用单位出水量计算渗透系数

用单位出水量计算渗透系数
用单位出水量计算渗透系数

第一章 用单位出水量计算渗透系数的可行性研究概况

在铁路建设中,为了提高预测生产井出水量的精度,同时不使用观测孔,又节省勘探费用和缩短勘探周期。本文在搜集国内外关于单孔抽水试验计算渗透系数的理论公式和经验公式,重点分析裘布依公式的基本假定和适用范围,找出影响传统计算方法精度的主要因素,结合铁路一般供水站用水量较小的特点,寻求单孔抽水试验计算水文地质参数简单可行的新方法。

该方法主要根据勘探孔的抽水试验资料,建立Q —S 抛物线方程,用数值方法求算S=1m 时的单位出水量q 值,然后求算渗透系数K 值,再代入裘布依公式中求算引用补给半径R 值。在计算过程当中,使用了数理统计方法。此外,还使用了基姆公式,以便解决只做一次水位降深时求算S=1m 时的近似单位出水量q 值。从而用小口径(≤146mm )勘探试验孔的水文地质参数K ,R 值,预测大口径(>146mm )生产井(大口井、管井、结合井、干扰井、渗渠即水平集水管)等的出水量。

第二章 渗透系数和影响半径传统计算公式与存在问题

第一节 裘布依公式的假设条件和使用范围

自1863年法国水力学家裘布依提出潜水井和承压水井公式以来历经百余年,

至今仍然被广泛使用着。实践证明,该公式诞生以来,在指导人类开发地下水资源方面起到了举足轻重的作用,促进了社会进步并获得了经济效益。但是长期以来在使该公式时,由于种种原因,常常忽视了该公式的适用范围和条件,因而造成系列误差,影响了渗透系数和引用补给半径的计算成果。

一?裘布依公式

1,承压水完整孔 r

R

MS Q K ln 2π= (2-1)

2,潜水完整孔 r

R

h H Q K ln )2

2-=

(π (2-2)

式中 K —含水层渗透系数(m/d );

Q —钻孔出水量 (m 3/d); S —水位降深(m );

M —承压含水层厚度(m );

H —天然情况下潜水含水层厚度 (m );

h —潜水含水层在抽水试验时的孔内剩余厚度(m ); R —含水层半径,即应用补给半径(m ); r —过滤管半径(m )。

二、裘布依公式的假设条件

抽水孔内水头上、下一致,即地下水沿过滤管进入孔内时是均匀的(二维流);

(1)在半径为R的圆柱体外保持常水头;

(2)抽水前地下水是静止的,即天然水力坡度为零;

(3)承压水的顶、底板是水平的隔水层;潜水的底版是水平的隔水层,抽水时孔边

水力坡度不大于1/4;

(4)含水层是均质水平的。

三、裘布依公式的基本假定与实践的关系

当抽水孔的出水量达到一定的数量(一般为大降深)时,孔壁周围含水层将产生如下问题:

(一) 孔壁边界条件

1、孔壁及其周围含水层中产生三维流

由于过滤管壁的摩阻,地下水沿过滤管运动必然产生水头损失,因而沿过滤管的水头为深度Z的函数,这种边界变化影响到含水层内部,使孔周围的地下水由二维平面流变为具有Z方向分速的三维流,致使在同一半径r处不同深度Z的水头不等。事实上在三维流区即b≤1.6倍含水层厚度的范围(b为距抽水孔的距离),裘布依公式就不适用。

2、孔周围产生紊流

在含水层中进行抽水时,水力坡度增大到一定数值时,流速和水力坡度不再保持线性关系(简称层流),此时达西定律不再有效,从而使在该基础上推导的所有公式包括裘布依公式也就失效;在粗颗粒地层,流速和水力坡度一开始抽水就呈非线性关系而符合抛物线或指数关系(简称紊流)。因而裘布依公式也不宜应用。

3、潜水中裘布依假定的失效

在潜水中目前通用的公式均在流线倾角的正弦用正切代替的基础上推导的,当潜水的水力坡度大于1/4时,该假定就失效,此时渗流场内的势分布与裘布依公式描述的完全不同。

(二)、含水层的“影响半径”

裘布依公式的影响半径实质上是含水层的补给半径,在此边界上始终保持常水头。

如我国陈雨孙先生在<<单井水力学>>一书中介绍裘布依公式中R的含义时指出的:

1、R不是实际地下水面下降的边界,不是降落漏斗,在抽水时水面下降可以波

及到整个含水层一直到补给边界;

2、与出水量Q和水位降深S无关,即Q、S或大或小,R值都是固定的;

3、R与含水层的渗透性(渗透系数k的大小)无关;

4、R与孔径(r)大小无关,但出水量与孔径密切相关,孔径愈大愈接近裘布

依公式;

5、R时含水层补给条件的参数,R愈小,补给条件愈好,反之R愈大,补给

条件愈差;

6、R的大小受下列三个条件控制:

(1)含水层形状;

(2)钻孔在含水层中的位置;

(3)补给源的类型和补给的强弱。

7、为区别传统“影响半径R”的概念,本文用“引用补给半径R”来表示裘布

依公式中的R值;

8、假设的“引用补给半径R”是圆形的,但在自然界中的含水层中,进行抽水

实验时,实际形成的降落漏斗很少有圆形的。

(三)顶、底板的隔水层

裘布依公式假定潜水含水层的底板和承压含水层的顶,底板都是绝对隔水的,然而实际隔水层如粘性土却并非绝对隔水,在抽水试验或水源地开采时,常可观测到表层粘性土中潜水位下降甚至疏干,这表明上覆“隔水层”的潜水已向下卧含水层进行补给。

在具有越流渗流补给时,通过不同半径圆柱面的流量不等。因此,当有垂直补给时,只有在b≤0.178R时,裘布依公式才能适用。

第二节以往渗透系数和影响半径的计算方法及其存在的问题

一影响半径R值的确定

从公式(2-1)和(2-2)可看出,裘布依公式中有R和K两个未知数,应首先求出引用补给半径R值,方能求出渗透系数k值。

裘布依公式假定含水层是一个半径为R的圆柱体,在该圆柱体的外周解保持一个常水头H,构成含水层一个边界条件,除此之外,再无其它补给来源。

(一)群孔抽水试验

当单孔在含水层中抽水,出水量和水位降深均达到稳定时,说明含水层的补给能力满足单孔抽水的需要,因而也就必然存在着一个具体的数“R”来反映含水层对钻孔的补给能力。但是,单孔抽水试验时,不能从含水层动水位的测量中直接得出。因此,以往采用设置观测孔的方法求算影响半径R值。根据有关规范,观测孔的设置应符合如下要求:

(1)以抽水孔为原点,布置1~2条观测线;

(1)每一条观测线上的观测孔一般为3个;

(2)距抽水孔进的第一观测孔,应避开三维流的影响;

(3)各观测孔的过滤器长度宜相等,并安置在同一含水层和同一深度上;

(4)抽水试验前和抽水试验过程中,必须同步测量抽水孔和观测孔的静止水位和动水位。

从上述规定可看出设置观测孔的条件是比较严格的,尤其是观测孔距抽水孔的距离,应考虑避开三维流的影响。抽水后实际下降漏斗,在距抽水孔很近的范围内(即b≤0.178R)属对数关系,当观测孔聚居抽水孔的b≥0.178R后就变为贝塞尔函

数关系,贝塞尔函数的斜率较对数函数为少,因此当观测孔越远时,计算的K值越大。如前所述,三维流区在b≤1.6倍含水层厚度范围内。当含水层的厚度、补给能力、渗透性、过滤官场度、半径和出水量等各种因素配合得当,或采用小降深抽水,在渗流场中可以找到部首孔比边界条件也不随含水层补给条件影响的一个区域,即在1.6M≤b≤0.178R范围内,进行群孔抽水试验,可以获得符合裘布依假定条件的引用补给半径R值。

进行群孔抽水试验,勘测成本高、周期长、难度大。当观测孔的设置不符和上述规定随意布置时,获得的值仍然是降落漏斗半径,而不是应用补给半径。 (二)单孔抽水试验

铁路供水,一般用水量较小,在水文地质勘察中往往采用单孔抽水试验,而不设置观测孔。一般采用如下经验式计算影响半径:

R=2SHK (2-3) R=10SK (2-4)

从公式(2-3)和(2-44)中看出,影响半径R是依水位降渗S变化的,这与裘布依假定的条件是相矛盾的。也与上述陈雨孙先生对R的论述发生了矛盾。

二 渗透系数K 值计算

渗透系数计算的方法和公式很多,主要分为利用水位下降资料或利用水位恢复资料计算。利用水位下降资料计算又分为稳定流抽水试验和非稳定流抽水试验;进一步分为承压水和潜水、单孔和群孔、完整孔和非完整孔、有界和无界等等。 (一) 利用群孔抽水试验资料计算K 值

