变量之间的关系知识点总结
用图象表示的变量间关系(绝对经典)

度更快?
80
(3)当小明到达终点时,小亮所跑 60
的路程是多少?
40
小明 小亮
(4)小明和小亮到达终点后如果 20
各自继续以原速度往前跑,他们 能否相遇?利用图象加以解释.
0
2 4 6 8 10 12 12.5
(1)小明和小亮的百米成绩各是多少?(2)两人的速度各是多少?谁的速度更 快?(3)当小明到达终点时,小亮所跑的路程是多少?(4)小明和小亮到达终点 后如果各自继续以原速度往前跑,他们能否相遇?利用图象加以解释.
A
S D
4
B
P
C
图(1)
0
4 图(2)
6x
如图一,在长方形MNPQ中,动点R从点N出发,沿
路程相同的情况发生,所以两人不会
相遇.
0 2 4 6 8 10 12 12.5
如图(1),在长方形ABCD中,AB=2,动点P从点B出发,
沿路线B→C→D作匀速运动,图(2)是此运动过程中,
三角形PAB的面积S与点P运动的路程x之间的关系图
D 象,则BC+CD的长为 A.3 B.4 C.5 D.6
1.一个变化过程中,有变量和常量。 2.两个变量: 自变量和因变量,表示的意义,书写形式 3.变量间的关系表示法 第一表格法 第二关系式法 (1)利用公式(2)根据表格(3)实际问题 第三图像法
第三章变量之间关系
用图象表示的变量间关系
知识点1用图象表示两个变量之间的关系
1.图象法:是指用图象来表示两个变量之间 关系的方法。 2.图象的基本特征:横轴(x轴)上的点表示自 变量,纵轴(y轴)上的点表示因变量.图象上 的每个点表示自变量和因变量之间的相互 关系. 3.优点:能直观、形象地反映因变量随着自 变量变化的趋势
变量间的相关关系讲义

变量间的相关关系讲义变量间的相关关系讲义一、基础知识梳理知识点1:变量之间的相关关系两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。
当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。
相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系。
注意:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系。
点睛:两个变量相关关系与函数关系的区别和联系相同点:两者均是两个变量之间的关系,不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。
知识点2.散点图.1.在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图。
2.从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合。
3.对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到由上角的区域内。
如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散步在从左上角到右下角的区域。
变量之间的关系__变量之间的关系知识讲解

变量之间的关系撰稿:康红梅 责编:李爱国【学习目标】1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围);2.感受生活中存在的变量之间的依赖关系.3.能读懂以不同方式呈现的变量之间的关系.4. 能用适当的方式表示实际情境中变量之间的关系,并进行简单的预测.【要点梳理】要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量.要点二、用表格表示变量间关系借助表格,我们可以表示因变量随自变量的变化而变化的情况.要点诠释:表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等.要点三、用关系式表示变量间关系关系式是我们表示变量之间关系的另一种方法.利用关系式(如3y x =),我们可以根据任何一个自变量的值求出相应的因变量的值.要点诠释:关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式.要点四、用图象表示变量间关系图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.用图象表达两个变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.要点诠释:图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色.【典型例题】类型一、常量、自变量与因变量1、对于圆的周长公式C=2πR,下列说法正确的是( )A .π、R 是变量,2是常量B .R 是变量,π是常量C .C 是变量,π、R 是常量D .C 、R 是变量,2、π是常量【思路点拨】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【答案】D ;【解析】解:C 、R 是变量,2、π是常量.【总结升华】本题主要考查了常量,变量的定义,是需要识记的内容.举一反三:【变式】从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体 B.速度 C.时间 D.空气【答案】C.类型二、用表格表示变量间关系2、已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:底面半径x(cm) 1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y(cm3) 6.9 6.0 5.6 5.5 5.7 6.0 6.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.【思路点拨】(1)用铝量是随底面半径的变化而变化的,因而底面半径为自变量,用铝量为因变量;(2)根据表格可以直接得到;(3)选择用铝量最小的一个即可;(4)根据表格,说明随底面半径的增大,用铝量的变化即可.【答案与解析】解:(1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量.(2)当底面半径为2.4cm时,易拉罐的用铝量为5.6cm3.(3)易拉罐底面半径为2.8cm时比较合适,因为此时用铝较少,成本低.(4)当易拉罐底面半径在1.6~2.8cm变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm间变化时,用铝量随半径的增大而增大.【总结升华】根据表格理解:随底面半径的增大,用铝量的变化情况是关键.类型三、用关系式表示变量间关系3、如图所示,在△ABC中,∠C=90°,AC=6,BC=10,设P为BC上任一点,点P不与点B、C重合,且CP=x.若y表示△APB的面积.(1)求y与x之间的关系式;(2)求自变量x的取值范围.【答案与解析】解: (1)因为AC=6,∠C=90°,BC=10,所以116103022ABC S AC BC ∆==⨯⨯=. 又116322APC S AC PC x x ∆==⨯⨯=, 所以303APB ABC APC y S S S x ∆∆∆==-=-,即303y x =-.(2)因为点P 不与点B 、C 重合,BC =10,所以0<x <10.【总结升华】利用三角形面积公式找到变量之间的关系式,要把握点P 是一动点这个规律,结合图形观察到点P 移动到特殊点,便可求出自变量的取值范围.举一反三:【变式】 小明在劳动技术课中要制作一个周长为80cm 的等腰三角形.请你写出底边长y (cm )与腰长x (cm )的关系式,并求自变量x 的取值范围.【答案】解:由题意得,2x y +=80,所以802y x =-,由于三角形两边之和大于第三边,且边长大于0,所以080202802x y x x x >⎧⎪=->⎨⎪>-⎩,解得2040x << 所以802,2040y x x =-<<.类型四、用图象表示变量间关系4、星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s (m )与散步所用的时间t (min )之间的关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分钟;(2)小红在公共阅报栏看新闻一共用了______分钟;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分钟;(4)小红从邮亭走回家用了______分钟,平均速度是______米/分钟.【答案】(1)300,4;(2)6;(3)200,3;(4)5,100.【解析】由图象可知,0到4分钟,小红从家走到离家300米的报栏,4到10分钟,在公共报栏看新闻,10到13分钟从报栏走到200米外的邮亭,13到18分钟,从离家500米的邮亭返回家里.【总结升华】这个图象是由几条线段组成的折线,其中每条线段代表一个阶段的活动.这条线段左右端点的横坐标的差,对应相应活动所用的时间.举一反三:【变式】一列货运火车从南京站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况的是( ).【答案】B;。
