(完整版)行测数量关系知识点汇总

合集下载

行测数量关系公式大全

行测数量关系公式大全

行测数量关系公式大全一、比例关系公式:1.同比例的两个量之积等于它们的一平方。

(a/b=c/d=>a*d=b*c)2.两个量成反比例,其乘积等于常数。

(a/b=c/d=>a*b=c*d)二、百分数关系公式:1.百分数x%等于小数x/100。

(x%=x/100)2.数x占总数y的百分比等于数x与y之比乘以100%。

(x/y×100%)3.两个百分比相加、相减等于数与数相加、相减。

三、平均数关系公式:1.平均数=和/个数。

2.和=平均数×个数。

四、利率、利息和本金关系公式:1.简单利息=本金×年利率×时间。

2.平均利率=总利息/总本金五、速度、时间和距离关系公式:1.速度=距离/时间。

2.时间=距离/速度。

3.距离=速度×时间。

六、面积和体积关系公式:1.长方形面积=长×宽。

2.正方形面积=边长×边长。

3.圆面积=π×半径的平方。

4.圆柱体体积=底面积×高。

5.球体体积=4/3×π×半径的立方。

6.锥体体积=1/3×底面积×高。

七、等差数列关系公式:1.第n项=首项+(n-1)×公差。

2.前n项和=(首项+末项)×n/2八、等比数列关系公式:1.第n项=首项×公比的(n-1)次方。

2.前n项和=(首项×(公比的n次方-1))/(公比-1)。

2023公务员行测复习数量关系知识点公式

2023公务员行测复习数量关系知识点公式

2023公务员行测复习数量关系知识点公式公务员行测复习数量关系知识点公式一、五大方法1.代入法:代入法时行测第一大法,优先考虑。

2.赋值法:对于有些问题,若能根据其具体情况,合理巧妙地对某些元素赋值,特别是赋予确定的特殊值,往往能使问题获得简捷有效的解决。

题干中有分数,比例,或者倍数关系时一般采用赋值法简化计算,赋值法经常应用在如工程问题,行程问题,费用问题等题目中。

3.倍数比例法:若a : b=m : n(m、n互质),则说明: a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。

4.奇偶特性法:两个奇数之和/差为偶数,两个偶数之和/差为偶数,一奇一偶之和/差为奇数;两个数的和/差为奇数,则它们奇偶相反,两个数的和/差为偶数,则它们奇偶相同;两个数的和为奇数,则其差也为奇数,两个数的和为偶数,则其差也为偶数 5.方程法:很多数学运算题目都可以采用列方程进行求解。

方程法注意事项:未知数要便于列方程;未知数可以用字母表示,也可以用“份数”,还可以用汉字进行替代。

二、六大题型1.工程问题:工作量=工作效率×工作时间工程问题一般采用赋值法解题。

赋值法有2种应用情况,第一种是题干中已知每个人完成工作的时间,这时我们假设工作量为工作时间的最小公倍数,进而得到每个人的工作效率,从而快速求解;第二种是题干中已知的是每个人工作效率的等量关系,这时我们通过直接赋效率为具体值进行快速求解。

2.行程问题:路程=速度×时间行程问题一般要通过数形结合进行快速求解,常见的解法包括列方程,比例法等。

常考的题型包括相遇问题和追及问题。

相遇问题:路程和=速度和×时间追及问题:路程差=速度差×时间3.溶液问题:浓度=溶质÷溶液溶液问题常见的有两种,一种是溶液的混合,这种问题用公式解决;另外一种是单一溶液的蒸发或稀释,这种题目一般用比例法解决,即利用溶质不变进行求解。