1 稳定流抽水试验计算K 值 承压水完整孔: 有一个观测孔时

)

()

lg (lg 366.011S S M Q K w rw r --= (2-5)

有两个观测孔时

)

()

lg lg 366.02112S S M Q K r r --=

( (2-6)

潜水完整孔: 有一个观测孔时, )

)(2()

lg lg 73.0111S S S S H Q K w w rw r ----=( (2-7)

有两个观测孔时

)

)(2()

lg (lg 73.02112S S S S H Q K w rw r ----=

(2-8)

式中 w S —抽水孔水位降深(m );

1S 、2S —1、2号观测孔的水位降深(m ); w r —抽水孔的半径(m )

; r1、r2——1、2号观测孔距抽水孔的距离(m );

其他符号同上。

2 利用非稳定流抽水实验资料计算K 值

完整孔非稳定流抽水试验,有降深—时间(S —lgt )量板法、降深—距离(S —lgr2)量板法、直线解析法、水位恢复法和直线斜率法等计算渗透系数 的方法。上述方法均采用观测孔的水位降深和水位恢复资料计算。

群孔抽水试验的观测孔,应严格按前述的有关规定布置。

不难看出,无论稳定稳定流抽水试验还是非稳定流抽水试验,该方法勘测成本高、周期长、采用观测孔的水位资料进行计算,尤其是稳定流抽水试验,应以观测孔的水位达到要求的稳定延续时间,抽水才能结束,这就延长了抽水历时时间,有时抽水需几天甚至更长。

(二)利用单孔抽水试验资料计算渗透系数

铁路一般的给水站和生活供水站用水量较小,多采用单孔抽水试验资料计算K 值,当完整井时常常采用公式(2-1)、(2-2)与公式(2-3)或(2-4)联立求解。用经验公式计算的R 值代入裘布依公式,其结果有一个R 值,就有一个对应的K 值,这与裘布依公式中把R 视为常数的假定条件发生了矛盾,即使考虑了三维流和紊流的影响,仍然会在不同出水量时得出不同K 值的不合理结果。这是以往计算渗透系数时往往被忽视的一个问题。

对于单孔抽水试验,在水位相同的情况下,由于钻孔结构不同所计算的渗透系数K 值也不同,如无过滤管K 值也不同,填砾过滤器比不填砾的K 值大等等。

第三章 单孔抽水计算渗透系数新方法研究

利用群孔抽水试验方法计算含水层渗透系数K 和引用补给半径R,虽然能符合裘布依公式的假定条件,但勘测周期长、成本高,很难适应当前市场经济形势的需要。而结合铁路一般供水工程用水量小,多采用小孔径钻探、单孔抽水试验的方法,因而迫切需要解决水文地质参数计算中的这一矛盾,研究可操作性强、精度符合要求的新方法。

第一节 “单位出水量法”的研究

一 国内外发表的计算渗透系数的经验公式

在收集的大量国内外既有计算方法和研究成果中,有针对性地选择几个计算渗透系数的经验公式进行研究,国内外发表的经验公式如下:

(一)”单位出水量法”,原苏联捷年鲍姆和格林鲍姆的经验公式 潜水含水层:

H

q

K 3.1=

(3-1)

承压水含水层:

M

q

K 3.1=

(3-2) 式中 K —含水层渗透系数(m/d);

q —水位降深S=1m 时的单位出水量(m 2

/d );

H —潜水含水层厚度(m ); M —承压含水层厚度(m )。

(二)《水文地质工程地质》1973年第4期邓厚基《单孔抽水试验确定渗透系数的新方法》一文,经验公式

承压水或承压潜水

100*M

q

K = (3-3) 潜水

100*H

q

K =

(3-4) 式中 q —单位出水量 (L/s·m ); 其他符号同上。

(三)1977年前苏联<<取水井设计和钻探简明手册>>中的经验式

m

q

K 130= (3-5) 式中m —含水层厚度(m ); 其他符号同上。

(四) 1973年日本《地下水资源学》中的经验式 稳定流抽水试验: K=100*H

q

(3-6) 式中符号含义同上。 非稳定流抽水试验

K=

m

q

22.1 (3-7)

式中q —单位出水量()·/3m d m 其它符号同上。

二.本课题采用的“单位出水量(q )法”

以搜集的原始资料作为研究、分析、计算的基础,用求算的K 、R 值预测供水工程得出水量,并与实际取水工程的出水量相比较,进行误差分析和修正后,推出了用“单位出水量法”计算渗透系数K 值的新方法。

捷年鲍姆和格林鲍姆用20个抽水试验孔的资料进行了验证,其中含水层的水力性质有潜水含水层8个和承压含水层12个;由单孔抽水试验合群孔抽水试验;有17个孔进行了3次水位降深,3个孔2次水位降深。揭露的含水层厚度为11.0~30.8m 。

在研究中我们对20个钻孔验证资料进行了统计,比较表明用“单位处水量法”计算的渗透系数K 值,同用单孔和群孔抽水试验计算的K 值误差最小者为0.00%,最大者为±15.45%,平均误差为±7.07%。在这些误差中,超过10%的有6孔,经分析认为这可能适用岩芯鉴定方法确定的含水层厚度有偏差所致。因此,可认为用“单位出水量法”计算的K 值误差较小。

第二节 消除井损的方法

一 消除井损的必要性

裘布依公式中的S ,它代表流量Q 经过含水层输送到过滤管外壁的水头损失,

而钻孔抽水试验中测定的水位降深S 往往是在过滤管内进行的,由于过滤管壁的摩阻,地下水沿流程运动必然产生水头损失(包括“水跃值” △H )。地下水脱离含水层进入过滤管开始,直到离开过滤管进入抽水管为止的这段流程内产生的全部水头损失,由几部分组成:

(1) 水流的摩阻损失,它包括水流通过过滤管缠丝或包网间隙的水头损失和水

流通过管壁圆孔的水头损失。同时,还应考虑缠丝或包网孔眼堵塞的影响。

(2) 水流的增量加速度运动引起的水头损失。

(3) 水流进入过滤管后流向偏转引起的水头损失以及在过滤管内水质点碰撞

的动量水头损失。 当采用填砾过滤器时,水头损失还应包括含水层和滤层间接触界面的水头损失;滤层和过滤管间接触界面的水头损失;滤层的水头损失。

为此,钻孔抽水试验测定的水位降深,在计算水文地质参数时必须进行水头损失亦即井损修正,才符合裘布依公式的基本假定,否则计算的K 值则偏小。

二 消除井损的方法

按国家标准《供水水文地质勘察规范》GBJ27—88第7.2.1条规定有Q ~S 多项式法和作图截距法。

(一) Q ~S 多项式法

当Q ~S (或△2

h )关系曲线呈曲线时,可采用插值法得出Q ~S 代数多项式,即 ++=221Q a Q a s ······n n Q a + (3-8) 式中 a 1、a 2······a n 待定系数。

公式(3-8)中的一次项系数a 1、可表达为: a 1=

r

R

KM lg 21π (3-9)

a 1宜按均差表求得后,以1/ a 1代换裘布依公式(2-1)中的Q/S 和公式(2-2)中的Q/(2

2h H -),分别计算渗透系数K 值。

Q ~S 多项式的阶数,一般只要3~4阶,即能准确地描述Q ~S 资料的函数关系。

在作均差表时,要求抽水段落在Q ~S 曲线上均匀分布,否则需要在Q ~S 曲线上取等距离作均差表。

(二)作图截距法

当S/Q (或△H 2

/Q )~Q 关系曲线呈直线时,可采用作图截距法求出a 1后,以1/ a 1代换裘布依公式(2-1)中的Q/S 和公式(2-2)中的Q/(2

2h H -),分别计算渗透系数K 值。

作图截距法,其使用条件是很严格的,既要求Q 、S 值宜小,且需分度,抽水试

验 资料关系曲线应为抛物线型,即S/Q ~Q 或△H 2

/Q ~Q 呈曲线,则该资料包括Q 的高次方项,且曲线的“截距”存在随意性。

另外,当钻孔施工过程中采用泥浆钻进,孔壁上的泥皮冲洗不净时,则对钻孔出水量有一定影响。作图截距法不能消除泥浆的影响。

(三)其他方法

国内许多学者对消除井损提出了不同的方法,其中有抛物线方程法。

陈雨孙在《单井水力学》一书中指出,滤水管内的流量(或水力坡度)与滤水管深度Z 的三次方成函数关系,导出滤水管内水位降深与流量的关系式。该关系式表明,抽水井的降深S ,是流量Q 的一,二,三,四次方的函数。对于特定抽水井滤水管位置固定,Z 变为确定值,关系式可写成:

S=AQ+BQ 2

+CQ 3+DQ 4

(3-10)

式中A 、B 、C 、D-待定系数;

其它符号相同。

由于S与井半径 r

w 及抽水流量Q有关,当r

w

不很小或Q不很大的情况下,公

式(3-10)的后两项可以忽略,即变为常见的抛物线方程。

三消除井损失计算渗透系数方法存在的问题

Q-S多项式法和做图截距法国家标准《供水水文地质勘查规范》GBJ27-88中规定的消除井损的方法,在适用的条件下是可行的。但是,结合本课题经深入研究,认为存在两个问题。

1以1/ a

1代换裘布依公式(2-1)中的Q/S和公式(2-2)中的Q/(2

2h

H )。

这样,该方法中仍然出现K和R两个未知数,仍然需要先知其一,然后才能求解该式。

2钻孔抽水试验可以用上述方法消除井损,生产井出水量和水位降深也要求采用同一方法消除井损,才能进行验证、对比和误差分析。但是,根据规范要求,生产井竣工抽水试验一般只做一次水位降深,无法消除井损。

四本课题采用消除井损方法

经反复分析研究,本课题选用抛物线方程法计算s=1m时的单位出水量方法来消除井损。

第三节单位出水量q 确定方法的研究

日本和我国的学者也提出了捷年鲍姆和格林鲍姆相近的经验公式,但经分析研究和验证,计算的误差均较大,原因是单位出水量q的取值问题,常采用下式计算:

q=Q/S (3-11)

利用抽水试验资料和(3-11)式计算,有几次水位降深,就有相应的几个q值,同样可以得出几个渗透系数K值,并且q与S成反比,S愈大,q值愈小,这与裘布依公式中K是常量的基本假定相矛盾。

本课题采用S=1m时的单位出水量q计算渗透系数K。裘布依公式基本假定(2-3),抽水前地下水是静止的,即天然水力坡度为零。在潜水中目前通用的公式均在流线倾角的正弦用正切代替的基础上推导的,当潜水的水力坡度大于1/4时,该假定就失效。潜水水力坡度用dy/dx代替dy/dI,即tan a=sin a(a为抽水稳定时降落曲线与水平线的夹角)。这种假定(简化)虽然方便了潜水公式的推导,但却限制了裘布依公式的使用范围。

从表3-1可知,只有夹角为6时,tan a=sin a,误差可视为零,如果允许有3.5%的误差,最大夹角也只能达到15。国内外学者们认为,当抽水孔内水位降深S=1m 时,其夹角a 值大部分不超过15。孔内水位降深S=1m 时,过滤管内外的水位降深可看作是一致的,可忽视“水跃”值ΔH 、三维流及紊流等的井损。因此,取S=1 m 时的出水量Q 即单位出水量q ,计算的渗流系数K 和影响半径R 值接近裘布依公式的基本假定。

单位抽水试验,当进行2次以上水位降深时,Q~S 关系均可以用抛物线方程表达。其基本原理是:在没有井管紊流损失的条件下,承压井的出水量曲线Q=f(S)应为一个通过直角坐标原点的直线,其方程式为:

S=aQ (3-12) 在有井管紊流损失存在的条件下,必须有附加降深才能相应的紊流损失相抵消,获得应有的水量,即

S=a Q+b Q 2

(3-13) 式中 a —层流阻力系数; b —紊流阻力系数.

根据解析几何的原理,(3-13)式为一通过原点的抛物线.

抛物线方程,抽水时孔内的水位降深S 有两部分组成.一是aQ 项,它代表水量Q 经过含水层以层流状态输送到过滤管的水头损失,符合达西线性定律的水头损失;另一项bQ2项,它代表因抽水时在孔内和孔壁周围产生的三维流和紊流而引起的水头损失。

本法利用抛物线方程式和最小二乘法原理使抽水试验中的Q~S 曲线与经过坐标原点(0,0、Q 1,S 1、Q 2,S 2)的抛物线拟合的最好,应用相关分析方法检查其误差,以相关系数r 判定相关程度,当误差超过标准时,进行一次或两次修正,则可达到标准抛物线的要求。

当抽水试验只作一次水位降深且S 大于1m 时,可采用基姆公式计算S=1m 时的单位出水量q 。

1940年原苏联水文地质学家阿·齐姆,根据格雷津塔尔地区潜水井抽水资料,利用裘布依潜水公式提出了预测钻孔可能最大出水量公式,一般称齐姆公式。公式如下:

(S max -S )2

=)(max max

max

2Q Q Q S (3-14)

式中 S max —抽水试验中最大水位降深(m );

S—设计的水位降深(m);

Q max—与S max对应的最大出水量(m3/d);

Q—对应于S的出水量(m3/d)。

该式可根据3个已知数求算第4个未知数,用于潜水完整孔或非完整孔。

当S<1m时,可直接求算 q值,即Q/S=q。

用单位出水量法计算渗透系数K后,代入裘布依公式(2-1)或(2-2),即可得出R值,即为裘布依公式假定的引用补给半径R。

第四节用单位出水量法计算渗透系K和引用补给半径R

一用单位出水量法计算渗透系数K和引用补给半径R的步骤

1 利用钻孔抽水试验资料,用相关分析法求出Q~S标准抛物线方程式,并求出S=1m时的单位出水量q值。

2 根据钻孔揭露的含水层厚度H或M,将q值代入公式(3-3)或(3-4),可求出渗透系数K值。

3 将求得的K值代入裘布依公式(2-1)或(2-2),可得到引用补给半径R值。二用单位出水量法计算渗透系数K和引用补给半径R的方法FF1方法:利用钻孔抽水试验资料并增加一个坐标原点(0,0)样本,建立抛物线方程,当相关系数r不合格时,需对S进行修正,以达到标准要求为准。

FF2方法:利用钻孔抽水试验资料不通过原点建立抛物线方程,对S不进行修正。

FF3方法:采用(2-1)与(2-3)或(2-2)与(2-4)式联立求解的传统方法求算各次降深的K、R,并取其平均值。

第四章单位出水量法工程实例验证

第一节包兰线临河车站水文地质勘探工程实例临河车站位于黄河左岸冲积平原上,距黄河7~9km,含水层为粉细沙(上部为Q4、下部为Q3),定测阶段进行了勘探工作。

一勘探钻孔断面示意图:

勘探钻孔抽水试验资料:

表4-1 勘探钻孔抽水试验资料表

注:孔状过滤器骨架管直径0.127m

注:(1)H1和H2,指勘探孔选用的含水层厚度,H1为以钻钻孔深度计算的含水层厚度,H2以过滤管底端或抽水后有效孔深(当小于过滤管底端深度时)计算的含水层厚度,各勘探孔平均后的含水层厚度,H1=59.103m,H2=45.51m.

(2)本表中LDS-1、LDS-2、LDS-3LDS-5和LDS-7的K、R值,计算中使用了S=aQ +bQ2式。

LDS-4和LDS-6的KR值计算中使用了基姆公式。

第二节预测方法及实例

一预测生产哟凝固管井出水量使用的公式,管井结构和竣工抽水试验资(一)公式:

)

/ ln()2

2 (

r R h

H

K

Q -

?=

π

式中 Q—管井出水量(m3/d);

K—含水层渗透系数(m/d);

H—含水层厚度(m);

h—抽水时含水层剩余厚度(m);

R—引用补给半径(m);

r—过滤器骨架管半径(m)。

(二)生产用管井的结构断面图如下所示:

(三)生产井竣工抽水试验成果:

图4-2 FF1、FF2、FF3的预测Q和实际Q对比表1、2—FF1预测的Q值;

3、4—FF2方法预测的Q值;

5、6—FF3方法预测的Q值;

7—竣工后实际出水量Q值;

系列1、2、3、4—代表不同K、R条件下预测的Q值。

附:单位出水量法计算程序

Parameter (m=10)

Call fxj1 (a)

Call fxj2 (b)

Read (*,*) Q0

N=1

Q=(1-b*Q*Q)/a

1write(*,100)N,Q

IF (ABS(Q-Q0).GT.1E-6) THEN

IF (N.LT.M) THEN

Q0=Q

N=N+1

GOTO 1

ELSE

WRITE(*,200) N

ENDIF

ELSE

WRITE (*,100)N,Q

ENDIF

200FORMAT(1X,’COMPUTATION HAS NOT CONVERGED AFTER’, I4,’ITERRATIONS’)

100FERMAT (1X,’N=’,I4,3X,”q=”,F16.7)

END

C

SUBROUTIN FXJ1(X)

