理论力学第九章刚体的平面运动

合集下载

理论力学-刚体的平面运动

理论力学-刚体的平面运动
表示为
ω
O
vB
ψ
B
x
vB = vA+ vBA
其中vA的大小 vA=R ω 。
vBA
例题
刚体的平面运动
由速度合成矢量图可得
例 题 3
vA
y
A
vA

vA vBA vB π π sin( ) sin( ) sin( ) 2 2
ω
O
所以
vB vA
y
π 2 π 2
ω
O φ
A B

刚体的平面运动
作业 9-1
曲柄连杆机构如图所 示,OA= r , AB 3r 。如 曲柄 OA 以匀角速度 ω 转动, A ω

求当 60,0 和 90 时点 B的速度。 B
刚体的平面运动
vA
ω

作业 9-1
解:
A vA vB
基点法
连杆AB作平面运动,以A为基点,B点
sin( ) sin( ) R cos cos
例题
刚体的平面运动
例 题 4
在图中,杆 AB 长 l ,
B
滑倒时 B 端靠着铅垂墙
壁。已知 A点以速度u沿 水平轴线运动,试求图
ψ u
A
示位置杆端 B 点的速度 及杆的角速度。
O
例题
刚体的平面运动
解: 基点法
B ω A
60
C D
60
E
例题
刚体的平面运动
解 : 基点法
例 题 2
vDB
B ω A
60
C
vB
60

vD
60

哈工大理论力学教案 第9章

哈工大理论力学教案 第9章

解:1, AB作平面运动 作平面运动
基点: 基点: A
2,
vB = vA + vBA ? √ √
大 ? vA 小 方 √ 向
vB = vA cot
vA vBA = sin
vBA vA ωAB = = l l sin
如图所示平面机构中, 例9-2 如图所示平面机构中,AB=BD= DE= l=300mm.在图示位置时,BD‖AE,杆AB的角速度为 .在图示位置时, , 的角速度为 ω=5rad/s. . 此瞬时杆DE的角速度和杆 中点C的速度 的角速度和杆BD中点 的速度. 求:此瞬时杆 的角速度和杆 中点 的速度.
解:1, AB作平面运动 作平面运动 2, vB = vA + vBA
大 ? ωr ? 小 方 √ 向
= 60
基点: 基点:A


vB = vA cos 30 = 2 3ωr 3
= 0
vB = 0
= 90
vB = vA = ωr, vBA = 0
如图所示的行星轮系中,大齿轮Ⅰ固定, 例9-4 如图所示的行星轮系中,大齿轮Ⅰ固定,半 径为r 行星齿轮Ⅱ沿轮Ⅰ只滚而不滑动,半径为r 径为 1 ,行星齿轮Ⅱ沿轮Ⅰ只滚而不滑动,半径为 2. 系杆OA角速度为 系杆 角速度为 ωO . 的角速度ω 及其上B, 两点的速度. 求:轮Ⅱ的角速度 Ⅱ及其上 ,C 两点的速度.
解:1 , BD作平面运动 作平面运动
2, vD = vB + vDB 大 ? ωl 小 方 √ 向 √ ? √
基点: 基点:B
vD = vDB = vB =ωl
vD vB ωDE = = = ω = 5rad s DE l vDB vB ωBD = = = ω = 5rad s BD l

09 刚体的平面运动--基点法

09 刚体的平面运动--基点法

基点法:用速度合成定理来求平面图形内任一点的速度的方法。
PAG 13
基点法题目: 用速度合成定理
vB v A vBA
PAG 14
基点法求平面图形内各点速度的解题步骤:
1、分析题中各物体的运动:平移,转动,平面运动; 2、分析已知要素:研究作平面运动的物体,分析点的 速度大小和方向;
大小 方向 ? √ √ √ ? √
vA
x
A
vBx vAx vBAx
O
vA r
vB vA r
vA vB
vBA
B
vBA 0
当ψ=0°
vA vB
x
B
vBx vAx vBAx
vB 0
PAG 23
vBA
例8-4 图示行星轮系中,半径为r1的齿轮Ⅰ固定,半径为r2的 行星齿轮Ⅱ沿轮Ⅰ只滚不滑,杆OA角速度为ω0。求轮Ⅱ的角 速度ωⅡ及其上B,C 两点的速度。
vDA vA (r1 r2 )0
vDA 2 DA
(r1 r2 )0 r2
PAG 25
( r1 r2 ) 0 v A ( r1 r2 ) 0 ; 2 r2
vB v A vBA
? ? √ √ √ √
大小 方向
vA B C vB vBA v A A 11 vA Ⅱ 0 D vDA
O Ⅰ
vC v vCA A
vBA r211 (r1 r2 )0
vB
2vA 2 (r1 r2 )0
vC v A vCA
大小 方向 ? ? √ √ √ √
vCA r211 (r1 r2 )0

