物理建模1 绳上的“死结”和“活结”模型

合集下载

0衡水中学物理最经典-物理建模系列(三) 绳上的“死结”和“活结”模型

0衡水中学物理最经典-物理建模系列(三) 绳上的“死结”和“活结”模型

物理建模系列(三)绳上的“死结”和“活结”模型[模型概述]1的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,在轻杆的G点用细绳GF拉住一个质量为M2的物体,求:(1)细绳AC段的张力F T AC与细绳EG的张力F T EG之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.【思路点拨】图甲中细绳跨过定滑轮与物体M1相连,属于“活结”模型,细绳AC 和CD张力大小相等,细绳对定滑轮的合力方向沿∠ACD的角平分线方向;图乙中细绳EG 和细绳GF为连接于G点的两段独立的绳,属于“死结”模型,细绳EG和细绳GF的张力不相等,轻杆对G点的弹力沿轻杆方向.【解析】题图甲和乙中的两个物体M1、M2都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C点和G点为研究对象,进行受力分析如图甲和乙所示,根据平衡规律可求解.(1)图甲中细绳AD跨过定滑轮拉住质量为M1的物体,物体处于平衡状态,细绳AC段的拉力F TAC=F T CD=M1g图乙中由F T EG sin 30°=M2g,得F T EG=2M2g.所以F T ACF T EG=M1 2M2.(2)图甲中,三个力之间的夹角都为120°,根据平衡规律有F N C=F T AC=M1g,方向与水平方向成30°,指向右上方.(3)图乙中,根据平衡规律有F T EG sin 30°=M2g,F T EG cos 30°=F N G,所以F N G=M2g cot 30°=3M2g,方向水平向右.【答案】(1)M12M2(2)M1g,方向与水平方向成30°指向右上方(3)3M2g,方向水平向右[高考真题]1.(2013·重庆卷,1)如图所示,某人静躺在椅子上,椅子的靠背与水平面之间有固定倾斜角θ.若此人所受重力为G,则椅子各部分对他的作用力的合力大小为()A.G B.G sin θC.G cos θD.G tan θ【解析】运用力的平衡条件,可求得椅子对人的作用力.选人为研究对象,人受到重力和椅子各部分对他的作用力的合力,根据力的平衡条件可知,椅子对他的作用力的合力与重力等大、反向,故选项A正确.【答案】 A2.(2013·课标卷Ⅱ,15)如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上.若要物块在斜面上保持静止,F的取值应有一定范围,已知其最大值和最小值分别为F1和F2(F2>0).由此可求出()A.物块的质量B.斜面的倾角C.物块与斜面间的最大静摩擦力D.物块对斜面的正压力【解析】物块受与斜面平行的外力F作用,而在斜面上静止,此时摩擦力的大小和方向将随F的变化而变化.设斜面倾角为θ,由平衡条件F1-mg sin θ-F fmax=0,F2-mg sinθ+F fmax =0,解得F fmax =F 1-F 22,故选项C 正确. 【答案】 C3.(2016·课标卷Ⅲ,17)如图,两个轻环a 和b 套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m 的小球.在a 和b 之间的细线上悬挂一小物块.平衡时,a 、b 间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m 2 B .32m C.mD .2m【解析】 根据题意设悬挂小物块的点为O ′,圆弧的圆心为O ,由于ab =R ,所以三角形Oab 为等边三角形,根据几何知识可得∠aO ′b =120°,而一条绳子上的张力大小相等,故T =mg ,小物块受到两条绳子的拉力作用大小相等,夹角为120°,故受到的拉力的合力等于mg ,因为小物块受到绳子的拉力和自身重力作用,处于平衡状态,故拉力的合力等于小物块的重力为mg ,所以小物块的质量为m ,C 正确.【答案】 C[名校模拟]4.(2018·安徽合肥段考)将两个质量均为m 的小球a 、b 用细线相连后,再用细线悬挂于O 点,如图所示,用力F 拉小球b ,使两个小球都处于静止状态,且细线Oa 与竖直方向的夹角保持θ=30°,则F 达到最小时Oa 绳上的拉力为( )A.3mg B .mg C.32mg D .12mg【解析】 以两个小球组成的整体为研究对象,分析受力,作出F 在不同方向时整体的受力图,根据平衡条件可知,F 与T 的合力与重力2mg 总是大小相等、方向相反,由力的合成图可知,当F 与绳子Oa 垂直时,F 有最小值,即图中2位置,F 的最小值为F min =2mg sin 30°=mg ,T =2mg cos 30°=3mg ,A 正确.【答案】 A5.(2018·广东仲元中学月考)如图所示,跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为G 1(不包括伞面),圆顶形降落伞伞面的重力为G 2,有8条相同的拉线,一端与飞行员相连(拉线重力不计),另一端均匀分布在伞面边缘上(图中没有把拉线都画出来),每根拉线和竖直方向都成30°角.