16变量之间的关系知识点梳理及练习题

16《变量之间的关系》知识点一、结构梳理自变量丰富的现真相境变量因变量探究变量之间的关系变量及其关系变量之间的关系表格利用变量之间的关系解决表示方法图象问题进行展望关系式二、易混、易错问题辨析1.忽视书写要求例 1.王刚同学用30 元钱买笔录本,写出购买总数a(个)与单价n(元)的关系式错解:变化关系式为① a 30,② an 30 .n分析:此解写出的变化关系式,①未分清自变量,②写成方程的形式,没有把因变量单独放在等式的左侧,自变量与常量放在等式的右侧.正解:变化关系式为a 30,此中 n 是自变量, a 是因变量.n2.忽视横、纵轴的意义致错例 2.如图1所示的图象中表示足球守门员用脚踢出去的球是().距离距离高度高度00(A)时间 0( B )时间(C)时间( D )时间错解:选( C).分析:此解中未弄清横、纵轴表示的意义,(C)图中纵轴表示足球运动的距离,即距离由0 变成 0,表示踢出的球回到了原地,这不吻合实质.正解:选( D).3.注意两种图象的差别:“ s----t”型 (行程 -- 时间)图象:这各种类的图象是s 随 t 的变化而变化,如图2,①表示物体匀速运动;②表示物体停止运动;③表示物体反向运动直至回到原地,明显,线段(或射线)与横轴所夹的锐角越大,则速度越快;夹角越小,则速度越慢.“ v----t ”型(速度 --时间)图象:这各种类的图象是v 随 t 的变化而变化,如图3,①表示物体从静止开始加快运动;②表示物体匀速运动;③表示物体减速运动到停止.注意:在应用这两各种类图象时,必定要划分横轴和纵轴所表示的详尽意义,不要混用.s②①③O图2v②①③O图3tt《变量之间的关系》水平测试一、选一选,看完四个选项后再做决定呀!(每题 3 分,共 30 分)1.李老 出门 事,离校不久便接到学校到他返校的 急 ,李老 赶快赶回学校.下边四个象中,描述李老 与学校距离的 象是( )A.B.C.D.2.已知 量 x , y 足下边的关系x ⋯ -3 - 2- 1 1 2 3 ⋯ y⋯13- 3-- 1⋯x , y 之 用关系式表示 ()A. y =3B. y =-xx3C. y =-3D.y =xx33.某同学从学校走回家,在路上遇到两个同学,一 儿去文化 玩了会儿,而后回家,以下象能刻画 位同学所剩行程与 的 化关系的是( )4.地表以下的岩 温度y 跟着 所 深度x 的 化而 化,在某个地点y 与 x 的关系可以由公式y 35x20来表示,y 随 x 的增大而()A 、增大B 、减小C、不D、以上答案都不5.某校 工厂今年前 5 个月生 某种 品 量(件)与 (月)的关系如种 品的 法正确的选项是()A. 1 月至 3 月生 量逐月增添, 4, 5 两月生 量逐月减少 B. 1 月至 3 月生 量逐月增添, 4, 5 两月均 量与 3 月持平C. 1 月至 3 月生 量逐月增添, 4, 5 两月均停止生D. 1 月至 3 月生 量不 ,4,5 两月均停止生1 所示, 于 厂生6.如 2 是反响两个 量关系的 ,以下的四个情境比 适合 的是()A.一杯 水放在桌子上,它的水温与 的关系 B.一 汽 从起 到匀速行 ,速度与 的关系 C.一架 机从起 到下降的速度与 晨的关系D.踢出的足球的速度与 的关系7.如图3,射线 l甲, l乙分别表示甲、乙两名运动员在自行车竞赛中所走行程与时间的关系,则图中显示的他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙同速D.不必定8.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A. 太阳光强弱B. 水的温度C. 所晒时间D. 热水器9.长方形的周长为24 厘米,此中一边为x (此中x0),面积为 y 平方厘米,则这样的长方形中y 与x 的关系可以写为()A、y x 2B、y12 x 2C、y12 x x D 、y 2 12 x10 假如没盒圆珠笔有12 支,售价18 元,用 y(元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应当是()(A) y=12x( B) y=18x ( C)y= 2x( D)y=3x32二、填一填,要相信自己的能力!(每题 3 分,共 30 分)1.某种存储的月利率是0.2%,存入100元本金后,则本息和 y (元)与所存月数x 之间的关系式为____(不考虑利息税).2.假如一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10 ,则高从 3 变化到 10时,三角形的面积变化范围是____.3.汽车开始行驶时,油箱中有油40升,假如每小时耗油 5升,则油箱内余油量y (升)与行驶时间x (小时)的关系式为____,该汽车最多可行驶____ 小时.4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,此中是自变量,是因变量。
七年级变量间的关系知识点

七年级变量间的关系知识点在七年级数学学习中,变量是一个重要的概念。
变量是可以赋值而不是具体的数字或者对象,因此它可以用来表示一组不同的数值或者自然语言中的实体。
在本篇文章中,我们将会详细讨论七年级中变量间的关系知识点。
一、变量的定义和使用在代数表达式中,我们通常使用字母来表示一个变量。
这个变量可以代表任意实数,我们可以将其赋值为特定的数字或表达式,来求得代数式的值。
例如:设 a = 2,则 a + 3 = 5b = 4,则 b - 1 = 3我们用变量来存储一组数字,这些数字可以是实数、整数、分数等。
通过变量的方式,我们可以轻松地对表达式进行变化和操作,大大方便了数学问题的解决。
二、变量间的关系1. 变量的相等关系在使用变量的时候,我们经常会碰到一些等式。
比如:2x + 1 = 5y - 3 = 2这里的“=”代表两边的值相等。
这种关系被称为“等式”。
在等式中,我们可以将其中一个变量用另一个变量表示出来,从而建立两个变量之间的关系。
例如:2x + 1 = 52x = 4x = 2由此可见,不同变量之间可以建立相等和不等的关系。
2. 变量的大于小于关系有时候我们需要判断两个变量之间的大小关系。
比如:3x + 2 > 5x - 1y + 4 < 2y - 3这里的“>”和“<”分别代表“大于”和“小于”,用于判断两个变量之间的大小关系。
我们可以通过移项、合并同类项、化简等方法,将不等式变形为关于变量的简单形式。
3x + 2 > 5x - 1-2x > -3x < 3/23. 变量之间的比例关系变量之间的比例关系在我们的日常生活中也经常出现。
比如:小明比小红高出 10 厘米,小明的身高是小红身高的 1.2 倍。
这里的“高出”“身高”“倍数”等词汇涉及到了变量之间的比例关系。
我们可以通过设置比例、计算比例中的变量,来解决涉及到变量间的比例关系的问题。
小明比小红高出 10 厘米,小明的身高是小红身高的 1.2 倍。
变量之间的关系知识点总结

变量之间的关系知识点总结XXX1.n of VariablesWhen two variables。
x and y。
are XXX y changes as x changes。
we call x the independent variable and y the dependent variable。
A constant is a XXX.Example: In the n C=2Πr。
r and C can take different values。
so they are variables。
r is the independent variable。
C is the dependent variable。
and Π is a constant.2.Methods of XXX VariablesTable Method: This method can clearly show how the dependent variable changes as the independent variable changes.XXX: XXX circular shape。