第9章 刚体的平面运动

第9章 刚体的平面运动

例9-1 AB长l ,其两端在直角墙面上滑动。已知 v A 、 ,AM=b 。 求B点和M点的速度、AB的角速度。
解:以A为基点,研究 B点的速度。
v B v A v BA
B
v BA v A cos θ v B v A tan
vBA
vA

v BA l v A
l cos
vA A
A
vA
vB
B
例9-2 曲柄OA的角速度为 ,AB=BC=BD= l ,OA= r 求滑块C的速度。 vA 解: 杆AB、BC为平面运动
v A r
AB杆:
v A cos v B cos
vB cos v A cos
O
A D C
h


对 速 度 瞬 心 的 说 明
刚体作平面运动时,在每一瞬时,图形内(或与图形固结的 扩展平面内)必有一点 成为速度瞬心;但在不同的 瞬时, 速度瞬心的位置是不同的 。——速度瞬心的瞬时性
每一瞬时,平面图形的运动都可看成为绕速度瞬心的瞬时转动
n=6 600
t T 6
n=12 300
t T 12
平面图形相对于任意基点处的平动参考系,其转动运动都是一 样的,角速度、角加速度都是共同的,无须标明绕哪一点转动 或选哪一点为基点。因此,绕任意点转动的角速度、角加速度 就是平面图形的角速度、角加速度。
§9-2 求平面图形上各点速度的基点法
v M (v a )
一、基点法
动点: M结构中的平面运动
例如:基础的沉降造成了结构的移动
C’
C
A
B (B’)
A’
二 、刚体平面运动的简化

理论力学运动学知识点总结

理论力学运动学知识点总结

理论力学运动学知识点总结第一篇:理论力学运动学知识点总结运动学重要知识点一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。

2.刚体平行移动。

·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。

·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。

·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。

3.刚体绕定轴转动。

• 刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。

• 刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。

• 角速度ω表示刚体转动快慢程度和转向,是代数量,以用矢量表示。

,当α与ω。

角速度也可• 角加速度表示角速度对时间的变化率,是代数量,同号时,刚体作匀加速转动;当α 与ω异号时,刚体作匀减速转动。

角加速度也可以用矢量表示。

• 绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。

速度、加速度的代数值为。

• 传动比。

一、点的运动合成知识点总结1.点的绝对运动为点的牵连运动和相对运动的合成结果。

• 绝对运动:动点相对于定参考系的运动;• 相对运动:动点相对于动参考系的运动;• 牵连运动:动参考系相对于定参考系的运动。

2.点的速度合成定理。

• 绝对速度:动点相对于定参考系运动的速度;• 相对速度:动点相对于动参考系运动的速度;• 牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。

3.点的加速度合成定理。

• 绝对加速度:动点相对于定参考系运动的加速度;• 相对加速度:动点相对于动参考系运动的加速度;• 牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度;• 科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。

• 当动参考系作平移或 = 0,或与平行时,= 0。

南航理论力学习题答案9(1)

南航理论力学习题答案9(1)

第九章刚体的平面运动1.平面运动刚体相对其上任意两点的( )。

① 角速度相等,角加速度相等② 角速度相等,角加速度不相等③ 角速度不相等,角加速度相等④ 角速度不相等,角加速度不相等正确答案:①2.在图示瞬时,已知O 1A = O 2B ,且O 1A 与O 2 B 平行,则( )。

① ω1 = ω2,α1 = α2② ω1≠ω2,α1 = α2③ ω1 = ω2,α1 ≠α2④ ω1≠ω2,α1 ≠α2正确答案:③3.设平面图形上各点的加速度分布如图①~④所示,其中不可能发生的是( )。

正确答案:②4.刚体平面运动的瞬时平动,其特点是( )。

① 各点轨迹相同;速度相同,加速度相同② 该瞬时图形上各点的速度相同③ 该瞬时图形上各点的速度相同,加速度相同④ 每瞬时图形上各点的速度相同正确答案:②5.某瞬时,平面图形上任意两点A 、B 的速度分别v A 和v B ,如图所示。

