x)y^′+q(x)y = f(x),当f(x) = 0时,称为()A. 齐次方程。

B. 非齐次方程。

C. 线性方程。

D. 非线性方程。

10. 函数y=ln(x + 1)在x = 0处的切线方程为()A. y = xB. y=-xC. y = x + 1D. y=-x - 1二、填空题(每题3分,共15分)1. 函数y = tan x的周期是______。

2. 若y = f(u),u = g(x),则复合函数y = f(g(x))的导数y^′=______。

3. lim_n→∞(1+(1)/(n))^n=______。

广东专插本(高等数学)模拟试卷27(题后含答案及解析)

广东专插本(高等数学)模拟试卷27(题后含答案及解析)

广东专插本(高等数学)模拟试卷27(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数的反函数是( )A.B.C.D.正确答案:C2.= ( )A.1B.0C.2D.正确答案:D3.已知f(n-2)(χ)=χlnχ,则f(n)(χ)= ( )A.B.C.lnχD.χlnχ正确答案:B4.在下列给定的区间内满足洛尔中值定理的是( ) A.y=|χ-1|,[0,2]B.C.y=χ2-3χ+2,[1,2]D.y=xarcsinx,[0,1]正确答案:C5.下列关于二次积分交换积分次序错误的是( )A.B.C.D.正确答案:D填空题6.y=χ3lnχ(χ>0),则y(4)________。

正确答案:7.定积分=________。

正确答案:28.设=_______。

正确答案:19.若函数f(χ)=aχ2+-bχ在χ=1处取得极值2,则a=______,b=_______。

正确答案:-2,410.交换积分的积分次序,则I=______。

正确答案:解答题解答时应写出推理、演算步骤。

11.求极限。

正确答案:12.设。

正确答案:13.求不定积分。

正确答案:14.求函数y=2χ3+3χ2-12χ+1的单调区间。

正确答案:y?=6χ2+6χ-12=6(χ2+χ-2)=6(χ+2)(χ-1),令y?=0,得χ1=-2,χ2=1,列表讨论如下:由表可知,单调递增区间是(-∞,-2],[1,+∞),单调递减区问是[-2,1]。

15.设f(χ)是连续函数,且,求f(χ)。

正确答案:等式两边对χ求导得f(χ3-1).3χ2=1,即f(χ3-1)=,令χ=2,得f(7)=。

16.计算,其中D是由y=χ和y2=χ所围成的区域。

正确答案:17.设,其中f(u),g(v)分别为可微函数,求。

正确答案:18.求微分方程的通解。

正确答案:原方程的特征方程为2r2+4r+3=0,特征根为,所以原方程的通解为综合题设函数f(χ)=χ-2arctanx。

2022年广东省专插本考试《高等数学》真题+答案

2022年广东省专插本考试《高等数学》真题+答案

广东省2022年普通学校专升本真题高等数学一、单项选择题(本大题共5小题,每小题3分,共15分。

每小题只有一个符合题目要求)1.若函数f (x )={x +1,x ≠1a,x =1,在 x ≠1处连续,则常数a=( )A.-1B.0C.1D.22.lim x→0(1−3x )1x=( ) A.e−3B.e 13C.1D.e 33.lim x→0u n =0是级数∑u n ∞n=1收敛的( ) A.充分条件 B.必要条件C.充要条件D.既非充分也非必要条件 4.已知1x 2是函数f(x)的一个原函数,则∫f(x)dx =+∞1( )A.2B.1C.-1D.-25.将二次积分I =∫dx 10∫f(x 2+y 2)dy 1x 化为极坐标系下的二次积分,则I=( )A.∫dθπ40∫f(p 2)dp secθ0 B.∫dθπ40∫pf(p 2)dp cscθ0C.∫dθπ2π4∫f(p 2)dp secθ0 D.∫dθπ2π4∫pf(p 2)dp cscθ0二、填空题(本大题共5小题,每小题3分,共15分)6.若x →0时,无穷小量2x 与3x 2+mx 等价,则常数m =7.设{x =5t −t 2y =log 2t ,则dy dx |t=2=8.椭圆x 24+y 23=1所围成的图形绕x 轴旋转一周而成的旋转体积为9.微分方程e −x y′=2的通解是10.函数Z =x ln y 在点(e ,e )处的全微分dz |(e ,e )= 三、计算题(本大题共8小题,每小题6分,共48分) 11.求极限limx→1x 3+3x 2−9x+5x 3−3x+212.设y =arc tan x 2,求 d 2ydx 2|x=113.设函数f (x )={ x 2sin 1x +2x,x ≠00, x =0 ,利用导数定义求f′(0).14.求不定积分2x √1−x 215.已知∫tanxdx =−ln |cos x |+C ,求定积分∫xsec 2π40xdx16.设Z =f(x,y)是由方程Z =2x −y 2e z 所确定的隐函数,计算ðzðx −y ðzðy 17.计算二重积分∬cosxdσD ,其中D 是由曲线y =sinx(o ≤x ≤π2)和直线 y =0,x =π2围成的有界闭区域。