INTEGER I

REAL X,T1,T2,T3,T4,T5,T6,T7

X=(T1*T2-T3*T4)/(T5*T6-T7*T7)

DO 10 I=1,2

READ (*,*)QI,SI

T1=T1+QI*SI

T2=T2+QI**4

T3=T3+QI**3

T4=T4+QI*QI*SI

T5=T5+QI*QI

T6=T6+QI**4

T7=T7+QI**3

10CONTINUE

END

C

SUBROUTIN FXJ2(Y)

INTEGER I

REAL Y,T1,T2,T3,T4,T5,T6,T7

1 Y=(T4*T5-T1*T7)/(T5*T6-T7*T7)

do 11 I=1.2

READ (*,*)QI,SI

T1=T1+QI*SI

T4=T4+QI*QI*SI

T5=T5+QI*QI

T6=T6+QI**4

T7=T7+QI**3

11CONTINUE

END

第五章结论

通过本次实习,对关于地下水运移方面理论和公式的研究,针对于铁路系统用水量不大,设计精度要求不是很高,得出了采用单位出水量计算K、R值的新方法,由于此方法简单,预测取水构筑物出水量与生产井实际出水量误差较小,符合水文地质计算精度,可满足铁路设计要求,达到了预期的目的。单位出水量法可取代群孔抽水试验,用于单孔抽水试验的参数计算,因此,既节省了人力,又节省了财力,并且,勘测的时间也大大缩短,这样将产生显著的经济效益和社会效益。

单位出水量法既适用于铁路一般供水站小孔径的钻探与实验,而且,又可用于隧道、桥梁、路基等铁路工程的水文地质参数计算。同时,它对潜水和承压水、完整孔和非完整孔均适用,这样不但取得了应有的效果,而且适用性又很强,达到了本次实习研究的目的。

结束语

本次毕业设计及实习是在乔晓英讲师的亲切关怀下,在乔晓英讲师、王博工程师的精心指导下进行的,在实习中,老师对我的细心指导严格要求,使我在各方面都受益非浅,在此我对各位老师表示深深的感谢,同时,铁道部第一勘察设计院对我大力的支持及单位领导对我的实习的支持提出衷心的感谢,由于本人的水平有限,在报告中难免存在错误与缺点,恳请各位老师给与批评指正。

主要参考文献:

1.《用单位出水量计算渗透系数k的可行性研究报告》铁道部第一勘察设计院

2001年4月

2. 郭东屏、钱会等《地下水动力学》 1994

3. 石中平单孔稳定抽水实验恢复资料确定含水层参数《西安工程学院报》2000.6

4. 邓厚基《单孔抽水试验确定渗透系数的新方法》在计算影响半径公式中的应用水文地质工程地质 1964.11

用水量计算

一、用水量计算 1.现场施工用水量,按下式计算: 式中q 1——施工用水量(L/s ); K 1——未预计的施工用水系数(1.05~1.15); Q 1——年(季)度工程量或日工程量(以实物计量单位表示); N 1——施工用水定额; T 1——年(季)度有效作业日(d ); t ——每天工作班数(班); K 2——用水不均衡系数(现场施工用水取1.5)。 2.施工机械用水量,按下式计算: 式中q 2——机械用水量(L/s ); K 1——未预计的施工用水系数(1.05~1.15); Q 2——同一种机械台数(台); N 2——施工机械台班用水定额; K 3——施工机械用水不均衡系数(施工机械、运输机械取2.00,动力设备取1.05~1.10)。 3.施工现场生活用水量,按下式计算: 式中q 3——施工现场生活用水量(L/s ); P 1——施工现场高峰昼夜人数(人); N 3——施工现场生活用水定额(一般为20~60L/人·班,主要视当地气候而定); K 4——施工现场用水不均衡系数(施工现场生活用水取1.30~1.50); t ——每天工作班数(班)。 4.生活区生活用水量,按下式计算: 式中q 4——生活区生活用水量(L/s ); P 2——生活区居民人数(人); N 4——生活区昼夜全部生活用水定额,每一居民每昼夜为100~120L ; K 5——生活区用水不均衡系数(生活区生活用水取2.00~2.50); 5.消防用水量(q 5)。最小10 L/s ;施工现场在25ha 以内时,不大于15 L/s 。 6.总用水量(Q )计算: (1)当(q 1+q 2+q 3+q 4)≤q 5时,则Q= q 5+2 1(q 1+q 2+q 3+q 4) (2)当(q 1+q 2+q 3+q 4)>q 5时,则Q= q 1+q 2+q 3+q 4 (3)当工地面积小于5ha 而且q 1+q 2+q 3+q 4)<q 5时,则Q= q 5最后计算出的总用水量,还应

(完整版)水量预测方法

按照《东海发展协调区总体规划》中人口预测,均安镇2010年为总人口为15.2万人,2020年为总人口21万人。 用水量预测一般为人均综合用水指标法、人均分类用水预测法、单位建设用地面积法、人均分类用水指标法、相关比例法及递增率法等。相关比例法及递增率法需要大量的历史数据及相关数据,在本规划中不适用。本规划采用人均综合用水指标法、人均分类用水量预测法及单位建设用地面积法对规划区未来的用水作预测,以人均综合用水指标法为主,人均分类用水量预测法及单位建设用地面积法对其校核验证。 3.6.1人均综合用水指标法 2005年均安镇最高日供水量为7.8万m3/d,城市人口为13.5万,可以计算出2005年均安镇区单位人口综合用水指标为578L/人·d。 从均安镇历年售水量统计数据可以看出,水量的增长与全国的经济发展形势关系密切,近三年的供水量平均增长率为约5.12%。随着城市发展总体目标的确定和城市建设快速扩展,以及我国成功申办奥运、顺利加入世贸组织,我国经济发展充满了机遇,均安镇的经济也同样面临新一轮的高速发展,因此可以预见均安镇的用水量又将迎来一轮新的快速增长期。 另一方面,根据统计资料表明,我国广州,上海、南京、杭州等特大型城市的实际单位人口综合用水指标在500~900L/人·d左右,以此作为参考,结合均安镇现实用水指标的具体情况,确定均安镇2010年和2020年的单位人口综合用水指标分别为650L/人·d、800L/人·d,由此可以计算出: 2010年最高日用水量:

650 L/人·d ×15.2万人=10.0万m3/d 2020年最高日用水量: 800 L/人·d ×21万人=16.8万m3/d 3.6.2单位建设用地指标法 《城市给水工程规划规范》(GB50282-98)提出的城市单位建设用地综合用水量指标为:一区大城市:0.8~1.4万m3/(km2?d);一区中等城市:0.6~1.0万m3/(km2?d) ,一区小城市:0.4~0.8万m3/(km2?d)。 参照邻近城市广州、深圳等其它城市情况及发展经验,对顺德区的发展状况适当留有余地。确定顺德区不同年份的单位建设用地综合用水量指标见下表 单位建设用地综合用水量指标单位:万m3/(km2?d) 注:本表中预测需水量为最高日需水量,且已包括了管网漏损水量。 3.6.3人均分类用水指标法 人均分类用水指标法以规划区域人均分类用水指标和人口为依据计算用水量,是目前供水和排水规划预测水量常用的方法之一。 参考广州市市政设计研究院编制的《顺德城乡给水系统规划方案说明书》提出的人均分类用水指标,在全市范围套用广东省城市用

井点降水涌水量计算

按照初定方案,本工程除埋深较深段使用拖拉管施工外,剩余大部分需使用井点降水大开挖施工。按照设计及规范初步设计沟槽底宽1.5m,沟槽深按照最大挖深设计取4m,开挖沟槽边坡按照1:1,基坑横剖面图如附图。经地质勘探,天然地面属耕植土,其下为粉质粘土(<=-4m),淤泥质粉质粘土(<=-7.14m)、淤泥质粉质粘土夹粉砂,底部为泥岩,基本都属于透水层。地下水位标高为-0.5m采用轻型井点降水施工。 1井点布设 根据工程地质及施工状况,轻型井点采用沟槽两侧单排布设,为是总管接近地下水位,井点管布设于已挖好的路床底。总管距沟槽开挖线边缘1m,总管长度 L=50×2=100(m) 水位降低值 S=4 (m) 采用一级轻型井点,井点管的埋设深度(总管平台面至井点管下口,不包括滤管) H2>=H1 +h+IL=4.0+0.5+0.1×5.75=5.1(m) 采用6m长的井点管,直径50mm,滤管长1m。井点管外露地面0.2m,埋入土中5.8m(不包括滤管)大于5.2m,符合埋深要求。按无压非完整井环形井点系统计算。 2).基坑涌水量计算 按无压非完整井环形点系统涌水量计算公式(式1—23)进行计算 Q= 先求出H、K、R、x0值。 H:有效带深度 H=1.85(S,+L) s’=6-0.2-1.0=4.8m求得H: H=1.85(s,+L)=1.85(4.8+1.0)=10.73(m) 由于H0