and it follows the pattern shownin the table below:1) According to the table。
how many seats are there in the6th row?2) Write the XXX een the number of seats and the row number.3) Can a row have 90 seats。
XXX.n: (1) The number of seats in the 1st row is 50;The number of seats in the 2nd row is (50+3×1);The number of seats in the 3rd row is (50+3×2);The number of seats in the 4th row is (50+3×3);XXX。
第四章《变量之间的关系》知识要点分梳理及单元测试题(含答案)
“变量之间的关系”知识要点梳理自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。
3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量。
(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。
(3)利用具体情境来体会两者的依存关系。
二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。
2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。
(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。
三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。
2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。
3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。
(2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。
4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。
第84讲、成对数据的统计分析(学生版)2025高考数学一轮复习讲义
第84讲成对数据的统计分析知识梳理知识点一、变量间的相关关系1、变量之间的相关关系当自变量取值一定时,因变量的取值带有一定的随机性,则这两个变量之间的关系叫相关关系.由于相关关系的不确定性,在寻找变量之间相关关系的过程中,统计发挥着非常重要的作用.我们可以通过收集大量的数据,在对数据进行统计分析的基础上,发现其中的规律,对它们的关系作出判断.注意:相关关系与函数关系是不同的,相关关系是一种非确定的关系,函数关系是一种确定的关系,而且函数关系是一种因果关系,但相关关系不一定是因果关系,也可能是伴随关系.2、散点图将样本中的n 个数据点(,)(1,2,,)i i x y i n =⋅⋅⋅描在平面直角坐标系中,所得图形叫做散点图.根据散点图中点的分布可以直观地判断两个变量之间的关系.(1)如果散点图中的点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关,如图(1)所示;(2)如果散点图中的点散布在从左上角到右下角的区域内,对于两个变量的这种相关关系,我们将它称为负相关,如图(2)所示.3、相关系数若相应于变量x 的取值i x ,变量y 的观测值为(1)i y i n ≤≤,则变量x 与y的相关系数()nnii iixx y y x ynx yr ---==∑∑通常用r 来衡量x 与y 之间的线性关系的强弱,r 的范围为11r -≤≤.(1)当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.(2)r 越接近1,表示两个变量的线性相关性越强;r 越接近0,表示两个变量间几乎不存在线性相关关系.当||1r =时,所有数据点都在一条直线上.(3)通常当0.75r >时,认为两个变量具有很强的线性相关关系.知识点二、线性回归1、线性回归线性回归是研究不具备确定的函数关系的两个变量之间的关系(相关关系)的方法.对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程y bx a =+ 的求法为1122211()()nni i i ii i nni i i i x x y y x ynx yb x x x nxa y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑ 其中,11n i i x x n ==∑,11ni i y y n ==∑,(x ,y )称为样本点的中心.2、残差分析对于预报变量y ,通过观测得到的数据称为观测值i y ,通过回归方程得到的 y 称为预测值,观测值减去预测值等于残差,ˆi e称为相应于点(,)i i x y 的残差,即有ˆi e =ˆi i y y -.残差是随机误差的估计结果,通过对残差的分析可以判断模型刻画数据的效果以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析.(1)残差图通过残差分析,残差点()ˆ,i i x e比较均匀地落在水平的带状区域中,说明选用的模型比较合适,其中这样的带状区域的宽度越窄,说明模型拟合精确度越高;反之,不合适.(2)通过残差平方和21ˆ()ni i i Q y y==-∑分析,如果残差平方和越小,则说明选用的模型的拟合效果越好;反之,不合适.(3)相关指数用相关指数来刻画回归的效果,其计算公式是:22121ˆ()1()nii i n ii yyR yy ==-=--∑∑.2R 越接近于1,说明残差的平方和越小,也表示回归的效果越好.知识点三、非线性回归解答非线性拟合问题,要先根据散点图选择合适的函数类型,设出回归方程,通过换元将陌生的非线性回归方程化归转化为我们熟悉的线性回归方程.求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,还原后即可求出非线性回归方程,再利用回归方程进行预报预测,注意计算要细心,避免计算错误.1、建立非线性回归模型的基本步骤:(1)确定研究对象,明确哪个是解释变量,哪个是预报变量;(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(是否存在非线性关系);(3)由经验确定非线性回归方程的类型(如我们观察到数据呈非线性关系,一般选用反比例函数、二次函数、指数函数、对数函数、幂函数模型等);(4)通过换元,将非线性回归方程模型转化为线性回归方程模型;(5)按照公式计算线性回归方程中的参数(如最小二乘法),得到线性回归方程;(6)消去新元,得到非线性回归方程;(7)得出结果后分析残差图是否有异常.若存在异常,则检查数据是否有误,或模型是否合适等.知识点四、独立性检验1、分类变量和列联表(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.(2)列联表:①定义:列出的两个分类变量的频数表称为列联表.②2×2列联表.一般地,假设有两个分类变量X 和Y ,它们的取值分别为{1x ,2x }和{1y ,2y },其样本频数列联表(称为2×2列联表)为1y 2y 总计1x aba b2x cd c d+总计a c+b d+n a b c d=+++从22⨯列表中,依据a a b +与cc d+的值可直观得出结论:两个变量是否有关系.2、等高条形图(1)等高条形图和表格相比,更能直观地反映出两个分类变量间是否相互影响,常用等高条形图表示列联表数据的频率特征.(2)观察等高条形图发现a a b +与cc d+相差很大,就判断两个分类变量之间有关系.3、独立性检验计算随机变量22()()()()()n ad bc a b c d a c b d χ-=++++利用2χ的取值推断分类变量X 和Y 是否独立的方法称为χ2独立性检验.α0.100.050.0100.0050.001x α2.7063.8416.6357.87910.828【解题方法总结】常见的非线性回归模型(1)指数函数型x y ca =(0a >且1a ≠,0c >)两边取自然对数,()ln ln x y ca =,即ln ln ln y c x a =+,令ln y yx x '=⎧⎨'=⎩,原方程变为ln ln y c x a ''=+,然后按线性回归模型求出ln a ,ln c .