广东省2010~2020年专插本考试《高等数学》真题及答案

广东省2010~2020年专插本考试《高等数学》真题及答案

广东省2010年普通高校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分)1.设函数()y f x =的定义域为(,)-∞+∞,则函数1[()()]2y f x f x =--在其定义域上是()A .偶函数B .奇函数C .周期函数D .有界函数2.0x =是函数1,0()0,0x e x f x x ⎧⎪<=⎨≥⎪⎩的()A .连续点B .第一类可去间断点C .第一类跳跃间断点D .第二类间断点3.当0x →时,下列无穷小量中,与x 等价的是()A .1cos x-B .211x +-C .2ln(1)x x ++D .21x e -4.若函数()f x 在区间[,]a b 上连续,则下列结论中正确的是()A .在区间(,)a b 内至少存在一点ξ,使得()0f ξ=B .在区间(,)a b 内至少存在一点ξ,使得()0f ξ'=C .在区间(,)a b 内至少存在一点ξ,使得()()()()f b f a f b a ξ-'=-D .在区间(,)a b 内至少存在一点ξ,使得()()()b af x dx f b a ξ=-⎰5.设22(,)f x y xy x y xy +=+-,则(,)f x y y∂∂=()A .2y x-B .-1C .2x y-D .-3二、填空题(本大题共5小题,每小题3分,共15分)6.设a ,b 为常数,若2lim()21x ax bx x →∞+=+,则a b +=.7.圆²²x y x y =++在0,0()点处的切线方程是.8.由曲线1y x=是和直线1x =,2x =及0y =围成的平面图形绕x 轴旋转一周所构成的几何体的体积V =.9.微分方程5140y y y '--'='的通解是y =.10.设平面区域22{(,)|1}D x y x y =+≤D={x ,y )x ²+y'≤1},则二重积分222()Dx y d σ+=⎰⎰.三、计算题(本大题共8小题,每小题6分,共48分)11.计算22ln sin lim(2)x xx ππ→-.12.设函数22sin sin 2,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩,用导数定义计算(0)f '.13.已知点1,1()是曲线12xy ae bx =+的拐点,求常数a ,b 的值.14.计算不定积分cos 1cos xdx x -⎰.15.计算不定积分ln 51x e dx -⎰.16.求微分方程sin dy yx dx x+=的通解.17.已知隐函数(,)z f x y =由方程231x xy z -+=所确定,求z x ∂∂和z y∂∂.18.计算二重积分2Dxydxdy ⎰⎰,其中D 是由抛物线²1y x =+和直线2y x =及0x =围成的区域.四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)19.求函数0Φ()(1)xx t t dt =-⎰的单调增减区间和极值。

广东专插本(高等数学)模拟试卷55(题后含答案及解析)

广东专插本(高等数学)模拟试卷55(题后含答案及解析)