矿井涌水量计算的方法[1]

矿井涌水量的计算与评述 钱学溥 (国土资源部,北京 100812) 摘要:文章讨论了矿井涌水量的勘查、计算、精度级别、允许误差和有效数字。文章推荐了反求影响半径、作图法求解矿井涌水量的方法。 关键词:矿井涌水量;勘查;计算;精度级别;允许误差;有效数字 根据1998年国务院“三定方案”的规定,地下水由水利部门统一管理。水利部2005年发布了技术文件SL/Z 322-2005《建设项目水资源论证导则(试行)》。该技术文件6.7款规定,地下水资源包括地下水、地热水、天然矿泉水和矿坑排水。6.1.2款规定,计算的地下水资源量要认定它的精度级别。我们认为,认定计算的矿井涌水量的级别和允许误差,不仅是水利部门要求编写《建设项目水资源论证》的需要,而且有利于设计部门的使用。在发生经济纠纷的情况下,也有利于报告提交单位和报告评审机构为自己进行客观的申辩。下面,围绕这一问题,对矿井涌水量的勘查、计算、精度级别、允许误差和有效数字等方面,作一些论述和讨论。 1 矿井涌水量与水文地质勘查 矿井涌水量比较大,要求计算的矿井涌水量精度就比较高,也就需要投入比较多的水文地质勘查研究工作。表1,可以作为部署水文地质工作的参考。 表 1 矿井涌水量与水文地质勘查 Table 1 Mine inflow and hydrogeological exploration

注:○1多年生产的矿山是指:开采水平不变、开采面积基本不变的多年生产的矿山,如即将闭坑或是即将破产的矿山,即是这种多年生产的矿山。○2多孔抽水试验,是指带观测孔的一个抽水主孔的抽水试验,持续抽水几天。○3群孔抽水试验是指带观测孔的多个抽水主孔的抽水试验,其抽水总量,一般要达到计算矿井涌水量的1/3~3/4,持续抽水几十天。○4利用地下水动力学计算公式,计算矿井涌水量,就属于解析法的范畴。大井法、集水廊道法就是常用的解析法。○5数理统计包括一元线性回归、多元线性回归、逐步回归、系统理论分析、频率计算等(参考钱学溥,娘子关泉水流量几种回归分析的比较,《工程勘察》1983第4期,中国建筑工业出版社)。可以把水位抽降、巷道开拓面积、矿产产量、降水量等作为自变量,把矿井涌水量作为因变量。○6数值法也就是计算机模拟,是通过利用计算机模拟地下水流场的变化,计算矿井涌水量的一种方法。○7常用的大井法、集水廊道法等解析法计算矿井涌水量,只考虑了含水层的导水性,没有考虑地下水的补给量。因此,只有进行了解析法和水均衡的计算,用地下水的补给量验证解析法计算的结果,计算的矿井涌水量的精度才能达到C 级。 2 稳定流、非稳定流公式应用的主要条件 2.1一般报告采用的解析解大井法、集水廊道法,是基于稳定流理论推导的地下水动力学计算公式。它要求地下水有比较充分的补给条件,要求在该水平开采的几年到几十年内,矿井排水计算的地下水影响半径边界上的水头高度,永远稳定在计算采用的高度上。 2.2基于非稳定流理论推导的地下水动力学计算公式,恰恰相反,它的使用条件是地下水没有补给,含水层分布无限,地下水影响半径不断向外扩大。 2.3由于采用大井法、集水廊道法,一般都没有考虑地下水补给量的问题,因此,计算的结果可能有较大的误差,它的精度一般只有D级。

(完整word版)大口井出水量计算

大口井的出水量计算 大口井出水量计算有理论公式和经验公式等方法。经验公式与管井计算时相似。以下仅介绍应用理论公式计算大口井出水量的方法。 因大口井有井壁进水,井底进水或井壁井底同时进水等方式,所以大口井出水量计算不仅随水文地质条件而异,还与其进水方式有关。 1.从井壁进水的大口井 可按完整式管井出水量计算公式(7-2)和式(7-3)式进行 计算。 2.井底进水的大口井 对无压含水层的大口井,当井底至含水层底板距离大于或等于井 的半径(T ≥r )时,按巴布希金(Бабущкин.В.Д)公式计算(见图7-21) )4H R 185lg .11(T r 2r KS 2Q 0++=ππ (7-40) 式中Q ——井的出水量,m 3/d ; S 0——出水量为Q 时,井的水位降落值,m ; K ——渗透系数,m/d ; R ——影响半径,m ; H ——含水层厚度,m ; T ——含水层底板到井底的距离,m ; r ——井的半径,m 。 承压含水层的大口井也可应用上式计算,将公式中的T 、H 均替换成承压含水层厚度即可。 当含水层很厚(T ≥8r )时,可用福尔希海默(F O rchheimer ,P.)公式计算: Q=AKS 0r (7-41) 式中A ——系数,当井底为平底时,A=4;当井底为球形对,A =2π;其余符号与上 式同相。 3.井壁井底同时进水的大口井 可用出水量叠加方法进行计算。对于无压含水层 (图7-22),井的出水量等于无压含水层井壁进水的大口井的出水量和承压含水层中的井底进水的大口井出水量的总和: ])4H R 185lg .11(T r 22r r R 3lg .2S 2h [KS Q 00+++-=ππ (7-42) 式中符号如图7-22所示,其余与前同。 r T S 0 H R r T S 0 H R h 图7-21 无压含水层中井底进水的大口井计算简图 图7-22 无压含水层中井底井壁进水大口井计算简

给水量预测及规划

1.给水工程历史沿革 1.1 给水事业发展史 现状规划区周边仅石桥镇有一座中心水厂(供应大公圩区域),水厂供水能力为3.0万吨/日。现状规划区内沿村庄有部分约DN110~DN200供水管道,不成体系。 根据现有规划,本次规划区周边地区主要有2个水厂。《马鞍山南部承接产业转移集中区总体规划》的新桥水厂,规模为近期30万吨/日,远期60万吨/日,沿龙山大道敷设有DN1000的给水主干管;《石桥中心镇总体规划(2010~2030)》的中心水厂,规划规模由现状的3.0万吨/日扩建至6.0万吨/日。但上述两水厂都未考虑为青山河工业园区供水。 1.2马鞍山市供水规划及现状 1.2.1马鞍山市供水规划 规划年限:2020年; 规划供水范围:南至当涂县城凌云路,东至向山,西至长江,北至慈湖工业区圣戈班,及新城东区9km2。 规划用水量:2010年城市最高日供水量为35万m3/d;2020年城市最高日供水量为60万m3/d。 其中五水厂靠近当涂县城,供水量为30万m3/d。 1.2.2马鞍山市供水概况 马鞍山市现有城市水厂三座,隶属马鞍山首创水务有限责任公司,总供水能力39.5万m3/d(截止2006年底)。另外,当涂县城目前有2.5万m3/d水厂一座。 一水厂(又称花山水厂)位于城中东部葛羊路与湖东路交口处,以一电厂尾水为水源,水质指标除水温超标外,其余指标均符合Ⅱ类。设计供水能力为5万m3/d,后又扩建了2.5万m3/d,但由于滤池过滤能力差,为保证出水水质,目

前实际供水能力仅为6.5万m3/d。 二水厂(又称采石水厂)位于宁芜路西侧、雨山区人民政府东侧,目前为马鞍山主力水厂,设计供水能力为5.0万m3/d,以长江下游干流水为水源,水质指标为Ⅱ类;经过二次扩建后,设计总供水能力达到23.0万m3/d,目前供水量16万m3/d。 三水厂始建于1987,系船上一体化水厂,以长江下游干流水为水源,水质指标除大肠菌群超标外,其余指标均符合Ⅱ类,设计供水能力为5万m3/d。由于设计运行参数取值过高,工艺流程存在一些问题,实际达不到设计负荷能力为4万m3/d,随着四水厂一期工程的建成投资,三水厂于2006年6月停用。 四水厂(又称慈湖水厂)位于城北慈湖地区,二电厂以北,联合路西南方向,设计供水能力为20万m3/d,分两期建设,一期10万m3/d,于2005年底完成并投入运行,取代原三水厂。 当涂县二水厂位于城东,原水取自长江支流姑溪河上游,水质指标为Ⅲ类;二水厂于1994年开工,设计供水能力为5.0万m3/d,1996年7月1日一期工程正式投产供水,供水能力为2.5万m3/d。 1.3青山河工业园供水现状 1.3.1供水现状 规划区周边仅石桥镇有一座中心水厂(供应大公圩区域),水厂供水能力为3.0万吨/日。现状规划区内沿村庄有部分约DN110-DN200供水管道,不成体系。根据现有规划,本次规划区周边地区主要有2个水厂。《马鞍山南部承接产业转移集中区总体规划》的新桥水厂,规模为近期30万吨/日,远期60万吨/日,沿龙山大道敷设有DN1000的给水主干管;《石桥中心镇总体规划(2010—2030)》的中心水厂,规划规模由现状的3.0万吨/日扩建至6.0万吨/日。但上述两水厂都未考虑为青山河工业园区供水。