(2)对数函数型ln y b x a=+令ln y y x x'=⎧⎨'=⎩,原方程变为y bx a ''=+,然后按线性回归模型求出b ,a .(3)幂函数型ny ax =两边取常用对数,()lg lg n y ax =,即lg lg lg y n x a =+,令lg lg y y x x'=⎧⎨'=⎩,原方程变为lg y nx a ''=+,然后按线性回归模型求出n ,lg a .(4)二次函数型2y bx a=+令2y y x x'=⎧⎨'=⎩,原方程变为y bx a ''=+,然后按线性回归模型求出b ,a .(5)反比例函数型b y a x=+型令1y y x x '=⎧⎪⎨'=⎪⎩,原方程变为y bx a ''=+,然后按线性回归模型求出b ,a .必考题型全归纳题型一:变量间的相关关系例1.(2024·河北·高三校联考期末)下列四幅残差分析图中,与一元线性回归模型拟合精度最高的是()A .B.C.D .例2.(2024·天津蓟州·高三校考开学考试)对两个变量x ,y 进行线性相关检验,得线性相关系数10.8995r =,对两个变量u ,v 进行线性相关检验,得线性相关系数20.9568r =-,则下列判断正确的是()A .变量x 与y 正相关,变量u 与v 负相关,变量x 与y 的线性相关性较强B .变量x 与y 负相关,变量u 与v 正相关,变量x 与y 的线性相关性较强C .变量x 与y 正相关,变量u 与v 负相关,变量u 与v 的线性相关性较强D .变量x 与y 负相关,变量u 与v 正相关,变量u 与v 的线性相关性较强例3.(2024·宁夏吴忠·高三盐池高级中学校考阶段练习)在如图所示的散点图中,若去掉点P,则下列说法正确的是()A.样本相关系数r变大B.变量x与变量y的相关程度变弱C.变量x与变量y呈正相关D.变量x与变量y的相关程度变强变式1.(2024·四川成都·高三统考阶段练习)已知建筑地基沉降预测对于保证施工安全,实现信息化监控有着重要意义.某工程师建立了四个函数模型来模拟建筑地基沉降随时间的变化趋势,并用相关指数、误差平方和、均方根值三个指标来衡量拟合效果.相关指数越接近1表明模型的拟合效果越好,误差平方和越小表明误差越小,均方根值越小越好.依此判断下面指标对应的模型拟合效果最好的是()A.相关指数误差平方和均方根值0.9498.4910.499B.相关指数误差平方和均方根值0.933 4.1790.436C.相关指数误差平方和均方根值0.997 1.7010.141D.相关指数误差平方和均方根值0.997 2.8990.326变式2.(2024·高三课时练习)甲、乙、丙、丁四位同学各自对,A,B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:甲乙丙丁r0.820.780.690.85m106115124103则能体现A,B两变量有更强的线性相关性的是()A.甲B.乙C.丙D.丁变式3.(2024·河北石家庄·统考三模)观察下列四幅残差图,满足一元线性回归模型中对随机误差的假定的是()A.B.C.D.变式4.(2024·全国·高三专题练习)甲、乙、丙、丁四位同学分别对一组变量进行线性相关试验,并分别计算出相关系数r,则线性相关程度最高的是()甲乙丙丁r0.870.910.580.83A.甲B.乙C.丙D.丁变式5.(2024·全国·高三专题练习)给出下列有关线性回归分析的四个命题:x y;①线性回归直线未必过样本数据点的中心()②回归直线就是散点图中经过样本数据点最多的那条直线;r 时,两个变量正相关;③当相关系数0④如果两个变量的相关性越强,则相关系数r就越接近于1.其中真命题的个数为()A.1B.2C.3D.4【解题方法总结】判定两个变量相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)样本相关系数:当r >0时,正相关;当r <0时,负相关;|r |越接近于1,相关性越强.(3)经验回归方程:当ˆ>0b时,正相关;当ˆ<0b 时,负相关.题型二:一元线性回归模型例4.(2024·天津蓟州·高三校考开学考试)为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据:天数(x 天)3456繁殖个数(y 千个)2.5344.5由最小二乘法得y 与x 的线性回归方程为 0.7y x a=+,则当7x =时,繁殖个数y 的预测值为()A .4.9B .5.25C .5.95D .6.15例5.(2024·湖南长沙·高三长郡中学校联考阶段练习)某社区为了丰富退休人员的业余文化生活,自2018年以来,始终坚持开展“悦读小屋读书活动”.下表是对2018年以来近5年该社区退休人员的年人均借阅量的数据统计:年份20182019202020212022年份代码x 12345年人均借阅量y (册)1y 2y 162228(参考数据:5190i i y ==∑)通过分析散点图的特征后,年人均借阅量y 关于年份代码x 的回归分析模型为 5y x m =+,则2024年的年人均借阅量约为()A .31B .32C .33D .34例6.(2024·辽宁·辽宁实验中学校考模拟预测)已知x ,y 的对应值如下表所示:x2468y 11m +21m +33m +11若y 与x 线性相关,且回归直线方程为 1.60.6y x =+,则m =()A .2B .3C .4D .5变式6.(2024·广西南宁·南宁二中校联考模拟预测)某单位在当地定点帮扶某村种植一种草莓,并把这种原本露天种植的草莓搬到了大棚里,获得了很好的经济效益.根据资料显示,产出的草莓的箱数x (单位:箱)与成本y (单位:千元)的关系如下:x 102030406080y1y 2y 3y 4y 5y 6y (1)根据散点图可以认为x 与y 之间存在线性相关关系,请用最小二乘法求出线性回归方程ˆˆˆybx a =+(ˆa ,ˆb 用分数表示)(2)某农户种植的草莓主要以300元/箱的价格给当地大型商超供货,多余的草莓全部以200元/箱的价格销售给当地小商贩.据统计,往年1月份当地大型商超草莓的需求量为50箱、100箱、150箱、200箱的概率分别为110,15,12,15,根据回归方程以及往年商超草莓的需求情况进行预测,求今年1月份农户草莓的种植量为200箱时所获得的利润情况.(最后结果精确到个位)附:()()61790i i i x x y y =--=∑,6154i i y ==∑,在线性回归直线方程ˆˆˆybx a =+中()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-.变式7.(2024·江西·高三统考开学考试)某新能源汽车销售部对今年1月至7月的销售量进行统计与分析,因不慎丢失一些数据,现整理出如下统计表与一些分析数据:月份1月2月3月4月5月6月7月月份代号x1234567销售量y (单位:万辆)15.6m ns37.739.644.5其中31.2y =.(1)若m ,n ,s 成递增的等差数列,求从7个月的销售量中任取1个,月销售量不高于27万辆的概率;(2)若()721670.48i i y y =-=∑,x 与y 的样本相关系数0.99r =,求y 关于x 的线性回归方程ˆˆˆybx a =+,并预测今年8月份的销售量(ˆb 精确到0.1).附:相关系数()()niix x y y r --=∑ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为()()()121ˆniii niix x y y bx x ==--=-∑∑,ˆˆay bx =-.2.65≈25.89≈.变式8.(2024·四川成都·高三石室中学校考开学考试)已知某绿豆新品种发芽的适宜温度在6~22℃℃之间,一农学实验室研究人员为研究温度x (℃)与绿豆新品种发芽数y (颗)之间的关系,每组选取了成熟种子50颗,分别在对应的8~14℃℃的温度环境下进行实验,得到如下散点图:其中24y =,71()()70i i i x x y y =--=∑,721()=176i i y y =-∑.(1)运用相关系数进行分析说明,是否可以用线性回归模型拟合y 与x 的关系?(2)求出 y 关于 x 的线性回归方程y bx a =+$$$,并预测在19℃的温度下,种子的发芽的颗数.参考公式:相关系数()()niix x y y r --=∑y bx a =+$$$,其中121((niii nii x x y y bx x ==--=-∑∑ ,a y bx =-$$8.77≈.变式9.(2024·安徽亳州·蒙城第一中学校联考模拟预测)为调查某地区植被覆盖面积x (单位:公顷)和野生动物数量y 的关系,某研究小组将该地区等面积花分为400个区块,从中随机抽取40个区块,得到样本数据(),i i x y (1,2,,40i = ),部分数据如下:x … 2.7 3.6 3.2 3.9…y…50.663.752.154.3…经计算得:401160==∑i i x ,4012400==∑i i y ,()4021160=-=∑i i x x ,()()4011280=--=∑i i i x x y y .