工程热力学(第3版)
工程热力学第三版 沈维道编 课件第1和第2章

第一章 基本概念 1-1 热能在热机中转变成机械能的过程 燃料——热能——动力 热能动力装置: 1蒸汽动力装置; 2燃气动力装置 工质:实现热能——机械能转化的媒介 高温热源(热源):工质从中吸取热能的物系 低温热源(冷源):接受工质排除热能的物系 热能动力装置工作过程:工质从热源获得热能, 做功,排除余下的热能给低温热源。
二状态方程式 T=T(p,v),p=p(T,v),v=v(p,t) F=F(p,v,T) 三坐标图 p-v图,T-s图 1-5 工质的状态变化过程 一准平衡过程(准静态过程) 相对缓慢,工质再平衡破坏后自动恢复平衡所需时间又很 短。 工质与外界的压力差无限小;温差无限小。 二 可逆过程和不可逆过程
二、压气机:动能差和势能差忽略 wc=-wi=(h2-h1)+(-q)=-wt 三、换热器:无功的交换 q=h2-h1 四、管道:
• 在分析中,取其进、出口截面间的流体为热力 系,并假定流动是稳定的。喷管实际流动过程 的特征是:气流迅速流过喷管,其散热损失甚 微,可认为Q =0;气流流过喷管时无净功输入 或输出,Wnet=0;进、出口气体的重力位能差 可忽略, 。将上述条件代入得到:对1kg流体 而言,(cf22-cf12)/2=h1-h2 • 喷管中气流宏观动能的增加是由气流进、出口 焓差转换而来。
边界:实际的或假想的;不动的和变形的。 闭口系:只有能量交换而无物质交换,又叫控制质量。 开口系:即有物质交换又有能量交换。又叫控制容积。 绝热系统:与外界无热量交换。 孤立系统:即无物质交换又无能量交换。 简单可压缩系:最常见的热力系,由可压缩流体构成,与 外界功的交换只有容积变化功。 1-3 工质的热力学状态及其基本状态参数 热力学状态:某一瞬间宏观物理状况,压力 P、温度 T 、 体积V、热力学能U、焓H、熵S。 一温度 微观:物质分子运动的积累程度。Mc2/2=BT t=T-273.15k
工程热力学第三版课后习题答案

工程热力学第三版课后习题答案【篇一:工程热力学课后答案】章)第1章基本概念⒈闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。
当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。
⒉有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。
这种观点对不对,为什么?答:不对。
“绝热系”指的是过程中与外界无热量交换的系统。
热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。
物质并不“拥有”热量。
一个系统能否绝热与其边界是否对物质流开放无关。
⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。
⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式p?pb?pe(p?pb); p?pb?pv(p?pb)中,当地大气压是否必定是环境大气压?答:可能会的。
因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。
环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。
“当地大气压”并非就是环境大气压。
准确地说,计算式中的pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。
⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。