用水量计算方法

1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量; 3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。

3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算: (3.6.4-1) 1 根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数, 可按式(3.6.4-1)计算出最大用水时卫生器具给水当量平均出流概率: 式中: uo——生活给水管道的最大用水时卫生器具给水当量平均出流概率(%);qo——最高用水日的用水定额,按本规范表3.1.9取用;

浅谈农村饮水安全工程中需水量预测的计算方法

浅谈农村饮水安全工程中需水量预测的计算方法 周志华李敏曾彬 (武汉市水利规划设计研究院) 【摘要】水量预测的核心问题是预测的技术方法,或者说是预测的数学模型。随着现代科学技术的快速发展,各种各样的负荷预测方法不断涌现,从经典的指标法、年增长率法、回归分析法、时间序列法,到目前的神经网络法、灰色预测法等,它们都有各自的特点和适用范围,本文将对现有的这几种方法作一个简单的介绍,并结合武汉市农村饮用水的现状,对需水量进行预测。 【关键词】农村饮水安全需水量预测计算方法 解决农村饮水问题,可以减少疾病,解放农村劳动力,有利于发展农业生产,有利于提高农民的生活水平。实施农村供水、环境卫生和健康教育“三位一体”,安全供水、节水、生活污水排放处理“三结合”等综合措施,有利于改善农村的整体面貌,形成良好的人居环境。用水量预测是农村饮水安全工程规划的基础,通过合理的预测,既能保障规划期内近远期合适的用水量,又能最大限度地节约用水;准确的预测能使供水的投资更趋合理,有利于搞好给水工程规划及管网的优化、改造、扩建等,同时也有利于合理地分配不同区域的用水量、为各个水厂的产水量提供依据,最大限度地降低供水成本;合理的水量预测也可指导城市的整体规划布局,对水污染的防御和控制也有一定的作用。 1需水量预测的意义 可持续发展战略是21世纪当今世界发展的需要和必然选择,为了满足可持续发展对水资源的需求,需要制订科学的水资源长期供求计划,这就需要对社会发展的长期需水量做出合理的预测。通过预测,可以了解城市规划期的用水量规模及用水量发展趋势,进而合理计划、开发和利用水资源,做到既能保障规划期内有合适的用水量,又能最大限度地节约用水;准确地预测能使供水的投资更趋合理,有利于搞好城市给水工程规划及管网的优化、改造、扩建等,同时也有利于合理地分配不同区域的用水量,并为各个水厂产水量提供依据和最大限度地降低供水成本;合理地水量预测可指导城市的整体规划布局,预防和控制水污染。城市用水预测也是供水规划、多部门配水决策和制订水价的重要基础。 2水量预测的计算方法 按预测方法的特征可分为:定性预测、定量预测和综合预测。 定性预测一般都以专家为索取信息的对象,组织各方面的专家运用专业知识和经验,通过直观方法进行综合分析,从中找出规律,对今后的发展趋势和前景做出主观推测。其缺点是预测误差依赖于专家的选取,一般精度不是很高。对于用水量的预测,由于对预测精度的要求比较高,所以对此类方法不做深入讨论。 定量预测是用数学、概率论与数理统计或智能的方法对历史数据进行处理,分为两大类进行讨论:一是统计预测,它是基于数学、概率论与数理统计的方法,认为将来是过去和现在的自然延伸,常用的方法有时间序列法、回归分析法、灰色预测法等;二是智能预测,它是将现代智能方法运用于预测领域的结果,主要有神经网络法等。 不同的定性预测模型方法和定量预测模型方法各有其优点和缺点,它们之间并不是相互排斥的,而是相互联系、相互补充的。由于每种预测方法利用的数据不尽相同,不同的数据都是从不同的角度提供各方面有用的信息。在综合考虑各单项预测方法的特点之后,将不同的单项预测方法进行组合,提出组合预测方法的概念。即设法把不同的预测模型组合起来,综合利用各种预测方法所提供的信息,以适当的加权平均形式得出组合预测模型。

用水量计算方法

用水量计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量;

3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。 3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算: (3.6.4-1)

需水量计算

丰台花乡羊坊村2016年雨洪利用工程 ——需水量预测与水量分配方案1.景观水系总体布置 结合公园景观水系设计方案,为了便于水量平衡分析,现将公园水系进行分区。 表1 羊坊村雨洪利用工程景观水系总体布置

项目用水主要为公园水系的蒸发渗漏,以及绿化带内绿化灌溉用水。 2.景观水系蒸发水量 项目区内无蒸发实测资料,本次采用多年平均蒸发量对项目蒸发量进行计算。 丰台区多年平均蒸发量为1127mm。蒸发量夏季大,冬季小,最大蒸发量发生在6月。6月总蒸发量为200mm,可计算得6月平均日蒸发量为6.6mm。 本次以年内最大月的日平均蒸发量估算河湖的水面蒸发量。结果见下表2。 表2 项目区水系蒸发量计算表

3. 渗漏 入渗补给量是一个较为复杂的变量,从总体看渗透分为垂直入渗和侧向入渗。 因地表覆盖厚度变化各异,覆盖层土质也各不相同,因此选用的入渗系数也不相同。 据地勘报告按粘质粉土,项目区地下为卵石层,下卧细中砂透水层,渗透性较好,为维持项目区景观水面,本项目景观水系设计底高程至正常蓄水位之间采取减渗措施,减渗材料采用膨润土防水毯,其渗透系数为5×10-11m/s ;正常蓄水位至最大蓄水位之间不设减渗,按地勘报告粘质粉土渗透系数0.3m/d 计算。 根据《节水灌溉工程实用手册》渗量计算采用下式计算: )m 1h 2(0116.0S 21++=γb K

其中:S—渠道每公里长渗透流量,m3/(s.km); k—渗透系数,m/d; b、h—渠道底宽和水深,m; m—渠道边坡系数; —考虑渠坡侧向毛管渗吸的修正系数,其值为1.1~1.4,毛细管作用 1 强烈时取大值。 各分区渗漏损失计算成果详见下表。 表3 渗透量计算成果表

竖井涌水量计算的经验公式法

竖井涌水量计算的经验公式法 [导读]本文详细介绍了竖井涌水量计算的经验公式法。 若在竖井位置及其附近有三个或三个以上降深的稳定流抽水试验资料,可用本方法计算竖井涌水量。 一、计算步骤 (一)根据抽水试验资料,作涌水量(Q)与降深(S)的关系吗线,即Q=f(s)曲线; (二)根据抽水试验资料,用图解法、差分法或曲度法判断涌水量曲线方程类型,并找出相应的涌水量方程式; (三)根据相应的方程式计算与设计竖井水位降深相同时的钻孔涌水量Qi; (四)根据钻孔涌水量Qi换算成为竖井涌水量。 二、计算方法 (一)绘制Q=f(s)曲线 根据钻孔抽水试验资料,绘制Q=f(s)曲线。 (二)涌水量曲线方程类型的判断 1、图解法 根据已绘出的Q= f(s)曲线如为非直线型应进行单位水位降深、双对数或单对数变换。根据Q= f(s)或经过变换后的直线图形形式即可判定涌水量曲线方程类型。 若Q= f(s),在Q,s直角座标中是直线关系,则涌水量曲线方程为直线型,见表1-2中图(1),即Q=qs; 若S0= f(Q)在S0,Q直角座标中是直线关系,则涌水量曲线方程为抛物线型,见表1-2中图(2)及图(3);即S=aQ+bQ2,亦即S0=a+bQ; 若lgQ=f(lgS)在lgQ,lgS直角座标中是直线关系,则涌水量曲线方程为指数型,见表1-2中图(4)及图(5),即Q= ,亦即;

若Q=f(lgS)在Q,lgS直角座标中是直线关系,则涌水量曲线方程为对数型,见表1-2中图(6)及图(7),即Q=a+blgS。 2、差分法 一般凡属直线方程或直线化的抛物线方程S0=a+bQ 、指数方程、对数方程Q=a+blgS的一阶差分虽为常数,但不相等。在这种情况下,可根据曲线拟台差的大小来判断接近那种涌水量方程。选取拟合误差最小的曲线相对应的涌水量方程式,作为竖井涌水量计算的方程式。 表1 Q=r(s)曲线方程式及其适用条件(一)