(1)利用最小二乘估计建立y 关于x 的线性回归方程;(2)该小组又利用这组数据建立了x 关于y 的线性回归方程,并把这两条拟合直线画在同一坐标系xOy 下,横坐标x ,纵坐标y 的意义与植被覆盖面积x 和野生动物数量y 一致.设前者与后者的斜率分别为1k ,2k ,比较1k ,2k 的大小关系,并证明.附:y 关于x 的回归方程 y abx =+ 中,斜率和截距的最小二乘估计公式分别为:1221ˆni ii nii x y nx ybxnx==-⋅=-∑∑,a y bx =-$$,ni ix y nx yr -=∑【解题方法总结】求经验回归方程的步骤题型三:非线性回归例7.(2024·湖南·校联考模拟预测)若需要刻画预报变量w 和解释变量x 的相关关系,且从已知数据中知道预报变量w 随着解释变量x 的增大而减小,并且随着解释变量x 的增大,预报变量w 大致趋于一个确定的值,为拟合w 和x 之间的关系,应使用以下回归方程中的(0b >,e 为自然对数的底数)()A .w bx a=+B .ln w b x a=-+C .w a=-D .e xw b a-=+例8.(2024·全国·高三专题练习)云计算是信息技术发展的集中体现,近年来,我国云计算市场规模持续增长.已知某科技公司2018年至2022年云计算市场规模数据,且市场规模y与年份代码x 的关系可以用模型21e c xy c =(其中e 为自然对数的底数)拟合,设ln z y =,得到数据统计表如下:年份2018年2019年2020年2021年2022年年份代码x12345云计算市场规模y /千万元7.4112036.666.7ln z y=22.433.64由上表可得经验回归方程0.52z x a =+,则2025年该科技公司云计算市场规模y 的估计值为()A . 5.08e B . 5.6e C . 6.12e D . 6.5e例9.(多选题)(2024·福建厦门·厦门一中校考三模)在对具有相关关系的两个变量进行回归分析时,若两个变量不呈线性相关关系,可以建立含两个待定参数的非线性模型,并引入中间变量将其转化为线性关系,再利用最小二乘法进行线性回归分析.下列选项为四个同学根据自己所得数据的散点图建立的非线性模型,且散点图的样本点均位于第一象限,则其中可以根据上述方法进行回归分析的模型有()A .212y c x c x=+B .12x c y x c +=+C .()12ln y c x c =++D .21x c y c e+=变式10.(2024·全国·高三专题练习)已知变量的关系可以用模型e mx y k =拟合,设ln z y =,其变换后得到一组数据如下.由上表可得线性回归方程3z x a =+,则k =()x 12345z2451014A .3e -B .2e -C .2e D .3e 变式11.(2024·全国·高三专题练习)某校课外学习小组研究某作物种子的发芽率y 和温度x (单位:C )的关系,由实验数据得到如图所示的散点图.由此散点图判断,最适宜作为发芽率y 和温度x 的回归方程类型的是()A .y a bx =+B .()20y a bx b =+>C .e xy a b =+D .ln y a b x=+变式12.(2024·全国·高二专题练习)兰溪杨梅从5月15日起开始陆续上市,据调查统计,得到杨梅销售价格(单位:Q 元/千克)与上市时间t (单位:天)的数据如下表所示:时间t /(单位:天)102070销售价格Q (单位:元/千克)10050100根据上表数据,从下列函数模型中选取一个描述杨梅销售价格Q 与上市时间t 的变化关系:2,,,log t b Q at b Q at bt c Q a b Q a t =+=++=⋅=⋅.利用你选取的函数模型,在以下四个日期中,杨梅销售价格最低的日期为()A .6月5日B .6月15日C .6月25日D .7月5日变式13.(2024·四川泸州·高三四川省泸县第四中学校考开学考试)抗体药物的研发是生物技术制药领域的一个重要组成部分,抗体药物的摄入量与体内抗体数量的关系成为研究抗体药物的一个重要方面.某研究团队收集了10组抗体药物的摄入量与体内抗体数量的数据,并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值,抗体药物摄入量为x (单位:mg ),体内抗体数量为y (单位:AU/mL ).101i ii t z=∑101ii t=∑101ii z=∑1021ii t=∑29.2121634.4(1)根据经验,我们选择d y cx =作为体内抗体数量y 关于抗体药物摄入量x 的回归方程,将d y cx =两边取对数,得ln ln ln y c d x =+,可以看出ln x 与ln y 具有线性相关关系,试根据参考数据建立y 关于x 的回归方程,并预测抗体药物摄入量为25mg 时,体内抗体数量y 的值;(2)经技术改造后,该抗体药物的有效率z 大幅提高,经试验统计得z 服从正态分布()20.48,0.03N :,那这种抗体药物的有效率z 超过0.54的概率约为多少?附:①对于一组数据()(),1,2,,10i i u v i =L ,其回归直线 vu a β=+ 的斜率和截距的最小二乘估计分别为µ1221ni i i nii u v nuvunuβ==-=-∑∑, av u β=- ;②若随机变量()2~,Z N μσ,则有()0.6826P Z μσμσ-<<+≈,(22)0.9544P Z μσμσ-<<+≈,(33)0.9974P Z μσμσ-<<+≈;③取e 2.7≈.变式14.(2024·江西赣州·高三校考阶段练习)为了研究某种细菌随天数x 变化的繁殖个数y ,收集数据如下:天数x 123456繁殖个数y612254995190(1)在图中作出繁殖个数y 关于天数x 变化的散点图,并由散点图判断ˆˆy bxa =+( ˆ,ab 为常数)与 21e ˆc xc y =( 12,c c 为常数,且 120,0c c >≠)哪一个适宜作为繁殖个数y 关于天数x 变化的回归方程类型?(给出判断即可,不必说明理由)(2)对于非线性回归方程 21e ˆc xc y =( 12,c c 为常数,且 120,0c c >≠),令ln z y =,可以得到繁殖个数的对数z 关于天数x 具有线性关系及一些统计量的值.xyz()621ii x x =-∑()()61ii i xx y y =--∑()()61ii i xx z z =--∑3.5062.83 3.5317.50596.5712.09(ⅰ)证明:“对于非线性...回归方程 21e ˆc x c y =,令ln z y =,可以得到繁殖个数的对数z 关于天数x 具有线性..关系(即ˆˆˆ,ˆˆ,z x βαβα=+为常数)”;(ⅱ)根据(ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程(系数保留2位小数).附:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归直线方程ˆˆˆvu βα=+的斜率和截距的最小二乘估计分别为()()()121ˆˆˆ,niii nii u u v v v u u u βαβ==--==--∑∑.变式15.(2024·重庆沙坪坝·高三重庆八中校考阶段练习)在正常生产条件下,根据经验,可以认为化肥的有效利用率近似服从正态分布2(0.54,0.02)N ,而化肥施肥量因农作物的种类不同每亩也存在差异.(1)假设生产条件正常,记X 表示化肥的有效利用率,求(0.56)PX ≥;(2)课题组为研究每亩化肥施用量与某农作物亩产量之间的关系,收集了10组数据,并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值.其中每亩化肥施用量为x (单位:公斤),粮食亩产量为y (单位:百公斤)参考数据:101i ii x y =∑101ii x =∑101ii y =∑1021ii x=∑101ii i t z =∑101ii t =∑101ii z =∑1021ii t=∑65091.552.51478.630.5151546.5ln i i t x =,ln (1i zi y i ==,2,⋯,10).(i )根据散点图判断,y a bx =+与d y cx =,哪一个适宜作为该农作物亩产量y 关于每亩化肥施用量x 的回归方程(给出判断即可,不必说明理由);(ii )根据(i )的判断结果及表中数据,建立y 关于x 的回归方程;并预测每亩化肥施用量为27公斤时,粮食亩产量y 的值.