它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。
⒍经验温标的缺点是什么?为什么?答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。
工程热力学第三版毕明树补充说明

工程热力学第三版毕明树补充说明探究工程热力学的奥秘在这个飞速发展的时代,我们每个人都在追求更高效、更环保的生产方式。
而在这些追求中,工程热力学扮演着至关重要的角色。
它就像是一盏明灯,指引我们在能源开发和利用的道路上不断前行。
今天,就让我以一个行业专家的身份,带你一起走进工程热力学的世界,揭开那些不为人知的秘密。
让我们来谈谈什么是工程热力学。
简单来说,它是研究能量转换和传递规律的一门科学。
从蒸汽机到核反应堆,从空调系统到太阳能发电站,工程热力学无处不在,它影响着我们的生活,也决定了我们的未来。
那么,为什么我们要关注它呢?答案很简单——为了提高能源利用效率,减少环境污染,实现可持续发展。
接下来,我们来具体看看工程热力学都包括哪些方面的内容。
是热量的传递。
你知道热传导、对流和辐射这三种方式吗?它们各自有什么特点和应用场景?是能量的转换。
比如,我们常见的蒸汽轮机是如何将机械能转化为热能的?在这个过程中,有哪些关键的物理过程和化学反应需要我们去理解和掌握?是热力学第一定律和第二定律。
这两个定律分别告诉我们什么?它们又对我们有什么启示呢?是热力学状态方程。
这个方程有什么用处?它如何帮助我们计算和预测不同条件下的能量状态?在探讨这些问题的过程中,我们会发现工程热力学其实是一个非常有趣且富有挑战性的领域。
它不仅要求我们有扎实的理论知识,还需要我们具备敏锐的观察力和丰富的实践经验。
只有这样,我们才能在面对复杂的工程问题时,找到最合适的解决方案。
举个例子来说,当我们设计一个新型的太阳能热水器时,我们需要考虑到各种因素,如材料的选择、结构的设计、热损失的控制等。
而在这个过程中,工程热力学的知识就显得尤为重要了。
我们可以利用热力学第一定律和第二定律的原理,计算出在不同工况下的能量损失和效率,从而优化设计方案,提高产品的性能和可靠性。
除了理论分析和实际应用外,我们还可以从工程热力学的历史和发展中汲取智慧。
从最初的蒸汽机到现在的核能发电,工程热力学经历了漫长的发展历程。
工程热力学高教第三版习题答案第2章

6
第二章 热力学第二定律
2-5 夏日,为避免阳光直射,密闭门窗,用电扇取凉,若假定房间内初温为 28℃,压力为
0.1MPa ,电扇的功率为 0.06kW,太阳直射传入的热量为 0.1kW,若室内有三人,每人每小 时向环境散发的热量为 418.7kJ,通过墙壁向外散热1800kJ/h ,试求面积为15m2 ,高度为 3.0m
解 要使车间保持温度不变,必须使车间内每小时产生的热量等散失的热量
即 Q = Qm + QE + Q补 + Qless = 0
Qm = 375kJ/s × 3600s = 1.35×106 kJ ; QE = 50× 0.1kJ/s × 3600s = 18000kJ
Qless = −3×106 kJ Q补 = −Qless − Qm − QE = 3×106 kJ −1.35×106 kJ −18000kJ = 1632000kJ
解 取气体为系统,据闭口系能量方程式 Q = ∆U + W
W = Q − ∆U = 50J − 84J = −34J
所以过程是压缩过程,外界对气体作功 34J。
2-4 在冬季,工厂车间每一小时经过墙壁和玻璃等处损失热量 3×106 kJ ,车间中各种机床的总
功率是 375kW,且最终全部变成热能,另外,室内经常点着 50 盏 100W 的电灯,若使该车间 温度保持不变,问每小时需另外加入多少热量?