行测数量关系知识点汇总2024

行测数量关系知识点汇总2024

行测数量关系知识点汇总2024一、数字推理。

1. 等差数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

- 通项公式:a_n=a_1+(n - 1)d,其中a_n是第n项的值,a_1是首项,n是项数。

- 求和公式:S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。

- 示例:数列1,3,5,7,9·s是一个首项a_1=1,公差d = 2的等差数列。

2. 等比数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。

- 通项公式:a_n=a_1q^n - 1。

- 求和公式:当q≠1时,S_n=frac{a_1(1 - q^n)}{1 - q};当q = 1时,S_n=na_1。

- 示例:数列2,4,8,16,32·s是一个首项a_1=2,公比q = 2的等比数列。

3. 和数列。

- 定义:通过相邻项相加得到下一项的数列。

- 类型:- 两项和数列:如1,2,3,5,8,13·s,其中a_n=a_n - 1+a_n - 2(n≥3)。

- 三项和数列:例如1,1,2,4,7,13,24·s,a_n=a_n - 1+a_n - 2+a_n - 3(n≥4)。

4. 积数列。

- 定义:通过相邻项相乘得到下一项的数列。

- 类型:- 两项积数列:如2,3,6,18,108·s,其中a_n=a_n - 1× a_n - 2(n≥3)。

- 三项积数列:例如1,2,3,6,36,648·s,a_n=a_n - 1× a_n - 2× a_n - 3(n≥4)。

5. 多次方数列。

- 类型:- 平方数列:1,4,9,16,25·s,通项公式为a_n=n^2。

公务员考试行测常见基础公式汇总

公务员考试行测常见基础公式汇总

公务员考试行测常见基础公式汇总公务员考试中,行政职业能力测验(简称行测)是重要的组成部分。

其中涉及到众多的知识点和公式,掌握这些基础公式对于提高解题效率和准确性至关重要。

下面为大家汇总了一些行测常见的基础公式。

一、数量关系1、等差数列通项公式:$a_n = a_1 +(n 1)d$,其中$a_n$表示第$n$项的值,$a_1$表示首项,$d$表示公差。

例如,已知一个等差数列的首项为 3,公差为 2,求第 10 项的值。

则$a_{10} = 3 +(10 1)×2 = 21$等差数列求和公式:$S_n =\frac{n(a_1 + a_n)}{2}$,其中$S_n$表示前$n$项的和。

例如,求上述等差数列前 10 项的和,$a_{10} = 21$,则$S_{10}=\frac{10×(3 + 21)}{2} = 120$2、等比数列通项公式:$a_n = a_1×q^{n 1}$,其中$q$为公比。

例如,一个等比数列的首项为 2,公比为 3,求第 5 项的值。

则$a_{5} = 2×3^{5 1} = 162$等比数列求和公式:$S_n =\frac{a_1(1 q^n)}{1 q}$($q ≠1$)3、行程问题相遇问题:$S =(v_1 + v_2)×t$,其中$S$表示路程,$v_1$、$v_2$表示两个物体的速度,$t$表示相遇时间。

例如,甲、乙两人分别以 5 米/秒和 3 米/秒的速度相向而行,经过10 秒相遇,求他们最初的距离。

则$S =(5 + 3)×10 = 80$米追及问题:$S =(v_1 v_2)×t$例如,甲以 8 米/秒的速度追赶以 5 米/秒速度前行的乙,经过 10 秒追上,求他们最初的距离差。