则此时该两点连线中点C 的速度v C 和C 点相对基点A的速度v CA 分别为( )和( )。

① v C = v A + v B ② v C = ( v A + v B )/2③ v C A = ( v A - v B )/2 ④ v C A = ( v B - v A )/2正确答案:② ④α1α2 ①②③④6.平面图形上任意两点A 、B 的加速度a A 、a B 与连线AB 垂直,且a A ≠ a B ,则该瞬时,平面图形的角速度ω和角加速度α应为( )。

① ω≠0,α ≠0② ω≠0,α = 0③ ω = 0,α ≠0④ ω = 0,α = 0正确答案:③7.平面机构在图示位置时,AB 杆水平,OA 杆鉛直。

若B 点的速度v B ≠0,加速度τB a = 0,则此瞬时OA 杆的角速度ω和角加速度α为( )。

① ω = 0,α ≠0② ω≠0,α = 0③ ω = 0,α = 0④ ω≠0,α ≠0正确答案:②8.在图示三种运动情况下,平面运动刚体的速度瞬心:(a )为( );(b )为( );(c )为( )。

09-刚体的平面运动

09-刚体的平面运动

⌒ ⌒第九章 刚体的平面运动9-1 椭圆规尺AB 由曲柄OC 带动,曲柄以角速度0ω绕O 轴匀速转动,如图所示。

如OC=BC=AC=r ,并取C 为基点,求椭圆规尺AB 的平面运动方程。

解:取C 为基点。

将规尺的平面运动分解为随基点的平动和绕基点的转动。

因为 ,r AC CB OC === 所以 CBO COB ∠=∠ 设此角为ϕ,则t 0ωϕ=故规尺AB 的平面运动方程为 t r x C 0c o s ω=,t r y C 0sin ω=,t 0ωϕ= 9-3 半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动,如图所示。

如曲柄OA 以等角加速度α绕O 轴转动,当运动开始时,角速度00=ω,转角00=ϕ。

求动齿轮以中心A 为基点的平面运动方程。

解:动齿轮的平面运动可分解为以A 为基点的平动和绕A 点的转动。

在图示坐标系中,A 点的坐标为:ϕcos )(r R x A += (1) ϕsin )(r R y A +=(2)因为 α是常数,当0=t 时,000==ϕω 所以 22t αϕ=设小轮上开始时啮合点为M ,则AM 起始位置为水平。

设任一时刻AM 绕A 的转角为A ϕ,由图可见,NAM A ∠=ϕ,且θϕϕ+=A因动齿轮作纯滚动,有CM CM =0,即θϕr R = 所以ϕθrR =故得 ϕϕrrR A +=(3)以221t αϕ=代入(1)、(2)、(3)式中, 得动齿轮的平面运动方程为 22cos )(t r R x A α+=22sin )(t r R y A α+=2)(21at rr R A +=ϕ9-5 如图所示,在筛动机构中,筛子的摆动是由曲柄杆机构所带动。