广东专插本(高等数学)模拟试卷55(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.下列极限结论错误的是( )A.B.C.D.正确答案:C解析:=1,故C错误,本题应选C.2.在下列给定的区间内满足罗尔定理的是( )A.y=|χ-1|,[0,2]B.y=,[0,2]C.y=χ2-3χ+2,[1,2]D.y=χarcsinχ,[0,1]正确答案:C解析:A项,y在χ=1处不可导;B项,y在χ=1处不连续;D项,y(1)≠y(0),故本题应选C.3.曲线f(χ)=的水平渐近线为( )A.y=B.y=-C.y=D.y=-正确答案:C解析:,则y=为曲线的一条水平渐近线.4.若∫f(χ)dχ=+C,则∫χf′(χ)dχ=( )A.+CB.+CC.χlnχ-χ+CD.+C正确答案:D解析:,由于C1为任意常数,故应选D.5.下列命题正确的是( )A.若|un|发散,则un必发散B.若un收敛,则|un|必收敛C.若un收敛,则(un+1)必收敛D.若|un|收敛,则un必收敛正确答案:D解析:若|un|收敛则un一定收敛,若un,发散,则|un|一定发散,其余情况无法判定,故本题选D.填空题6.曲线y=的水平渐近线为_______.正确答案:y=1解析:=1,所以曲线有水平渐近线y=1.7.已知函数参数方程为χ=e2tcos2t,y=e2tsin2t,则=_______.正确答案:0解析:=2e2tsin2t+2e2tsintcost,=2e2tcos2t-2e2tcostsint,8.=_______.正确答案:2解析:9.y′+ycosχ=0满足y|χ=0=2的特解为_______.正确答案:y=2e-sinχ解析:y′+ycosχ=0,=-ycosχ,=-cosχdχ,ln|y|=-sinχ+ln |C|,y=Ce-sinχ,又y|χ=0=2即C=2,故微分方程的特解为y=2e-sinχ10.化二重积分(χ2+y2)dy为极坐标形式_______.正确答案:解析:由直角坐标形式可知积分区域如图所示.0≤χ≤2a,0≤y≤,用极坐标可表示为0≤0≤,0≤r≤2acosθ,χ=rcosθ,y=rsinθ.则极坐标形式为解答题解答时应写出推理、演算步骤。