则$S =(8 5)×10 = 30$米4、工程问题工作总量=工作效率×工作时间例如,一项工程,甲单独完成需要 10 天,乙单独完成需要 15 天,两人合作需要的时间为:$1÷(\frac{1}{10} +\frac{1}{15})=6$天5、利润问题利润=售价成本利润率=利润÷成本×100%例如,一件商品成本为 80 元,售价为 100 元,则利润为$100 80 =20$元,利润率为$20÷80×100\%= 25\%$二、资料分析1、增长率增长率=(现期量基期量)÷基期量×100%例如,某地区去年的 GDP 为 100 亿元,今年为 120 亿元,则增长率为$(120 100)÷100×100\%= 20\%$2、平均数平均数=总数÷个数例如,某班级 5 名学生的成绩分别为 80、90、85、95、70 分,平均成绩为$(80 + 90 + 85 + 95 + 70)÷5 = 84$分3、比重比重=部分÷整体×100%例如,某公司总人数为 500 人,其中男性 250 人,则男性所占比重为$250÷500×100\%= 50\%$三、判断推理1、集合推理“所有的 S 都是P”可以推出“有的 S 是P”“某个 S 是P”可以推出“有的 S 是P”2、翻译推理“如果……那么……”:前推后“只有……才……”:后推前3、逻辑论证加强论证:增加论据、建立联系、补充前提削弱论证:削弱论据、切断联系、否定前提四、言语理解与表达虽然言语理解与表达部分没有像数量关系和资料分析那样有明确的公式,但一些解题技巧和规律还是需要掌握的。

(完整版)行测数量关系知识点汇总

(完整版)行测数量关系知识点汇总

行测常用数学公式一、工程问题工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实质问题时,常设总工作量为 1 或最小公倍数二、几何边端问题( 1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷ 4+1)2=N2最外层人数=(最外层每边人数- 1)× 42.空心方阵:方阵总人数=(最外层每边人数)2- (最外层每边人数 - 2×层数)2=(最外层每边人数 - 层数)×层数× 4=中空方阵的人数。

★不论是方阵仍是长方阵:相邻两圈的人数都知足:外圈比内圈多8 人。

3.N 边行每边有 a 人,则一共有 N(a-1) 人。

4.实心长方阵:总人数 =M×N 外圈人数 =2M+2N-45.方阵:总人数 =N2N 排 N 列外圈人数 =4N-4例:有一个 3 层的中空方阵,最外层有 10 人,问全阵有多少人?解:(10 -3 )×3 ×4 =84(人)(2)排队型:假定队伍有 N 人, A 排在第 M位;则其前方有( M-1)人,后边有( N-M)人(3) 爬楼型:从地面爬到第 N 层楼要爬( N-1)楼,从第 N 层爬到第 M层要爬 M N 层。

三、植树问题线型棵数 =总长 / 间隔 +1环型棵数=总长/间隔楼间棵数=总长/间隔-1(1)单边线形植树:棵数=总长间隔+1;总长=(棵数-1)×间隔(2)单边环形植树:棵数=总长间隔;总长=棵数×间隔(3)单边楼间植树:棵数=总长间隔-1;总长=(棵数+1)×间隔(4)双边植树:相应单边植树问题所需棵数的 2 倍。

N(5)剪绳问题:对折 N次,从中剪 M刀,则被剪成了( 2×M+1)段四、行程问题⑴ 行程=速度×时间;均匀速度=总行程÷总时间均匀速度型:均匀速度=2v1v2v1 v2(2)相遇追及型:相遇问题:相遇距离 =(大速度 +小速度)×相遇时间追及问题:追击距离 =(大速度—小速度)×追实时间背叛问题:背叛距离 =(大速度 +小速度)×背叛时间(3)流水行船型:顺流速度=船速+水速;逆水速度=船速-水速。

行测知识点数量关系汇总【精编】.pdf

行测知识点数量关系汇总【精编】.pdf

数量关系一、数量思维1.选项关联:不是填空题注意观察选项之间的倍数关系。

2.代入排除:应用范围:多位数范围、不定方程问题、同余问题、年龄问题、周期问题、复杂行程问题和差倍比问题,优先代入整数选项。

3.整除思想:必须将题目式子转化成 A =B ×C 两两相乘的形式整除判定法则:①拆分法517=470+47;②因式分解 6=2×3 ;③常用的 2、3、5、7、11和13 整除判定法则。