q = ∆h + wt
得 wt = q − ∆h = q − ∆u − ∆( pv) = q − ∆u − ( p2v2 − p1v1)
= ቤተ መጻሕፍቲ ባይዱ50kJ/kg −146.5kJ/kg − (0.8×103 kPa × 0.175m3 / kg − 0.1×103 kPa × 0.845m3 / kg) = 252kJ/kg
工程热力学第三版电子教案教学大纲

教学大纲一、课程名称:工程热力学 Engineering Thermodynamics课程负责人:张新铭二、学时与学分:68学时,4学分三、适用专业:热能与动力工程等四、课程教材曾丹苓敖越张新铭刘朝编.工程热力学(第三版).高等教育出版社,20XX年12月五、参考教材沈维道蒋智敏童钧耕编.工程热力学(第三版).高等教育出版社,20XX年6月何雅玲编.工程热力学精要分析及典型题精解.西安交通大学出版社,2000年4月六、开课单位:动力工程学院七、课程的性质、目的和任务工程热力学是能源、机械、航空航天、材料等领域热能与动力工程类专业重要的专业基础课,也是培养工科学生科学素质的公共基础课。
本课程为学生学习热能与动力工程类专业后续课程提供重要的理论基础,也为从事热管理和热设计等方面的专业技术工作和科学研究工作提供必要的基础知识。
本课程的主要任务是,使学生掌握热力学的基本规律,并能正确运用这些规律进行各种热现象、热力过程和热力循环的分析,为培养学生的创新能力打好坚实的热力学基础。
八、课程的基本要求掌握热-功转换的基本规律;掌握利用工质性质公式和图表进行热力过程及循环的分析和计算方法;掌握提高热力设备和系统能量利用经济性的基本原则和途径。
注意培养学生的逻辑思维能力,发现、分析和解决问题的能力,创新思维和创造能力,特别是运用热力学基本定律和理论进行演绎、推论,解决实际工程问题的能力。
九、课程的主要内容(一)绪论热能利用史。
热能与机械能的转换。
工程热力学的研究对象、主要内容及其发展史。
热能动力装置举例。
(二)基本概念热力系统。
工质。
状态及平衡状态。
状态参数及其特性。
可测的基本参数。
热平衡及热力学第零定律。
温度和温标。
状态参数坐标图。
热力过程和循环。
准平衡过程。
(三)热力学第一定律热力学第一定律的实质。
通过热力系统边界的能量交换。
功和热。
热力学第一定律表达式。
热力学能。
热力学第一定律的应用。
稳定流动能量方程。
焓。
工程热力学第三版第五章曾丹苓答案

工程热力学第三版第五章曾丹苓答案第一题问题:为什么工程热力学中熵函数可以视为状态参量?在工程热力学中,熵函数是一个很重要的物理量,它可以用于描述系统的无序程度和能量分布均匀程度。
熵函数被定义为系统的状态参量,因为它只取决于系统的初始状态和终态,并且与路径无关。
其原因可以从以下两个方面解释:1.熵函数的数学性质:熵函数具有可加性和广延性的数学性质。
对于一个复合系统,其熵等于各个组成部分的熵之和。
这个性质导致熵函数可以作为状态参量来描述系统的热力学状态。
2.熵函数与平衡态:在平衡态下,系统的熵函数达到最大值,这也是热力学第二定律的表述之一。
因此,熵函数可以作为判断系统是否处于平衡态的指标。
综上所述,由于熵函数具有可加性、广延性和与平衡态的关系,使得熵函数在工程热力学中可以被视为状态参量。
问题:怎样理解熵的微观本质?熵在工程热力学中是一个非常重要的概念,它可以用来描述系统的无序程度和能量分布均匀程度。
从微观的角度来理解熵的本质,可以有以下几个方面的解释:1.微观粒子的随机运动:根据统计力学的角度,熵可以理解为微观粒子的随机运动的度量。
微观粒子的随机运动越强烈,系统的熵越大,即系统的无序程度越高。
2.能量的分布均匀性:熵还可以理解为系统中能量的分布均匀程度的度量。
当系统中能量更加均匀地分布时,系统的熵将会增加。
3.系统的信息量:熵还可以解释为系统中所包含的信息量。
当一个系统的状态可能性更多时,它所包含的信息量也就越大,此时系统的熵也会增加。