《高等数学》专插本年历年试卷

《高等数学》专插本年历年试卷

X 省202X 年一般高等学校本科插班生招生考试高等数学一、单项选择题〔本在题共5小题,每题3分,共15分。

每题只有一个选项符合题目要求〕1.函数22()2x x f x x x -=+-的间断点是A .2x =- 和0x =B .2x =- 和1x =C .1x =- 和2x =D .0x = 和1x =2.设函数1,0()2,0cos ,0x x f x x x x +<⎧⎪==⎨⎪>⎩,则0lim ()x f x → A .等于1 B .等于2 C .等于1 或2 D .不存在 3. 已知()tan ,()2xf x dx x Cg x dx C =+=+⎰⎰C 为任意常数,则以下等式正确的选项是A .[()()]2tan x f x g x dx x C +=+⎰B .()2tan ()x f x dx x C g x -=++⎰C .[()]tan(2)x f g x dx C =+⎰D .[()()]tan 2x f x g x dx x C +=++⎰4.以下级数收敛的是A .11nn e ∞=∑ B .13()2nn ∞=∑C .3121()3n n n ∞=-∑ D .121()3n n n ∞=⎡⎤+⎢⎥⎣⎦∑.5.已知函数 ()bf x ax x =+在点1x =-处取得极大值,则常数,a b 应满足条件 A .0,0a b b -=< B .0,0a b b -=> C .0,0a b b +=< D .0,0a b b +=> 二、填空题〔本大题共5小题,每题3分,共15分〕6.曲线33arctan x t ty t ⎧=+⎨=⎩,则0t =的对应点处切线方程为y =7.微分方程0ydx xdy +=满足初始条件的1|2x y ==特解为y =8.假设二元函数(,)z f x y =的全微分sin cos ,x xdz e ydx e ydy =+ ,则 9.设平面地域{(,)|0,01}D x y y x x =≤≤≤≤,则Dxdxdy =⎰⎰10.已知1()sin(1)tf x dx t t tπ=>⎰,则1()f x dx +∞=⎰三、计算题〔本大题共8小题,每题6分,共48分〕11.求20sin 1lim x x e x x →--12.设(0)21x x y x x =>+,求dydx13.求不定积分221xdx x ++⎰14.计算定积分012-⎰15.设xyzx z e-=,求z x ∂∂和z y∂∂ 16.计算二重积分22ln()Dx y d σ+⎰⎰,其中平面地域22{(,)|14}D x y x y =≤+≤ 17.已知级数1n n a ∞=∑和1n n b ∞=∑满足0,n n a b ≤≤且414(1),321n n b n b n n ++=+-判定级数1n n a ∞=∑的收敛性18.设函数()f x 满足(),xdf x x de-=求曲线()y f x =的凹凸区间 四、综合题〔大题共2小题,第19小题12分,第20小题10分,共22分〕 19.已知函数()x ϕ满足0()1()()xxx x t t dt x t dt ϕϕϕ=+++⎰⎰〔1〕求()x ϕ;〔2〕求由曲线 ()y x ϕ=和0,2x x π==及0y =围成的平面图形绕x 轴旋转而成的立体的体积20.设函数()ln(1)(1)ln f x x x x x =+-+ 〔1〕证明:()f x 在区间(0,)+∞内单调减少; 〔2〕比拟数值20192018与20182019的大小,并说明理由;202X 年X 省一般高校本科插班生招生考试《高等数学》参考答案及评分标准一、单项选择题〔本大题共5小题,每题3分,共15分〕 1.B 2.A 3.D 4.C 5.B二、填空题〔本大题共5小题,每个空3分,共15分〕 6.13x 7.2x 8.cos x e y 9.1310.π 三、计算题〔本大题共8小题,每题6分,共48分〕11.原式00cos sin 1limlim 222x x x x e x e x x →→-+=== 12.解: 13.解:14.,t =则211,22x t dx tdt =-= 15.解:设(,,)xyzf x y z x z e=--16.解:由题意得12,0r θπ≤≤≤≤17.解:由题意得414(1),321n n b n b n n ++=+-由比值判别法可知1nn b∞=∑收敛0,n n a b ≤≤由比拟判别法可知1n n a ∞=∑也收敛18.解()f x ∴的凹区间为(1,)+∞,凸区间为(,1)-∞19.〔1〕由题意得0()1()()()1()xxx x x t dt x x t dt ϕϕϕϕϕ'=++-=+⎰⎰特征方程210r +=,解得r i=±通解为()cos sin x x x Cϕ=++(2)由题意得 20.证明〔1〕 证明11ln(1)ln ()01x x x x+--+<+即可 即证11ln(1)ln ()1x x x x+-<++令()ln g x x =()ln g x x =在(0,)+∞连续可导,由拉格朗日中值定理得ln(1)ln 1ln(1)ln ()1x x x x g x x x ξ+-'+-===+-且1x x ξ<<+ 11ln(1)ln ()1x x x x ∴+-<++成立()f x ∴在(0,)+∞单调递减〔2〕设2019,2018a b ==则201820192019,2018ba ab ==比拟,a b b a 即可,假设a bb a >即ln ln a b b a >即ln ln b ab a >设ln (),x g x x =则21ln ()xg x x -'=()g x 在(0,)+∞单调递减即()()g b g a ∴>,即a b b a >成立即2019201820182019>X 省202X 年一般高等学校本科插班生招生考试高等数学一、单项选择题〔本在题共5小题,每题3分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、函数 在x=0处
A.无定义B.不连续C.可导D.连续但不可导
2、设函数 在点x0处连续,且 则 =
A.-4B.0C. D.4
3、设函数 若 存在,则 =
A. B. C. D.
4、设 ,则 =
A. B. C. D.
5、积分
A.收敛且等于-1B.收敛且等于0C.收敛且等于1D.发散
二、填空题(本大题共5小题,每个空3分,共15分)
11、求极限 。
12、计算不定积分 。
13、设函数 。
14、函数y=y(x)是由方程 所确定的隐函数,求 在点(1,0)处的值。
15、计算定积分 。
16、求二重积分 ,其中积分区域 。
17、设函数 ,求 。
18、求微分方程 满足初始条件 的特解。
四、综合题(本大题共2小题,第19小题14分,第20小题8分,共22分)
故f(x)在区间( )及(3, )单调上升,在区间(1,3)单调下降;
f(x)的极大值f(1)=1,极小值f(3)=-27。
(3)解法一:
解法二:
20、证明:设 ,
则 。
故 =c,c为常数。
化简得:
将初始条件代入得:
故所求的特解为 .
四、综合题(本大题共2小题,第19小题14分,第20小题8分,共22分)
19、解:(1)
(2) ,
令 ,解得x=0,x=1,x=3.
列函数性态表如下
( )
0
(0,1)
1
(1,3)
343;
0

0
+

无极值

极大值

极小值

(说明:不列表,分别讨论单调性不扣分)
4、下列函数中,在闭区间[-1,1]上满足罗尔中值定理条件的是
A、 x B、 C、 D、
5、已知 ,则 =
A、 B、 C、 D、
二、填空题(本大题共5小题,每个空3分,共15分)
6、极限 =。
7、定积分 =。
8、设函数 ,则 =。
9、若函数 在x=0处连续,则a=。
10、微分方程 的通解是。
三、计算题(本大题共10小题,每小题5分,共50分)
= =
=
13、解: = ,