(e 2.7)≈附:①对于一组数据(,)(1i i u v i =,2,3,⋯,)n ,其回归直线ˆˆˆvu βα=+的斜率和截距的最小二乘估计分别为121ˆni i i nii u v nuvunu β==-=-∑∑,ˆˆˆv u αβ=-;②若随机变量2(,)X N μσ ,则()0.6827P X μσμσ-<<+≈,(22)0.9545P X μσμσ-<<+≈.变式16.(2024·重庆·高三校联考开学考试)某公司为了解年研发资金投入量x (单位:亿元)对年销售额y (单位:亿元)的影响.对公司近12年的年研发资金投入量xi 和年销售额yi 的数据,进行了对比分析,建立了两个模型:①2ˆˆy x αβ=+,②ˆˆe x t y λ+=$,其中α,β,λ,t 均为常数,e 为自然对数的底数,并得到一些统计量的值.令()2,,l 1n ,2,3,,12i i i i x i u v y =⋅⋅⋅==,经计算得如下数据:xy()1221i i x x =-∑()1221i i y y=-∑uv20667724604.20()1221ii uu=-∑()()121iii u u y y =--∑()1221ii v v =-∑()()121iii x x v v =--∑312502153.0814(1)请从相关系数的角度,分析哪一个模型拟合程度更好?(2)(ⅰ)根据分析及表中数据,建立y 关于x 的回归方程;(ⅱ)若下一年销售额y 需达到90亿元,预测下一年的研发资金投入量x 是多少亿元?附:①相关系数()()niix x y y r --=∑ˆˆy abx =+$中公式分别为()()()1122211ˆˆˆ,n niii ii i nniii i x x y y x y nx ybay b x x x xnx====---⋅===-⋅--∑∑∑∑;②参考数据: 4.499830849.4868,e 90=⨯≈≈.变式17.(2024·江苏镇江·江苏省镇江中学校考三模)经观测,长江中某鱼类的产卵数y 与温度x 有关,现将收集到的温度i x 和产卵数()1,2,,10i y i = 的10组观测数据作了初步处理,得到如图的散点图及一些统计量表.101ii x=∑101ii t=∑101ii y=∑101ii z=∑()1021ii x x =-∑36054.5136044384()1021ii tt=-∑()()101ii i tt y y =--∑()()101iii x x zz =--∑()()101iii x x y y =--∑3588326430表中1011ln ,10i i i ii t z y z z ====∑(1)根据散点图判断,,y a bx y n =+=+21e c xy c =哪一个适宜作为y 与x 之间的回归方程模型并求出y 关于x 回归方程;(给出判断即可,不必说明理由)(2)某兴趣小组抽取两批鱼卵,已知第一批中共有6个鱼卵,其中“死卵”有2个;第二批中共有8个鱼卵,其中“死卵”有3个.现随机挑选一批,然后从该批次中随机取出2个鱼卵,求取出“死卵”个数的分布列及数学期望.附:对于一组数据()()()1122,,,,,n n u v u v u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121,niii nii u u v v v u u u βαβ==--==--∑∑.变式18.(2024·广西南宁·南宁三中校考一模)数据显示中国车载音乐已步入快速发展期,随着车载音乐的商业化模式进一步完善,市场将持续扩大,下表为2018-2022年中国车载音乐市场规模(单位:十亿元),其中年份2018—2022对应的代码分别为1-5.年份代码x12345车载音乐市场规模y2.83.97.312.017.0(1)由上表数据知,可用指数函数模型x y a b =⋅拟合y 与x 的关系,请建立y 关于x 的回归方程;(2)根据上述数据求得y 关于x 的回归方程后,预测2024年的中国车载音乐市场规模.参考数据:v51i ii x v=∑0.524e 0.472e 71.61.9433.82 1.7 1.626.84其中ln i i v y =,5115i i v v ==∑.参考公式:对于一组数据()11,u v ,()22,u v ,L ,(),n n u v 其回归直线ˆˆˆv u αβ=+的斜率和截距的最小二乘法估计公式分别为 121ni ii ni i u v nu vu nuβ==-⋅=-∑∑,ˆˆv u αβ=-.变式19.(2024·安徽合肥·合肥市第八中学校考模拟预测)当前移动网络已融入社会生活的方方面面,深刻改变了人们的沟通、交流乃至整个生活方式.4G 网络虽然解决了人与人随时随地通信的问题,但随着移动互联网快速发展,其已难以满足未来移动数据流量暴涨的需求,而5G 作为一种新型移动通信网络,不但可以解决人与人的通信问题,而且还可以为用户提供增强现实、虚拟现实、超高清(3D )视频等更加身临其境的极致业务体验,更重要的是还可以解决人与物、物与物的通信问题,从而满足移动医疗、车联网、智能家居、工业控制、环境监测等物联网应用需求,为更好的满足消费者对5G 网络的需求,中国电信在某地区推出了六款不同价位的流量套餐,每款套餐的月资费x (单位:元)与购买人数y (单位:万人)的数据如下表:套餐A B C D E F 月资费x (元)384858687888购买人数y (万人)16.818.820.722.424.025.5对数据作初步的处理,相关统计量的值如下表:61iii v ω=∑61ii v=∑61ii ω=∑621ii v=∑75.324.618.3101.4其中ln ,ln i i i i v x y ω==,且绘图发现,散点()(),16i i v i ω≤≤集中在一条直线附近.(1)根据所给数据,求出y 关于x 的回归方程;(2)已知流量套餐受关注度通过指标()36x T x y +=来测定,当()8568,7e 5e T x ⎛⎫∈ ⎪⎝⎭时相应的流量套餐受大众的欢迎程度更高,被指定为“主打套餐”.现有一家四口从这六款套餐中,购买不同的四款各自使用.记四人中使用“主打套督”的人数为X ,求随机变量X 的分布列和期望.附:对于一组数据()()()1122,,,,,,n n v v v ωωω ,其回归方程bv a ω=+的斜率和截距的最小二乘估计值分别为()()()121ˆˆ,niii ni i v v ba bvv v ωωω==-⋅-==--∑∑.【解题方法总结】换元法变成一元线性回归模型题型四:列联表与独立性检验例10.(2024·广东佛山·华南师大附中南海实验高中校考模拟预测)四川省将从2022年秋季入学的高一年级学生开始实行高考综合改革,高考采用“3+1+2”模式,其中“1”为首选科目,即物理与历史二选一.某校为了解学生的首选意愿,对部分高一学生进行了抽样调查,制作出如下两个等高条形图,根据条形图信息,下列结论正确的是()A .样本中选择物理意愿的男生人数少于选择历史意愿的女生人数B .样本中女生选择历史意愿的人数多于男生选择历史意愿的人数C .样本中选择物理学科的人数较多D .样本中男生人数少于女生人数例11.(2024·全国·高三专题练习)在新高考改革中,浙江省新高考实行的是7选3的33+模式,即语数外三门为必考科目,然后从物理、化学、生物、政治、历史、地理、技术(含信息技术和通用技术)7门课中选考3门.某校高二学生选课情况如下列联表一和列联表二(单位:人)选物理不选物理总计男生340110450女生140210350总计480320800表一选生物不选生物总计男生150300450女生150200350总计300500800表二试根据小概率值0.005α=的独立性检验,分析物理和生物选课与性别是否有关()附:()222.n ad bc n a b c d P x a b c d a c b d αχαχ-==+++=≥++++(),()()()()α0.150.100.050.0250.010.0050.001ax 2.0722.7063.8415.0246.6357.87910.828A .选物理与性别有关,选生物与性别有关B .选物理与性别无关,选生物与性别有关C .选物理与性别有关,选生物与性别无关D .选物理与性别无关,选生物与性别无关例12.(2024·全国·高三专题练习)通过随机询问相同数量的不同性别大学生在购买食物时是否看营养说明,得知有16的男大学生“不看”,有13的女大学生“不看”,若有99%的把握认为性别与是否看营养说明之间有关,则调查的总人数可能为()A .150B .170C .240D .175变式20.(2024·全国·高三专题练习)针对时下的“短视频热”,某高校团委对学生性别和喜欢短视频是否有关联进行了一次调查,其中被调查的男生、女生人数均为()*5m m ∈N 人,男生中喜欢短视频的人数占男生人数的45,女生中喜欢短视频的人数占女生人数的35.零假设为0H :喜欢短视频和性别相互独立.若依据0.05α=的独立性检验认为喜欢短视频和性别不独立,则m 的最小值为()附:()()()()()22n ad bc a b c d a c b d χ-=++++,附表:α0.050.01x α3.841 6.635A .7B .8C .9D .10变式21.(2024·全国·高三专题练习)在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下2×2列联表:优秀非优秀合计甲班人数50乙班人数20。