4.特值思想:数字特值:题目没具体数字,只有相互比例关系等,常用于计算题、浓度问题、工程问题或行程问题。

数字特值计算题优先考虑-1,0,1,工程与行程等问题优先考虑最小公倍。

图形特值:比如特殊的长方形——正方形。

5.奇偶特性:题目中出现平均、总和、差,尤其是不定方程的时候 奇偶判定:①加减运算:同奇同偶比得偶,一奇一偶只能奇;②乘除运算:一偶就是偶,双奇才是奇。

二、基础代数公式和方法1.基础代数公式:完全平方:(a ±b)2=a 2±2ab +b 2平方差: a 2-b 2=(a +b )×(a -b ) 完全立方:(a ±b)3=a 3±3a 2b +3ab 2±b3立方和差: a 3±b 3=(a ±b)(a 2ab +b 2)阶乘: a m×a n=am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ×b n2.常用方法:公式法(记住常用的公式) 因子法(整除特性结合)放缩法(用于判定计算的整数部分)n1-n 32=1n!)(⨯⋯⨯⨯⨯构造法 特值法三、等差数列1.n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和 通项公式:a n =a 1+(n -1)d求和公式:s n = =na 1+ n(n-1)d项数公式:n = +1等差中项:2A =a +b (若a 、A 、b 成等差数列) 2.若m+n =k+i ,则:a m +a n =a k +a i3.前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2四、等比数列1.n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等差数列前n 项的和 通项公式:a n =a 1qn -1求和公式:s n = (q ≠1)等比公式:G 2=ab (若a 、G 、b 成等比数列)2.若m+n =p+q ,则:a m ×a n =a p ×a q3.a m -a n =(m-n)d =q(m-n)五、周期问题一周7天,5个工作日。

公务员行测数量关系知识点整理

公务员行测数量关系知识点整理

公务员行测数量关系知识点整理公务员考试中,行测的数量关系部分一直是众多考生的难点和重点。

数量关系涉及的知识点繁多,题型复杂,需要我们系统地学习和掌握。

下面就为大家整理一下常见的数量关系知识点。

一、数学运算1、整数特性整数特性是数量关系中的基础知识点。

包括整除特性、奇偶性、质数与合数等。

整除特性:若整数 a 除以非零整数 b,商为整数,且余数为零,我们就说 a 能被 b 整除。

比如,能被 2 整除的数的特征是个位是偶数;能被 3 整除的数,其各位数字之和能被 3 整除。

奇偶性:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数。

质数与合数:质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。

合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。

2、方程与不等式方程是解决数量关系问题的常用工具。

通过设未知数,根据题目中的等量关系列出方程,然后求解。

一元一次方程:形如 ax + b = 0(a≠0)的方程。

二元一次方程组:由两个未知数,且未知数的次数都是 1 的方程组成。

不等式:用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个代数式的式子。

3、比例问题比例是指两个比相等的式子。

常见的有工程问题中的效率比、行程问题中的速度比等。

若 a:b = c:d,则 ad = bc。

4、行程问题行程问题是数量关系中的重点和难点。

基本公式:路程=速度×时间。

相遇问题:路程和=速度和×相遇时间。

追及问题:路程差=速度差×追及时间。

5、工程问题工程问题的核心是工作总量=工作效率×工作时间。

经常通过设工作总量为 1 或工作总量的最小公倍数来解题。

6、利润问题涉及成本、售价、利润、利润率等概念。

利润=售价成本,利润率=利润÷成本×100% 。

7、几何问题包括平面几何和立体几何。

行测数量关系知识点总结大全

行测数量关系知识点总结大全

行测数量关系知识点总结大全
嘿呀!行测数量关系这部分可太重要啦!今天咱们就来好好唠唠这行测数量关系的知识点总结大全!
首先呢,咱们来说说行程问题。

哎呀呀,这可是个常见的类型!比如说相遇问题,当两个人相向而行的时候,路程之和就等于速度之和乘以相遇时间,哇,是不是很关键?还有追及问题,一个人追另一个人,路程之差等于速度之差乘以追及时间呢!
再讲讲工程问题呀!工作总量等于工作效率乘以工作时间,这可是基础中的基础!不管是合作还是单独工作,都离不开这个公式呀!
还有利润问题呢!成本、售价、利润、利润率,这些概念得搞清楚呀!售价减去成本就是利润,利润除以成本就是利润率,懂了这些,计算起来就容易多啦!
接着说说排列组合问题!这可有点复杂啦。