因此,从微观角度来理解,熵可以看作是微观粒子的随机运动、能量分布均匀性和系统的信息量所耦合的结果。
问题:什么是可逆过程和不可逆过程?在工程热力学中,可逆过程和不可逆过程是描述系统变化方式的两个重要概念。
可逆过程是指系统从一个热力学平衡态通过一系列连续的无限小的热力学平衡态经过的过程。
在可逆过程中,系统的每一个状态都可以与外界的环境达到瞬时的热力学平衡。
可逆过程是理论上的概念,意味着系统在整个过程中没有任何内部或外部的不均匀分布或不均匀性。
工程热力学 第四章整理知识点第三版

工程热力学第三版沈维道蒋智敏童钧耕合编第四章理想气体的热力过程定容过程的熵变量可简化为可见定值比热容时定容过程在T - s 图上是一条对数曲线。
由于比体积不变,d v = 0,定容过程的过程功为零,过程热量可根据热力学第一定律第一解析式得出:定容过程中工质不输出膨胀功, 加给工质的热量未转变为机械能,而全部用于增加工质的热力学能, 因而温度升高, 在T - s 图上定容吸热过程线1 - 2指向右上方,是吸热升温增压过程。
反之, 定容放热过程中热力学能的减小量等于放热量, 温度必然降低, 定容放热过程线1 -2′指向左下方, 是放热降温减压过程。
上述结论直接由热力学第一定律推得,故不限于理想气体, 对任何工质都适用。
在p - v 图上定压过程线为一水平直线。
定压过程的熵变量可简化为因而定值比热容时定压过程在T - s 图上也是一条对数曲线。
但定压线较定容线更为平坦些,这一结论可由如下分析得出。
和分别是定容线和定压线在T - s 图上的斜率。
对于任何一种气体, 同一温度下总是c p > c V ,<即定压线斜率小于定容线斜率,故同一点的定压线较定容线平坦。
理想气体的气体常数R g 数值上等于1 kg 气体在定压过程中温度升高1 K所作的膨胀功, 单位为J /(kg ·K).过程热量可根据热力学第一定律第一解析式得出: 即任何工质在定压过程中吸入的热量等于焓增, 或放出的热量等于焓降。
定压过程的热量或焓差还可借助于比定压热容计算,即定压过程的技术功理想气体定温稳定流经开口系时技术功w t 与过程热量q T 相同, 由于这时p 2 v 2 = p 1 v 1 ,流动功( p 2 v 2 - p 1 v 1 )为零, 吸热量全部转变为技术功。
绝热过程是状态变化的任何一微元过程中系统与外界都不交换热量的过程,即过程中每一时刻均有δq = 0.当然,全部过程与外界交换的热量也为零, 即q = 0根据熵的定义,, 可逆绝热时δq rev = 0, 故有ds= 0, s = 定值。
工程热力学第三版曾丹苓第二章习题及答案

(2) 当系统沿曲线途径从 b 返回 到初始状态 a 时,外界对系统做功 20kJ.求此时系统与外界 交换的热量和热流的方向。 (3)Ua=0、Ud=42kJ 时,过程 a - d 和 d – b 中系统与外 界交换的热量又是多少? 解: (1)由能量守恒定律,
途径 a-c-b: U=Q1-Wa-c-b=84-32=52kJ 途径 a-d-b: Q2=U+Wa-d-b=52+10=62kJ 即途径 a-d-b 时,进入系统的热量为 62kJ。 (2)从 b-a:Q3=U+Wb-a=-52-20=-72kJ 即系统向外界放热 72kJ. (3)由 U=52kJ、Ua=0、Ud=42kJ 则:Ub=52kJ 、Ua-d=42kJ、Ud-b=10kJ
3
故{T2}k={u2}kJ/kg/0.72=301.8/0.72=419.2K 2-13 某制冷装置,由冷藏室向制冷机的传热量为 8000KJ/h,制 冷机输入功率为 1KW,试确定制冷机的 COP。 解:COP=从低温热源吸取的热量/损耗的功 =8000KJ/h÷(1KW×3600S) =2.2 2-14 某热泵(图 2-20) ,其 COP 为 3.5,净功输入为 5000KJ, 试确定 Qin 及 Qout。 解:∵COP=向热源输送的热量/损耗的功=Qout/W ∴Qout=COP·W=3.5×5000KJ=17500KW Qin=Qout-W=17500KJ-5000KJ=12500KJ