变量之间的关系知识点及常见题型
变量之间的关系及常见题型一、基础知识1、常量:在变化过程中一组数据中或者关系式中数值保持不变的量;2、变量:数值发生变化的量在一变化过程中一般有两个变量1自变量:在一定范围内主动发生变化的变量;2因变量:随自变量的变化而变化的变量.二、表示方式1、表格法1一般第一栏表示自变量,第二栏表示因变量;2从表格中可以获取一些信息,发现因变量随自变量的变化存在一定规律;2、关系式1表示自变量与因变量之间关系的数学式子叫关系式;关系式一般用含自变量的代数式表示因变量的等式2能利用关系式进行计算;3、图像法(1)水平方向的数轴横轴表示自变量;竖直方向的数轴纵轴表示因变量;(2)利用图像尽可能地获取自变量因变量的信息,特点是直观.练习:1、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是A、明明B、电话费C、时间D、爷爷2、某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有个、个座位;第排有个座位.3、据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐地增加,如果用t表示时间,y表示人口数量, 是自变量, 是因变量.4、下表中的数据是根据某地区入学儿童人数编制的:1上表反映了哪两个变量之间的关系哪个是自变量哪个是因变量2随着自变量的变化,因变量变化的趋势是什么3你认为入学儿童的人数会变成零吗5、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x单位:分之间有如下关系其中0≤x≤301上表中反映了哪两个变量之间的关系那个是自变量哪个是因变量2当提出概念所用时间是10分钟时,学生的接受能力是多少3根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强4从表格中可知,当时间x在什么范围内,学生的接受能力逐步增强当时间x 在什么范围内,学生的接受能力逐步降低5 根据表格大致估计当时间为23分钟时,学生对概念的接受能力是多少6 下表是某同学做“观察水的沸腾”实验时所记录的数据:1时间为8分钟时,水的温度是多少2上表反应了哪两个变量之间的关系哪个是自变量哪个是因变量3水的温度是怎样随时间变化的4根据表格,你认为13分钟、14分钟时水的温度是多少5为了节约能源,在烧开水时,你认为应在几分钟左右关闭煤气巩固练习:一、选择题每小题3分,共24分1.我们都知道,圆的周长计算公式是c=2πr,下列说法正确的是A. c,π,r 都是变量B. 只有r 是变量C. 只有c 是变量D. c,r 是变量2.一汽车以平均速度60千米/时速度在公路上行驶,则它所走的路程s 千米与所用的时间t 时的关系式为 A.t s +=60 B. ts 60= C. 60ts =D. t s 60= 3.雪撬手从斜坡顶部滑了下来,下图中可以大致刻画出雪撬手下滑过程中速度—时间变化情况的是4.“人间四月芳菲尽,山寺桃花始盛开”,说明温度随者海拔的升高而降低,已知某地面温度为20℃,且每升高1千米温度下降6℃,则山上距离地面h 千米处的温度t 为 A. 206t h =- B. 206h t =-C. 206h t -= D. 206t h -=5.根据图示的程序计算变量y 的对应值,若输入变量x 的值为-1,则输出的结果为A. –2B. 2C. –1D. 0 6.如下图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S 阴影部分,则S 与t 的大致图象为7.星期天,小王去朋友家借书,下图是他离家的距离y 千米与时间x 分钟的图象,根据图象信息,下列说法正确的是 A .小王去时的速度大于回家的速度 B .小王在朋友家停留了10分钟C .小王去时所花的时间少于回家所花的时间D .小王去时走上坡路,回家时走下坡路DCBA时间时间时间速度速度速度时间速度100y 千米x 分钟220 30 40 stOA .st OB .stOC .stOD .8.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A B C D →→→的路径以1cm/s 的速度运动点P 不与A D ,重合.在这个运动过程中,APD △的面积2(cm )S 随时间()t s 的变化关系用图象表示,正确的为二、填空题:每小题3分,共24分9.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中________是自变量, 是因变量.10.在体积为20的圆柱中,底面积S 高h 的关系式是 .11.飞机着陆后滑行的距离s 单位:米与滑行时间t 单位:秒之间的关系是s=60t -,当t=40时,s=______________.12.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩钱数y 元与买邮票的枚数x 枚之间的关系式为 .13.声音在空气中传播的速度y m/s 与气温x oC 之间在如下关系:33153+=x y .当气温x =15 oC 时,声音的速度y = m/s.若某人看到烟花燃放5s 后才听到声音响,则此人与燃放的烟花所在地相距 m.14.如图所示的图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时15.一支原长为20cm 的蜡烛,点燃后,其剩余长度与燃烧时间的关系可以从下表看出:则剩余长度y cm 与燃烧时间x 分的关系式为______________,估计这支A . O t s 1 2BO ts12CO ts 12 DO ts12 AD CB P蜡烛最多可燃烧___________分钟.16.有一本书,每20页厚为1mm,设从第1页到第x 页的厚度为y mm,则y 与x 之间的关系式为_______________.三、解答题:本大题共8小题,共52分17.本题6分小华粉刷他的卧室共花去10小时,他记录的完成工作量的百分数如下:15小时他完成工作量的百分数是 ; 2小华在 时间里工作量最大;3如果小华在早晨8时开始工作,则他在 时间没有工作.18.本题8分弹簧挂上物体后会伸长, 已知一弹簧的长度cm 与所挂物体的质量kg 之间的关系如下表:1上表反映的变量之间的关系中哪个是自变量 哪个是因变量 2当所挂物体是3kg 时,弹簧的长度是多少 不挂重物时呢19.本题8分如图,长方形ABCD 的边长分别为AB=12cm,AD=8cm,点P 、Q 都从点A 出发,分别沿AB,AD 运动,且保持AP=AQ,在这个变化过程中,图中的阴影部分的面积也随之变化.当AP 由2cm 变到8cm 时,图中阴影部分的面积是增加了,还是减少了增加或减少了多少平方厘米20.本题10分如图是一辆汽车的速度随时间变化的图象.根据图象填空: 1汽车在整个行驶过程中,最高时速是________千米/时;2汽车在________,________保持匀速行驶,时速分别是________,________;3汽车在________、________、________时段内加速行驶,在________、________时 段内减速行驶;4出发后,12分到14分之间可能发生________情况;21.本题10分如图,小明的爸爸去参加一个重要会议,小明坐在汽车上用所学知识绘制了一张反映小车速度与时间的关系图,第二天,小明拿着这张图给同学看,并向同学提出如下问题,你能回答吗 1在上述变化过程中,自变量是什么因变量是什么 2小车共行驶了多少时间最高时速是什么 3小车在哪段时间保持匀速行驶,时速达到多少 4用语言大致描述这辆汽车的行驶情况PQ DCBA102030405060708090100110102040503060速度(千米/时)时间/分课后练习:1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是A、沙漠B、体温C、时间D、骆驼2、正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同.下图反映了一天24小时内小明体温的变化情况,下列说法错误的是A.清晨5时体温最低 B.下午5时体温最高C.这一天中小明体温T单位:℃的范围是≤T≤D.