排列是有顺序的,组合是没顺序的,千万别搞混啦!计算方法也有好多,什么加法原理、乘法原理,得好好琢磨琢磨!
还有几何问题呀!三角形、圆形、矩形的各种面积、周长公式,都得牢记在心呢!
容斥原理也不能落下!两集合、三集合的容斥公式,一定要熟练运用!
数学运算中的整除特性,有时候能帮我们快速排除错误选项,节省好多时间呢!
数列问题也是常见的,等差数列、等比数列的通项公式、求和公
式,是不是得掌握呀?
哇塞!行测数量关系的知识点可真是不少呢!要想在考试中取得好成绩,这些知识点都得熟练掌握,多做练习呀!加油加油!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2 最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N 2 N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

顺流行程=顺流速度×顺流时间=(船速+水速)×顺流时间 逆流行程=逆流速度×逆流时间=(船速—水速)×逆流时间 (4)火车过桥型:列车在桥上的时间=(桥长-车长)÷列车速度列车从开始上桥到完全下桥所用的时间=(桥长+车长)÷列车速度 列车速度=(桥长+车长)÷过桥时间(5)环形运动型:反向运动:环形周长=(大速度+小速度)×相遇时间 同向运动:环形周长=(大速度—小速度)×相遇时间(6)扶梯上下型:扶梯总长=人走的阶数×(1±人梯u u ),(顺行用加、逆行用减) 顺行:速度之和×时间=扶梯总长 逆行:速度之差×时间=扶梯总长(7)队伍行进型:对头→队尾:队伍长度=(u 人+u 队)×时间 队尾→对头:队伍长度=(u 人-u 队)×时间 (8)典型行程模型:等距离平均速度:21212u u u u u +=(U 1、U 2分别代表往、返速度) 等发车前后过车:核心公式:21212t t t t T +=,1212t t t t u u -+=人车 等间距同向反向:2121u u u u t t -+=反同 不间歇多次相遇:单岸型:2321s s s += 两岸型:213s s s -= (s 表示两岸距离)无动力顺水漂流:漂流所需时间=顺逆顺逆t t t t -2(其中t 顺和t 逆分别代表船顺溜所需时间和逆流所需时间) 五、溶液问题⑴ 溶液=溶质+溶剂 浓度=溶质÷溶液 溶质=溶液×浓度 溶液=溶质÷浓度 ⑵ 浓度分别为a%、b%的溶液,质量分别为M 、N ,交换质量L 后浓度都变成c%,则⑶ 混合稀释型等溶质增减溶质核心公式:313122r r r r r += (其中r 1、r 2、r 3分别代表连续变化的浓度) 六、利润问题(1)利润=销售价(卖出价)-成本; 利润率=成本利润=成本销售价-成本=成本销售价-1;(2)销售价=成本×(1+利润率); 成本=+利润率销售价1。

(3)利息=本金×利率×时期; 本金=本利和÷(1+利率×时期)。

本利和=本金+利息=本金×(1+利率×时期)=期限利率)(本金+⨯1;月利率=年利率÷12; 月利率×12=年利率。

例:某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”∴2400×(1+10.2%×36) =2400×1.3672 =3281.28(元);①几年后年龄=大小年龄差÷倍数差-小年龄 ②几年前年龄=小年龄-大小年龄差÷倍数差A 的个数+满足条件B 的个数—两者都满足的个数=总个数—两者都不满足的个数⑵三集合标准型:A+B+C-(AB+BC+AC )+ABC=总个数-都不满足的个数,即 满足条件A 的个数+满足条件B 的个数+满足条件C 的个数-三者都不满足的情况数C B A =C B A C A C B B A C B A +---++⑶三集和整体重复型:假设满足三个条件的元素分别为ABC ,而至少满足三个条件之一的元素的总量为W 。