Rg T v
vi
dv R g TIN
vf vi
w w1 w2 R g TIN
(v f b )v i (v i b )v f
因为 v f 比 vi 大,所以 w>0 即 理想气体作的功要少。 2-7 如图 2-18 所示,某封闭系统沿 a –c -b 途径由状态 a 变化 到状态 b 时,吸入热量 84kJ,对外 做功 32kJ。 (1)若沿途径 a – d - b 变化是 对外做功 10kJ, 求此时进入系统的 热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-6多变过程
4-7非稳态流动过程
思考题
习题
第五章热力学第二定律
5-1热力学第二定律
5-2可逆循环分析及其热效率
5-3卡诺定理
5-4熵参数、热过程方向的判据
5-5熵增原理
5-6熵方程
5-7(火用)参数的基本概念热量炯
5-8工质炯及系统(火用)平衡方程
5-9热力学温标
思考题
习题
第六章实际气体的性质及热力学一般关系式
2-6开口系统能量方程式
2-7能量方程式的应用
思考题
习题
第三章理想气体的性质
3-1理想气体的概念
3-2理想气体状态方程式
3-3理想气体的比热容
3-4理想气体的热力学能、焓和熵
3-5理想气体混合物
思考题
习题
第四章理想气体的热力过程
4-1研究热力过程的目的及一般方法
4-2定容过程
4-3定压过程
4-4定温过程
1-1热能在热机中转变成机械能的过程
1-2热力系统
1-3工质的热力学状态及其基本状态参数
1-4平衡状态、状态方程式、坐标图
1-5工质的状思考题
习题
第二章热力学第一定律
2-1热力学第一定律的实质
2-2热力学能和总能
2-3能量的传递和转化
2-4焓
2-5热力学第一定律的基本能量方程式
6-1理想气体状态方程用于实际气体的偏差
6-2范德瓦尔方程和R-K方程
6-3对应态原理与通用压缩因子图
6-4维里方程
6-5麦克斯韦关系和热系数
6-6热力学能、焓和熵的一般关系式
6-7比热容的一般关系式
6-8通用焓图与通用熵图
6-9克劳修斯-克拉贝隆方程和饱和蒸气压方程
6-10单元系相平衡条件
思考题
习题
本书既继承了第二版便于自学的特点,又在内容的深度与广度方面有所充实。经教育部热工课程教学指导委员会审订,可作为能源、热能机械、核工程及化学工程等专业的工程热力学教材,也可供有关工程技术人员参考。
目录:
主要符号
绪论
0-1热能及其利用
0-2热力学发展简史
0-3工程热力学的主要内容及研究方法
第一章基本概念
工程热力学(第3版)
作 者:沈维道,蒋智敏,童钧耕主编
出版社:高等教育出版社
出版时间:2001-6-1
内容简介:
本书是教育部“高等教育面向21世纪教学内容和课程体系改革计划”中“热工课程教学内容和课程体系改革的研究与实践”项目的研究成果,是面向21世纪课程教材和教育部热工课程“九五”规划教材。
本书系根据国家教育委员会制定的多学时“工程热力学课程教学基本要求”(1995年修订版),在第二版的基础上,考虑到21世纪初叶的教学需要修订而成的。本书保持了第二版的体系,主要讲述了工程热力学的基本概念、基本定律,气体及蒸汽的热力性质,各种热力过程和循环的分析计算及化学热力学基础知识等内容,在阐明工程热力学的基本内容的同时,吸收了当今热工科技的新成果,加强了熵产与不可逆过程作功能力损失等内容的阐述,增加了熵方程、炯、炯平衡方程等内容。本书在加强基础理论的同时,注意联系工程实践,注意学生创新能力的培养。
第七章水蒸气
第八章气体与蒸气的流动
第九章压气机的热力过程
第十章气体动力循环
第十一章蒸汽动力循环装置
第十二章制冷循环
第十三章湿空气
第十四章化学热力学基础
附录
主要参考文献
部分题目答案