已知曲柄OA 的转速min /40r n OA =,m 3.0=OA 。

当筛子BC 运动到与点O 在同一水平线上时,︒=∠90BAO 。

求此瞬时筛子BC 的速度。

解:由图示机构知BC 作平移,图示位置时,B v 与CBO 夹角为30°,与AB 夹角为60°。

理论力学刚体的平面运动

理论力学刚体的平面运动

A的速度为
vA vO vAO 2vO
B的速度为
vB vO2 vBO2 2vO
同理,可得D的速度为
A
vDO
vD
D vO O
vO
vAO
vA
vO B vO
vCO
C
vBO vO
vB
vD 2vO
9.3.2 速度投影法
应用矢量投影定理,将该矢量式 vB vA vBA向
AB连线投影 。
vA cos vB cos
结论:刚体的平面运动可以 简化为平面图形S 在其自身 平面内的运动。
9.1.3 刚体的平面运动方程
在平面图形S内建立平面直角坐标系Oxy,为确定
平面图形 S 在任意瞬时 t 的位置,只须确定其上任意
线段 AB 的位置,而线段 AB 的位置可由点 A 的坐标
xA,yA 和线段 AB 与 x 轴(或 y 轴)的夹角j 来确定。
9.1.2 平面运动的简化
⑴ 作平面Ⅱ∥定平面Ⅰ且与 刚体相交成一平面图形S 。当刚体 运动时,平面图形S 始终保持在平 面Ⅱ内。平面Ⅱ称为平面图形S 自 身所在平面。
⑵ 在刚体上任取⊥平面图形S 的直线A1A2 , A1A2 作平动,其上各 点都具有相同的运动。
⑶ A1A2 和图形S 的交点 A 的运动可代表全部A1A2 的运动, 而平面图形S 内各点的运动即可代表全部刚体的运动。
[vB ]AB [v A ]AB
(9-3)
速度投影定理:平面图形上任意两点的速度在 这两点连线上的投影相等。速度投影定理是刚体上任 意两点间的距离保持不变的必然结果。适用于任何形 式的刚体运动。
应用速度投影定理求速度的方法称为速度投影 法。
例9-4 用速度投影法求例9-1中点B的速度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O 基点
转角
基点的选取是任意的,平面图形的位置可由O’点 坐标及直线O’M与x’的夹角φ 完全确定。 基点的选择不同,其运动方程9-1a不同,平面图形随基 点平移的速度和加速度也不同。但平面图形绕不同基 点转动的角速度和角加速度却完全相同。证明如下
f (t ) f (t ) 3 3
结 论
刚体的平面运动可以简化为平面图形S 在其自身平面L上的运动。
6
2、运动分析
思考
刚体平面运动是复杂运动,考虑是否可以用 简单运动合成来分析?
Oxy 平移坐标系(动系) 平面运动=随 Oxy 的平移+绕 O 点的转动
=
+
7
3 运动方程
xO f1 t 9-1a yO f 2 t f3 t 9-1b

vB AB = vA
OA

vD
vB
vB
cos30 2 CD作定轴转动(C)
0.2309 m s
vE
vA
vB vD CD 3vB 0.6928 m s CB

vD vE DE = vD ,vE cos 30 vD , vE cos 30 0.8 m s
第九章 刚体的平面运动
本章重点:刚体平面运动的基本概念,求平面图形上各 点的速度与加速度的基点法,以及求速度的 速度投影法和瞬心法,运动学的综合应用。
1
刚体平面运动举例:行星齿轮中小齿轮运动情况
2
车轮运动情况
3
观察曲柄滑块机构中连杆AB的运动情况
4
§ 9-1
1、概念
刚体平面运动的概述和运动分解
30
解: 1 杆DE作平面运动,瞬心为 C1
OG 800mm 500mm sin15 929.4mm EC1 OC1 OE 3369mm OG 3591mm GC 1 0 sin 15

GE
vE OE 0.2968 rad s EC1 EC1
vG GE GC1 1.066 m s
n A n CA
B D
(r1 r2 )(r1 2r2 ) 2 1 r2
a
n CA
Cy
t aCA
大小:
aC a a
2 Cy
2 Cx
1 1 O
aA
Aa t n
A
方向:由方向余弦确定
x
37
例9-10(自学) 如图所示,在椭圆规机构中,曲柄 OD以匀角速度ω绕O 轴转动。OD=AD=BD=l。 求:当 60 时,尺AB的角加速度和点A的加速度。
vA vD vAD
2 vC
1 1 O
vA
vC 2r22 21 r1 r2
2r22 21 r1 r2
35
3、用基点法求加速度,A为基点。思考:为何不以 D为基点?
a
n A
aC a a a a t t aCx a A aCA (r1 r2 )1 r2 2 2(r1 r2 )1
14
解:1、BD作平面运动,基点:B
2、求ω DE , 速度矢量图
vD vB vDB vD vDB vB l
DE
v D vB DE l 5 rad
BD
vDB
vD
DE
BD
s vDB vB 5 rad s BD l
15
3、求vC , 速度矢量图
t AD
0 aD sin a
解得
cos a sin
n AD
a A l 2 ,
a tAD 0
AB
a tAD 0 AD
40
例9-11(讲)车轮沿直线滚动。已知车轮半径为R, 中心O的速度为 v ,加速度为 a ,车轮与地面接 O O 触无相对滑动。 求:车轮上速度瞬心的加速度。
s
16
例9-3(自学)曲柄连杆机构如图所示,OA =r, AB= 3r。 如曲柄OA以匀角速度ω转动。
求:当 60,, 时点B的速度。 0 90
17
解:1、AB作平面运动,基点:A
2、速度矢量图
vB vA vBA 60
vB vA cos30 2 3r 3