14、解法一:将方程 两边对x求导数得



解法二:将方程 两边取自然对数得

.
解法三:设F(x,y)= ,
则, ,

.
15、解:
16、解法一:D= 如答图1所示
解法二:D= 如答图1所示
(说明:本题不画图,不扣分)
17、解:
= ,
18、解: 原方程可变形为: ,
(说明:没写绝对值不扣分)
高等数学
历年试题集及答案
(2005-2016)
2005年广东省普通高等学校本科插班生招生考试
《高等数学》试题
一、单项选择题(本大题共5小题,每小题3分,共15分)
1、下列等式中,不成立的是
A、 B、
C、 D、
2、设 是在( )上的连续函数,且 ,则 =
A、 B、 C、 D、
3、设 ,则
A、- B、 C、- D、
1、D2、B3、B4、A5、C
二、填空题(本大题共5小题,每个空3分,共15分)
6、87、x+2y-3=08、49、 10、
三、计算题(本大题共8小题,每小题6分,共48分)
11、解法一:
解法二:
解法三:
(说明:不转换成函数极限,直接用洛必达法则计算可以不扣分)
12、解法一:
=
解法二:
=
解法三:设 =t,则x=
6、若直线 是曲线 的水平渐近线,则 =。
7、由参数方程 所确定的曲线在t=0相应点处的切线方程是。
8、积分 。
9、曲线 及直线x=0,x=1和y=0所围成平面图形绕x轴旋转所成的旋转体体积V=

10、微分方程 的通解是。
三、计算题(本大题共8小题,每小题6分,共48分。解答应写出演算步骤和必要的文字说明)
15、解:
(每项的原函数求对各得1分,总体答案写对得5分)
16、解:令 ,则
6分
17、解:由两条曲线 及两条直线 所围成的平面图形
如图所示(要画出草图,不画图不扣分),依题意,旋转体的体积为
5分
18、解:采用极坐标变换 ,则
19、解:方程 的特征方程为
解出
可知方程的通解为
由上式可得
用初始条件 代入上面两式得
故 在闭区间[0,2]上的最大值为 ,最小值为
22、证明:设 则
由拉格朗日中值定理知,存在一点 ,使
, 即 ,
又因 ,故
23、解:应用分部积分法
由题意有 6分
2006年广东省普通高校本科插班生招生考试
《高等数学》试题
一、单项选择题(本大题共5小题,每小题3分,共15分。每小题给出的四个选项,只有一项是符合题目要求的)
19、已知函数 是 在 上的一个原函数,且f(0)=0.
(1)求 ;
(2)求 的单调区间和极值;
(3)求极限 。
20、设 , 都是 上的可导函数,且 ,g=(0)=0。试证: 。
2006年广东省普通高校本科插班生招生考试
《高等数学》试题答案及评分参考
一、单项选择题(本大题共5小题,每小题3分,共15分)
11、求极限 )。
12、求极限 。
13、已知 ,求 。
14、设函数 是由方程 所确定的隐函数,求 。
15、计算不定积分 。
16、计算定积分 。
17、求由两条曲线 及两条直线 所围成的平面图形绕x轴旋转而成的旋转体体积。
18、计算二重积分 ,其中积分区域 。
19、求微分方程 满足初始条件 的特解。
20、已知 ,求全微分 。
解出 故所求的特解为
20、解:

四、综合题(本大题共3小题,第21小题8分,第22、23小题各6分,共20分)
21、解: 的定义域为 ,
令 ,解出驻点(即稳定点)
列表
x
-1
(-1,1)
1

0
+
0

单调减
极小
单调增
极大
单调减
可知极小值
极大值
(2)因 在[0,2]上连续,由(1)知 在(0,2)内可导,且在(0,2),内只有一个驻点 (极大值点),因 ,且
四、综合题(本大题共3小题,第21小题8分,第22、23小题各6分,共20分)
21、设 ,
(1)求 的单调区间及极值;
(2)求 的闭区间[0,2]上的最大值和最小值。
22、证明:当 时, 。
23、已知 ,且 ,求f(0)。
2005年广东省普通高校本科插班生招生考试
《高等数学》试题答案及评分参考
一、单项选择题(本大题共5小题,每小题3分,共15分)
1、D2、B3、C4、C5、A
二、填空题(本大题共5小题,每个空3分,共15分)
6、1;7、0;8、 9、 10、
三、计算题(本大题共10小题,每小题5分,共50分)
11、解:
12、解:
13、解:
14、解法一:设 ,则
故 (x≠y)。
解法二:方程 可写为
视 ,上式两边对x求导得

即 ,
所以 ,推出 (x≠y)
相关文档
最新文档