用单位出水量计算渗透系数

第一章 用单位出水量计算渗透系数的可行性研究概况 在铁路建设中,为了提高预测生产井出水量的精度,同时不使用观测孔,又节省勘探费用和缩短勘探周期。本文在搜集国内外关于单孔抽水试验计算渗透系数的理论公式和经验公式,重点分析裘布依公式的基本假定和适用范围,找出影响传统计算方法精度的主要因素,结合铁路一般供水站用水量较小的特点,寻求单孔抽水试验计算水文地质参数简单可行的新方法。 该方法主要根据勘探孔的抽水试验资料,建立Q —S 抛物线方程,用数值方法求算S=1m 时的单位出水量q 值,然后求算渗透系数K 值,再代入裘布依公式中求算引用补给半径R 值。在计算过程当中,使用了数理统计方法。此外,还使用了基姆公式,以便解决只做一次水位降深时求算S=1m 时的近似单位出水量q 值。从而用小口径(≤146mm )勘探试验孔的水文地质参数K ,R 值,预测大口径(>146mm )生产井(大口井、管井、结合井、干扰井、渗渠即水平集水管)等的出水量。 第二章 渗透系数和影响半径传统计算公式与存在问题 第一节 裘布依公式的假设条件和使用范围 自1863年法国水力学家裘布依提出潜水井和承压水井公式以来历经百余年, 至今仍然被广泛使用着。实践证明,该公式诞生以来,在指导人类开发地下水资源方面起到了举足轻重的作用,促进了社会进步并获得了经济效益。但是长期以来在使该公式时,由于种种原因,常常忽视了该公式的适用范围和条件,因而造成系列误差,影响了渗透系数和引用补给半径的计算成果。 一?裘布依公式 1,承压水完整孔 r R MS Q K ln 2π= (2-1) 2,潜水完整孔 r R h H Q K ln )2 2-= (π (2-2) 式中 K —含水层渗透系数(m/d ); Q —钻孔出水量 (m 3/d); S —水位降深(m ); M —承压含水层厚度(m ); H —天然情况下潜水含水层厚度 (m ); h —潜水含水层在抽水试验时的孔内剩余厚度(m ); R —含水层半径,即应用补给半径(m ); r —过滤管半径(m )。

涌水量计算案例

集水面积 集水面积是指流域分水线所包围的面积。集水面积大都先从地形图上定出分水线用求积仪或其它方法量算求得,计算单位为平方公里。如长江集水面积180万 分水线图 平方公里,黄河集水面积约75万平方公里。 地面分水线 地下分水线

计算:复核: 引文一: 4.3隧道涌水量预测 隧道区以根据地质调查结果分析,目前隧道涌水量暂按降水入渗法和地下径流模数法进行预测计算。等深孔水文地质试验参数出来后再按地下水动力法核算。 (1)大气降水入渗法 采用公式:Q=2.74 a W A(m'/d) 采用公式:Q=2.74 a W A(m3/d) a:降水入渗系数。全隧道地表为可溶岩,裂隙发育、岩溶化程度高。DK63+165至DK64+600段洞身大部处于石英砂页岩、炭质页岩夹煤系下,考虑到断层构造影响严 重,降水入渗系数a取值0.25 ;DK64+600至DK67+651隧道处岩溶强烈发育的可溶岩中,降水入渗系数a取值0.5。W:年平均降水量,本测区取1448mm

A:集水面积。 DK63+165 ?DK64+600 段:计算集水面积2.79km2; DK64+600?DK67+651 段;计算集水面积7.32 km2; 涌水量分别计算如下: Q=2.74 汉0.25江1448^.79 =2767(m'/d)?2800 (m3/d) Q=2.74 0.5 1448 7.32 =14521(m'/d)?14500 (m3/d) 两项合计Q 平常=2800+14500=17300(m7d) 考虑到岩溶区有暗河发育并构造发育,影响入渗系数的因素可能要大,DK64+600?DK67+651段雨季涌水量期倍增系数按3考虑,DK63+165?DK64+600段按系数2 考虑; 隧道雨季涌水量Q洪=2800X2+14500X3 =5600+4350009100 (m3/d) ( 2)地下径流模数法 Q=86.4X M X A M—地下径流模数(m/d ? Km) A—为隧道通过含水体的地下集水面积( Km2) 测区集水面积A=10.11 (Knn)(大致估算),地下水径流模数M枯=10.3( 升/秒?平方公里)(依据都匀幅《区域水文地质普查报告》)则: Q 枯= M 枯X A =86.4 X10.3X 10.11 =9000 ( m3/d ) 考虑到岩溶区有暗河发育并构造发育,其雨季涌水量期倍增系数按 3 考虑 隧道雨季涌水量Q洪=9000X3 3 =27000( m3/d)

水量计算问题

河南理工大学2011年数学建模竞赛论文答卷编号(竞赛组委会填写): 题目编号:( A、B、C、D、E之一) 论文题目: 水量计算问题 参赛队员信息(必填):

封二 答卷编号(竞赛组委会填写): 评阅情况(学校评阅专家填写):评阅1. 评阅2. 评阅3.

摘要 本文通过设计构造辐射井的地下水降落曲线的数学公式,来建立辐射井水量的计算模型。 针对问题一: 根据辐射管在水平布置上的对称性,可将问题简化为对一扇形域的水流运动的研究。又结合题中相关数据,分析辐射管在含水层中对地下水降落曲线、地下水渗透范围的影响情况,得到辐射管汇集水量的大小与降落曲线高度近似呈正比例关系。分析实测的辐射井降落曲线资料得出地下水降落曲线高度x T 与距离x 之间近似呈自然对数的函数关系,构建地下水降落曲线的函数关系式,并将观测井取得的相关数据代入进行验证,证明了函数的可行性。 针对问题二: 结合题中相关数据,分析辐射管在含水层中对地下水降落曲线、地下水渗透范围的影响情况,将沿辐射井横剖面上的地下水降落曲线近似为高度的平均直线;可知集水井井壁、辐射管端点外侧流进水量占总水量的很小比例,可只计算沿垂直方向流入辐射管的水量。按照降落曲线的函数式,采用积分法得到沿辐射管全程的平均高度,再结合平均高度T 对应的水平距R 、剖面矩形宽度b 、局部 阻抗系数φ以及集水管的汇流强度公式 x p x x T H k q φ-=,即可得到辐射井出水量。 针对问题三: 根据问题一二中建立的模型进行数据处理。在问题一种利用附件一中所给的数据,得出参数α、0T ,然后将其代入公式中,得出相应的结果,再与实际测量的数据进行比较,判断误差大小,进行评价;问题二中计算出相应的参数变量 T b 、 T d 、 T ?T ,然后通过计算公式得出?的值,再代入求出对应时间的n Q ,比较实际 测量数并分析。 关键字: 汇流强度 局部阻抗系数 降落曲线弯曲率 单管流量

涌水量计算

第三节、隧道洞室涌水量预测 一、水文地质参数计算 为取得计算洞室涌水量的水文地质参数,进行钻孔提(抽)水试验,利用提水试验和抽水试验结果,采用地下水动力学方法及相关计算公式,大部分按潜水非完整井计算出提水的渗透系数K 抽水,另外根据提水后的恢复水位与时间的关系,即s~t 关系计算出恢复的渗透系数K 恢复 ,并参照当地岩性的渗透系数K , 将该三种方法求得的渗透系数K 值并结合钻探过程中冲洗液的消耗量,岩体的破碎性、岩性的矿物组成及充填胶结情况,给定一个建议的渗透系数K 值。求得水文地质参数, 其提水时K 值计算公式如下: K= 2 2) lg (lg 733.0h H r R Q --ω 其中:K ——渗透系数(m/d )。 Q ——出水量(m 3/d )。 R ——影响半径(此值根据《工程地质手册》第二版表9-3-12查得) r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 h ——抽水稳定时含水层的厚度(m )。 恢复水位计算渗透系数K 值公式如下: ()2 12 ln 25.3S S t r H r K ωω+= (完整井) 其中:K ——渗透系数(m/d )。 r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 S 1——抽水稳定时的水位降深(m )。 S 2——地下水恢复时间t 后水位距离静止水位的深度(m )。 t ——水位从S 1恢复到S 2的时间(d )。 具体计算过程及计算结果见附表5:钻孔提(抽)水试验渗透系数(恢复水位)计算成果表。 二、洞室涌水量的估算方法 (一)、洞室涌水量的补给来源 为了更准确预测隧道洞室涌水量,通过野外水文地质调绘,并分析洞室地下水的补给来源,含水岩性的空间分布、富水性,结合钻孔对地下深处地质情况的揭露,参考物探测井成果,我们认为隧道洞室涌水量的补给来源由以下几部分组成: a .洞室影响范围内汇集的大气降水渗漏补给量; b .洞室附近地下水的补给量(包含隧道上行线、下行线间含水层的静储量及洞室两侧地下水的侧向补给量); c .地表水流过洞室上方时的渗入补给量; d .地表水通过节理裂隙、断层破碎带给洞室的侧向补给量; e .断层破碎带导入洞室的地下水量。 (二)、洞室涌水量的估算方法 根据以上对洞室涌水量补给来源的分析,结合隧址区工程地质、水文地质条件及隧址区气候、大气降雨等特征,本次计算我们按隧道开挖正常涌水量及特大暴雨、地表水沿断层或溶洞导入洞室等极端特殊情况下极端涌水量两种情况考虑。 1、正常涌水量 正常涌水量的计算我们选择以下的计算方法: (1)大气降水入渗法:

用水量计算

用水量计算
3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、 用水定额及卫 生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表 3.6.1 中数值的室外给水管段,其住宅应按本规范第 3.6.3、3.6.4 条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施应按本规范第 3.6.5 条和第 3.6.6 条的规定计算节点流量; 表 3.6.1 居住小区室外给水管道设计流量计算人数 每户 Ng 3 4 5 6 7 8 9 10
qokh 350 400 450 500 550 600 650 700
10200 9100 8200 7400 6700 6100 5600 5200
9600 8700 7900 7200 6700 6100 5700 5300
8900 8100 7500 6900 6400 6000 5600 5200
8200 7600 7100 6600 6200 5800 5400 5100
7600 7100 6650 6250 5900 5550 5250 4950
— 6650 6250 5900 5600 5300 5000 4800
— — 5900 5600 5350 5050 4800 4600
— — — 5350 5100 4850 4650 4450
注:1 当居住小区内含多种住宅类别及户内 Ng 不同时,可采用加权平均法计 算; 2 表内数据可用内插法。 2 服务人数大于表 3.6.1 中数值的给水干管,住宅应按本规范第 3.1.9 条的规定 计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施的生活给水设计流量,应按本规范第 3.1.10 条计算最大时用水量为节点 流量; 3 居住小区内配套的文教、 医疗保健、 社区管理等设施, 以及绿化和景观用水、 道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。

基于组合预测方法的需水量预测

基于组合预测方法的需水量预测 本文在概述组合预测法的基础上,探讨了需水量的预测方法。尤其是建立了基于回归分析和灰色预测的需水量组合预测模型。通过实例对组合预测的结果与线性回归、灰色预测的结果进行了比较,结果表明组合预测模型的精度比单一模型的预测精度明显提高。 标签:需水量;回归分析;灰色预测;组合预测 近年来,随着我国经济的快速发展和人民生活水平日益提高,人们对水资源的需求越来越大。但是我国的淡水资源是有限的,而且水资源浪费和污染非常严重,所以水资源供给与需求之间的矛盾在很多北方地区日益尖锐,甚至成为了制约地区国民经济发展的重要因素。因此,对需水量进行预测并相应地提出科学合理的对策是解决这一矛盾的有效途径。 需水量的预测方法主要有灰色模型法、回归分析法、时间序列法、定额法、神经网络法等。由于各模型都有其自身的局限性,因此利用组合预测方法把各个单一预测结合起来是一种好的策略,可以综合各种方法的优点,使其缺点最小化。自从贝特的无条件极小值问题。对上式求偏导数,可得到使误差平方和最小的权重系数的值。 二、需水量的预测方法 德州市位于山东省西北部,水资源比较缺乏。目前除了利用当地水资源之外,主要通过调用黄河水和长江水,以保证城乡居民生活用水。 根据对相关文献的阅读,获得2001-2010年份的德州市用水量[3],具体数据见下表1。我们利用这些数据采用不同的方法对德州市未来的用水量进行预测。 1、回归预测 回归分析预测法是在自变量和因变量之间相关关系的基础上,建立变量之间的回归方程,然后根据自变量数值的变化,代入回归方程式推算预测对象的变化,回归分析预测法是一种重要的预测方法[4]。 在近期,我们的人口和生产总值是逐年增加的,所以需水量也随着增加,在中短期需水量与年份之间存在一定的相关关系。通过回归分析的方法建立需水量与年份之间的回归方程,就能够进行需水量的预测。根据表1中的数据,利用spss可得回归方程为,经过F检验线性关系显著。表2显示回归预测的误差较小。 2、灰色预测 灰色预测的主要特点是模型使用的不是原始数据序列,而是对原始数据作累

露天采矿场总涌水量计算

露天采矿场总涌水量计算 露天采矿场总涌水量是由地下水涌水量和降雨迳流量两部分组成。 一、地下水涌水量的计算 露天采矿场地下涌水量与地下开采矿坑地下水涌水量计算方法基本相同。 二、降雨迳流量计算 露天采矿场降雨迳流量,应按正常降雨迳流量和设计频率暴雨迳流量分别计算。 (一)计算方法 1、正常降雨迳流量(Qz)计算公式 Qz=FH 式中F——泵站担负的最大汇水面积,m2; H——正常降雨量,m; ——正常地表迳流系数,%。 2、设计频率暴雨迳流量(Qp)计算公式 Qp=FHp′ 式中Hp——设计频率暴雨量,m; ′——暴雨地表迳流系数,%; 其它符号同前。 (二)计算参数的选取 1、汇水面积(F)的圈定 根据排水方式确定的排水泵站担负的最大汇水面积进行圈定。应包括露天境界内和境界外的地形分水岭或地表截水沟范围以内的汇水面积。 2、地表迳流系数的确定 地表迳流系数的选取,可根据采矿场岩石性质、裂隙发育程度和降雨强度大小等因素确定。 对于扩建或改建矿山,在具备实测地表迳流系数的矿山,应尽可能采用实测值。对于不具备实测条件的新建矿山,当有类似生产矿山资料时,应选用类似生产矿山的实测值。对缺乏上述资料的矿山,可选用地表迳流系数经验值。 1)生产矿山实测地表径流系数 国内部分生产露天采矿场地表径流系数实测值,见表1、表2、表3、表4。 2)地表径流系数经验值 当无实测资料可按表5选取地表迳流系数经验值。 (

( 注:由于爆破人为地扩大了原岩的裂隙和破碎程度,岩石破碎、裂隙发育,整个采场约有90%地段属松散、松软和半坚硬的岩石。 ( 注:大冶铁矿采用井巷排水、地表迳流通过集水巷流入水仓。 注:1、本表内数值适用于暴雨径流量计算,对正常降雨量计算应将表中数值减去0.1~0.2。 2、表土指腐植土,表中未包括的岩土则按类似岩土性质采用。

矿井涌水量的计算

三、地下水动力学法 地下水动力学法的理论依据是地下水运动的线性渗透定律,即达西定律。根据这个原理和具体的水文地质条件,可选择不同的公式计算矿井井简的浦水量。 (一)垂直井筒涌水量的计算 1.潜水完整井涌水量计算 所谓潜水完整井是指开凿在潜水含水层中,井打穿含水层到隔水层底板的井筒 22 1.366lg lg H h Q K R r -=- 因为 h=H-S 所以 (2)1.366lg lg H S S Q K R r -=- 在井筒掘凿时,井筒中式不允许积水的,因此h=0,或者说S=H,这时, 2 1.366lg lg H Q K R r =- 式中 Q ——井筒涌水量(m3/d ) K ——含水层渗透系数(m/d ) H ——含水层厚度 h ——井中出水地段高度 S ——水位降低值 R ——影响半径 r ——井筒半径 2.承压水完整井涌水量计算 承压水完整井是指开凿在承压含水层中,并全部揭露含水层的井筒 ()2.73lg lg M H h Q K R r -=-或 2.73lg lg MS Q K R r =- 3.完整潜水承压井涌水量计算 当井筒穿过承压含水层水位下降很大,降到隔水顶板以下时,井筒附近变为无压水,这种情况称为潜水承压井 22(2)1.366lg lg HM M h Q K R r --=- 上述公式同样适用于钻孔涌水量计算 如果抽水试验是在井筒检查孔中进行,用钻孔涌水量可按下式换算成井筒涌水量 112122 lg lg lg lg R r Q Q R r -=- (二)水平尽道涌水量的预剐方法 计算水平巷道涌水量时,同样可将巷道看成为水平集水于程。因此,可利用地卞水向水平集水工程运动的公式计算。

相关文档
最新文档