41
解: 1 车轮作平面运动,速度瞬心 为 C
vO 2 R d 1 dvO aO dt R dt R
3 选O为基点 t n aC aO aCO aCO
t 其中:aCO R n aCO R 2


a
n CO
a
t CO
aO
在 轴上投影
aC a
n CO
31
2 杆BG作平面运动, 瞬心 为C2
BG
vG GC2
BC2 vB BG BC2 vG cos 60 GC2
AB
vG cos 60 vB 0.888 rad s AB AB
32
§9-4 用基点法求平面图形内各点的加速度
A :基点 Ax’y’ :平移动参考系 平面运动 = 随基点A的平移 + 绕基点A的转动
AB
vA vA AC l sin
vB AB BC vA cot
vA l vA vD AB DC 2 l sin 2sin
29
例9-8(讲) 矿石轧碎机的活动夹板长600mm ,由曲柄 OE借连杆组带动,使它绕A轴摆动,如图所示。曲 柄OE长100 mm,角速度为10rad/s。连杆组由杆BG, GD和GE组成,杆BG和GD各长500mm。 求:当机构在图示位置时,夹板AB的角速度。

22
平面图形内任意点的速度等于该点随图形 绕速度瞬心转动的速度。速度分布如图所示。
平面图形在某一瞬时的角速度不等于零,那 么平面图形上必存在一个速度瞬心。而且这个速 度瞬心是随时间变化的。
23
速度瞬心的确定方法

已知:vA , vB ,的方向, 且vA不平行于vB
24

v A // v B , 且vA AB
aB ae a a
t r
n r
aA a a
t BA
n BA
2
a
t BA
AB , aBA AB
n
33
例9-4、9-9(讲) 图所示的行星轮系中,大齿轮Ⅰ固 定,半径为r1 ;行星齿轮Ⅱ沿轮Ⅰ只滚不滑,半径 为r2。杆OA在图示位置时的角速度ω1、角加速度α1 求:轮Ⅱ的角速度ω2 ,其上B,C 两点的速度及C 点的加速度。
38
解: 1、 AB作平面运动, 瞬心为 C
AB
vD l CD l
39
2 选D为基点 t n aA aD a AD a AD n 其中:aD l 2 aAD l 2
分别沿 轴和 轴投影
n aA cos aD cos 2 aAD
R
2
42
§9-5
8
如图, A、B为任取两个基 点,Ax’y’、Bx’’y’’为两个 平移动系 在图上任取一点M,有角
、、 、
其中 和 是常量
如图有
0 A B
平面图形绕基点转动的角速度和角速度 与基点的选择无关。
19
例9-5 (讲)图所示的平面机构中,曲柄OA长100mm, 以角速度ω=2rad/s转动。连杆AB带动摇杆CD,并 拖动轮E沿水平面纯滚动。 已知:CD=3CB,图示位置时A,B,E三点恰在一 水平线上,且CD⊥ED。 求:此瞬时点E的速度。
20
解: 1、AB作平面运动,应用速度投影定理
vB cos30 OA
21
3 DE作平面运动,应用速度投影定理
§ 9-3 求平面图形内各点的瞬心法
一般情况下,在每一瞬时,平面图形上都唯一地 存在一个速度为零的点。称这样的点为速度瞬心。
基点A,速度vA,过A作垂直vA的直线 AN,则其上存在一点C,即瞬心。
vM vA vMA vM vA AM
vC 0 AC vA
t A n A t CA n CA
t aCA 2 r2 aCA 2 r2
2 2 1 (r1 r2 ) r2 n 2
2 1
r1 r2 a
t A
1 r1 r2
B D
a
n CA
Cy
t aCA
1 1 O
aA
Aa t n
A
x
36
aCy a a 2 2 (r1 r2 )1 r22
刚体在运动过程中,其上任意一点到某一固定 平面的距离始终保持不变,即刚体上任一点都始终 保持在与这一固定面平行的某一平面内运动,刚体 的这种运动称为平面运动。
5
下面研究任意刚体的平面运动,设平面运动 刚体如图所示。 固定平面 L0 , L L0 截得平面S,当刚体运 动时,S平面在L上运动
在刚体内作垂直L平面的直线 A1A2,与S交于A,刚体作平面 运动时,A1A2作平移。则A点 与A1A2上所有点运动相同。
34
解: 1、轮Ⅱ作平面运动, 基点:D 2、 vD 0 , vA 1 r1 r2 基点法
B D
vB
A
C
vAD vA 1 r1 r2
r1 vAD vA 2 1 1 AD r2 r2
同理应用基点法 vB 或瞬心法
BD
vCB
vC vB vCB
相关文档
最新文档