从5时至24时,小明体温一直是升高的.3、下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系.水温水温水温水温0 时间 0 时间 0 时间 0A.B.C. D.4.某市一天的温度变化如图所示,看图回答下列问题:1这一天中什么时间温度最高是多少度什么时间温度最低是多少度2在这一天中,从什么时间到什么时间温度开始上升在这一天中,从什么时间到什么时间温度开始下降5某种动物的体温随时间的变化图如图示:1一天之内,该动物体温的变化范围是多少2一天内,它的最低和最高体温分别是多少是几时达到的.3一天内,它的体温在哪段时间内下降.4依据图象,预计第二天8时它的体温是多少课堂检测1、在平地上投掷手榴弹,下面哪幅图可以大致刻画出手榴弹投掷过程中落地前速度变化情况A B C D2、某种储蓄的月利率是%,现存入本金100元,本金与利息的和y 元与所存月数x 月之间的关系式为A 、x y 36.0100+=B 、x y 6.3100+=C 、x y 36.11+=D、x y 36.1001+= 3、有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是A 、1000元B 、800元C 、600元D 、400元4、某人骑车外出,所行的路程S 千米与时间t 小时的关系如图所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快; ②第3小时中的速度比第1小时中的速度慢; ③第3小时后已停止前进; ④第3小时后保持匀速前进.其中说法正确的是A 、②、③B 、①、③C 、①、④D 、②、④5、李老师骑车外出办事,离校不久便接到学校要他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是 S 距离距离 S 距离距离0 0 0 0t 时间 t 时间 t 时间t 时间A 、B 、C 、D 、6、三峡大坝从6月1日开始下闸蓄水,如果平均每天流入库区的水量为a 立方米米时,a b <;当天变化的大致图象是A 、B 、C 、D 、。
初中数学-变量之间的关系
变量之间的关系第一节用表格表示变量之间的关系知识点一变量、自变量、因变量、常量的定义一般地,在某一变化过程中,数值发生变化的量成为变量. 如果有两个变量,当其中一个变量在一定范围内取一个数值时,两一个变量也有唯一的一个数值与其对应,那么,通常前一个变量叫自变量,后一个变量叫做因变量. 在变化过程中数值始终不变的的那个量叫做常量.注意:(1)常亮与变量往往是相对的,相当于某个变化过程.(2)在某一变化过程中,可能有一个或几个常量,不可能没有变量,也不可能只有一个变量,一般有两个变量.知识点二自变量与因变量的区别与联系自变量与因变量共同存在于一个变化过程中,它们既有区别又有联系.因变量随自变量的变化情况:知识点三从表格中获取信息对变化趋势进行初步预测借助表格可以表示两个变量之间的关系.表示两个变量之间关系的表格,一般第一行表示自变量,第二行表示因变量,从表格中发现因变量随自变量变化存在一定的规律——或者增加或者减少或者呈规律性的起伏变化,从而利用变化趋势对结果作出预测.用列表法表示两个变量之间的关系时,表格只能提供自变量与因变量对应的部分数据,不能全面反映两个变量之间的关系,想要知道表格中没有出现的自变量与因变量的对应数据,需要对表格中的数据进行分析,从已知部分数据中观察变量的变化规律并依此估计未在表格中出现的数据.例题1. 某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是()A.y,t和100都是变量 B.100和y都是常量C.y和t是变量D.100和t都是常量练习1. 下表是某报纸公布的世界人口数情况:上表中的变量是()A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有在这三个量中,__________是常量,__________是自变量,__________是因变量.练习4. 在利用太阳能热水器给水加热的过程中,热水器里水的温度随所晒太阳光时间的长短而变化,这个问题中因变量是()A.太阳光的强弱B.热水器里水的温度C.所晒太阳光的时间D.热水器练习5. 一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中()A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量练习6. 明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量之间的关系知识点总结
1、变量的定义
在变化过程中,若有两个变量x和y, 其中y随着x 的变化而发生变化,我们就把自动发生变化的x叫自变量,y叫因变量。
在变化过程中保持不变的量叫常量。
例题:C=2Πr中的r与C,可以取不同的数值,是变化的,所以r、C就是变量,r是自变量,C是因变量,Π是常量。
2、表示两个变量之间关系的方法
表格法:可以清晰地表示因变量随自变量变化而变化的情况。
例题:某剧院的观众席的座位为扇形,且按下列方法设置:
(1)按照上表所示的规律,第6排的座位数为______;
(2)写出座位数y与排数x之间的关系式为_____;
(3)按照上表的规律,某一排可能有90个座位吗?说说你的理由。
思路分析:题中有两个变量:排数、座位数,用表格的形式来描述两个变量间的关系,这就是列表法。
依规律探究题型的解题方法和技巧(①把数字转化成算式;②寻找算式中的数字与序号间的关系规律)即可解答。
解:(1)第1排的座位数:50个;
第2排的座位数:(50+3×1)个;
第3排的座位数:(50+3×2)个;
第4排的座位数:(50+3×3)个;
∴第6排的座位数:50+3×5=65(个);
(2)由(1)中规律可得:座位数y与排数x之间的关系式为:y=50+3×
(x-1)=3x+47.
(3)某一排是否有90个座位,即y是否可以等于90,假设代入解方程即可,当y=90时,即3x+47=90,解得x不是整数,故某一排不可能有90个座位。
关系式法:我们可以根据一个自变量的值求出相应的因变量的值。
例题:小明现有存款200元,为赞助“希望工程”,她计划今年每月存款10元,则存款总金额y(元)与时间x(月)之间的函数关系式是_____. 思路分析:用关系式法表示两个变量间的函数关系,最重要的是能找出两个变量之间的等量关系式。
解:两个变量:“存款总金额”、“时间”之间的关系是:存款总金额=原有存款数+每月存款数×时间,依这个等量关系式,即可找出y与x之间的函数关系式:y=200+10x.
图象法:我们可以非常直观地表示两个变量之间的关系.
用图象法表示两个变量之间关系时,通常用水平方向的数轴(横轴)上的点表示自变量,用竖直方向的数轴(纵轴)上的点表示因变量.
特殊信息:找拐点、横纵轴表示的信息、与坐标轴平行线
例题:如图表示一位骑自行车者离家的距离与时间的关系图象,骑车者9时离开家,15时回家,根据这个图像,回答下面问题:
(1)图中反映了(两)个变量之间的关系,(时间)是自变量,(距离)是因变量.
(2)到达离家最远的地方是什么时间?答:__12—13时______________
(3)何时开始第一次休息?休息多长时间?答:_10:30__、_30分钟____ (4)第一次休息时,离家多远?答:__17千米_________
(5)11:00到12:00他骑了多少千米?答:__13千米________
(6)他在9:00—10:00和10:00—10:30的平均速度各是多少?答_10千米/小时___、__14千米/小时_____
(7)他在何时至何时停止前进并休息用餐?答:__12时---13时
(8)他停止前进后返回,骑了多少千米?答:__30千米___
(9)返回时的平均速度是多少?答:_15千米/小时_____
解析:(2)由线段EF可知,到达离家最远的地方;
(3)休息时离家距离没发生变化,在图上表现为平行于横轴的线段,即线段CD描述第一次休息的情景,故10:30时开始第一次休息,休息了30分钟;
(4)第一次休息时即在线段CD上,离家17千米;
(5)找到11:00到12:00这条线段所对应的纵轴数据,即可得出:在这段时间内他骑了30-17=13千米;
(6)他在9:00—10:00行驶的时间为1小时,路程由0到10千米,故速度为10÷1=10千米/小时;
他在10:00—10:30行驶的时间为0.5小时,路程由10到17千米,故速度为7÷0.5=14千米/小时;
(7)平行于横纵的线段表示他在休息,休息用餐休息应是线段EF,即时间为12时---13时;
(8)他停止前进后返回,即线段FG,从30千米直到家,所以骑了30千米;(9)返回时的平均速度是30÷(15-13)=15千米/小时。