其中:满足一个条件的元素数量为x ,满足两个条件的元素数量为y ,满足三个条件的元素数量为z ,可以得以下等式:①W=x+y+z ②A+B+C=x+2y+3z⑷三集和图标标数型:利用图形配合,标数解答 ①特别注意“满足条件”和“不满足条件”的区别②特别注意有没有“三个条件都不满足”的情形—x)T原有草量=(牛数-每天长草量)×天数,其中:一般设每天长草量为X注意:如果草场面积有区别,如“M 头牛吃W 亩草时”,N 用WM代入,此时N 代表单位面积上A 倍,那么N 个周期后就是最开始的A N 倍,一个周期前应该是当时的A1。

调和平均数公式:21212a a a a a +=等价钱平均价格核心公式:21212p p p p p +=(P 1、P 2分别代表之前两种东西的价格 ) 等溶质增减溶质核心公式:313122r r r r r += (其中r 1、r 2、r 3分别代表连续变化的浓度)核心公式: 2121a a a a a +=注意:n 的取值范围为整数,既可以是负值,也可以取零值。

2月有29日,平年(不能被4整除)的2月有28日,记口诀:一年就是1,润日再加★星期推断:一年加1注意:星期每7:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aacb b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3( (3)abc c b a 3222≥++ abc c b a 33≥++ 推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

(5)两项分母列项公式:)(a m m b +=(m 1—a m +1)×ab(6)三项分母裂项公式:)2)((a m a m m b ++=[)(1a m m +—)2)((1a m a m ++]×ab 2十六、排列组合(1)排列公式:P m n =n (n -1)(n -2)…(n -m +1),(m≤n)。

56737⨯⨯=A (2)组合公式:C m n =P m n ÷P m m=(规定0n C =1)。

12334535⨯⨯⨯⨯=c(3)错位排列(装错信封)问题:D 1=0,D 2=1,D 3=2,D 4=9,D 5=44,D 6=265,(4)N 人排成一圈有N N A /N 种; N 枚珍珠串成一串有NN A /2种。

十七、等差数列 (1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)项数n =d a a n 1-+1;(4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 十八、等比数列(1)a n =a 1q n -1; (2)s n =qq a n -11 ·1)-((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ;(4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nm a a =q(m-n)(其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)十九、典型数列前N 项和4.24.34.7★1既不是质数也不是合数1.200以内质数 2 3 5 7 101 103 10911 13 17 19 23 29 113 127 131 137 31 37 41 43 47 53 59 139 149 151 157 163 167 61 67 71 73 79 83 89 97 173 179 181 191 193 197 199 ①数字0的变换:)0(00≠=N N②数字1的变换:)0()1(1120≠-===a a N N③特殊数字变换:244216== 23684264=== 249381== 281642256=== 3982512== 6233279729=== 251032421024=== ④个位幂次数字:12424== 13828== 12939==22.面积公式:正方形=2a 长方形= b a ⨯ 三角形=c ab ah sin 2121= 梯形=h b a )(21+圆形=πR 2平行四边形=ah 扇形=0360n πR 2 3.表面积:正方体=62a 长方体=)(2ac bc ab ++⨯ 圆柱体=2πr 2+2πrh 球的表面积=4πR 24.体积公式正方体=3a 长方体=abc 圆柱体=Sh =πr 2h 圆锥=31πr 2h 球=334R π5.若圆锥的底面半径为r ,母线长为l ,则它的侧面积:S 侧=πr l ;6.图形等比缩放型:一个几何图形,若其尺度变为原来的m 倍,则:1.所有对应角度不发生变化;2.所有对应长度变为原来的m 倍;3.所有对应面积变为原来的m 2倍;4.所有对应体积变为原来的m 3倍。

相关文档
最新文档