那么每根拉线上的张力大小为( )A.G 14 B .3G 112 C.G 1+G 28D .3G 1+G 212【解析】 对运动员进行受力分析可知,8条拉线拉力的合力与运动员的重力等大反向,即8条拉线在水平方向的分力的合力为零,竖直方向分力的合力与运动员的重力等大反向,根据对称性可知,8条拉线的张力大小都相等,每条拉线的张力在竖直方向的分力F y =F cos 30°,且8F y =G 1,可得F =G 18cos 30°=G 143=3G 112,故B 正确,A 、C 、D 错误.【答案】 B 6.(2018·山东泰安高三上学期期中)在日常生活中,力的分解有着广泛的应用.如图为用斧子把树桩劈开的图示,斧子对木桩施加一个向下的力F 时,产生了大小相等的两个侧向分力F 1、F 2,下列关系正确的是( )A .F =2F 1sin(θ2)B .F =2F 1sin θC .F =2F 1cos(θ2)D .F =2F 1cos θ【解析】 F 1、F 2与水平方向的夹角为θ2,则F =2F 1sin θ2,A 对.【答案】 A课时作业(五) [基础小题练]1.(2018·广州调研)如图,三个大小相等的力F ,作用于同一点O ,则合力最小的是( )【解析】 根据矢量合成的平行四边形定则可知,C 选项的合力为零,即合力最小,C 正确.【答案】 C2.(2018·淮安模拟)我国海军在南海某空域举行实兵对抗演练,某一直升机在匀速水平飞行过程中遇到突发情况,立即改为沿虚线方向斜向下减速飞行,则空气对其作用力可能是( )A .F 1B .F 2C .F 3D .F 4【解析】 因为直升机沿虚线方向斜向下减速飞行,故合力沿虚线向上,直升机受到竖直向下的重力以及空气作用力两个力,要想合力沿虚线向上,则根据矢量三角形可得空气对其作用力可能为F 1,如图所示.【答案】 A3.(2018·石家庄模拟)如图所示,一个“Y”形弹弓顶部跨度为L ,两根相同的橡皮条自由长度均为L ,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片.若橡皮条的弹力与形变量的关系满足胡克定律,且劲度系数为k ,发射弹丸时每根橡皮条的最大长度为2L (弹性限度内),则发射过程中裹片对弹丸的最大作用力为( )A .kLB .2kL C.32kL D .152kL 【解析】 设发射弹丸瞬间两橡皮条间的夹角为2θ,则sin θ=L 22L =14,cos θ=1-sin 2θ=154.发射过程中裹片对弹丸的最大作用力为F 合=2F cos θ,F =kx =kL ,故F 合=2kL ·154=152kL ,D 正确. 【答案】 D4.手握轻杆,杆的另一端安装有一个小滑轮C ,支持着悬挂重物的绳子,如图所示,现保持滑轮C 的位置不变,使杆柄向上转动一个角度,则杆对滑轮C 的作用力将()A .变大B .不变C .变小D .无法确定【解析】 杆对滑轮C 的作用力大小等于两绳上拉力的合力,由于两绳上拉力的合力不变,故杆对滑轮C 的作用力不变.【答案】 B5.如图所示,作用于O 点的三个力F 1、F 2、F 3合力为零,F 1沿-y 方向,大小已知.F 2与+x 方向夹角为θ(θ<90°),大小未知.下列说法正确的是()A.F3可能指向第二象限B.F3一定指向第三象限C.F3与F2的夹角越小,则F3与F2的合力越小D.F3的最小可能值为F1cos θ【解析】因F1、F2、F3的合力为零,故F3应与F2、F1的合力等大反向,故F3可能指向第二象限,也可能指向第三象限,选项A正确,B错误;F3、F2的合力与F1等大反向,而F1大小、方向均已知,故F3与F2的合力与其夹角大小无关,选项C错误;当F3与F2垂直时,F3最小,其最小值为F1cos θ,选项D正确.【答案】AD6.(2018·六安一中二模)如图所示,两个质量为m1的小球套在竖直放置的光滑支架上,支架的夹角为120°,用轻绳将两球与质量为m2的小球连接,绳与杆构成一个菱形,则m1∶m2为()A.1∶1 B.1∶2C.1∶ 3 D.3∶2【解析】将小球m2的重力按效果根据平行四边形定则进行分解如图,由几何知识得T=m2g,对m1受力分析,由平衡条件,在沿杆的方向有:m1g sin 30°=T sin 30°,得:T=m1g,可见m1∶m2=1∶1,故选A.【答案】 A[创新导向练]7.生活实际——千斤顶中的力学原理(2018·贵阳监测)如图所示是轿车常用的千斤顶,当摇动把手时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起.当车轮刚被顶起时汽车对千斤顶的压力为1.0×105 N,此时千斤顶两臂间的夹角为120°.下列判断正确的是()A.此时千斤顶每臂受到的压力大小均为5.0×104 NB .此时千斤顶对汽车的支持力为1.0×104 NC .若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将增大D .若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将减小【解析】 车轮刚被顶起时,千斤顶两臂支持力的合力为千斤顶对汽车的支持力,等于汽车对千斤顶的压力,大小为1.0×105 N ,B 项错误;两臂夹角为120°,由力的合成可知千斤顶每臂受到的压力为1.0×105 N ,A 项错误;继续摇动把手,将汽车顶起,千斤顶两臂夹角减小,每臂受到的压力减小,D 项正确,C 项错误.【答案】 D8.生活实际——以“减速带”为背景考查力的合成问题减速带是交叉路口常见的一种交通设施,车辆驶过减速带时要减速,以保障行人的安全.当汽车前轮刚爬上减速带时,减速带对车轮的弹力为F ,下图中弹力F 画法正确且分解合理的是( )【解析】 减速带对车轮的弹力方向垂直车轮和减速带的接触面,指向受力物体,故A 、C 错误;按照力的作用效果分解,将F 可以分解为水平方向和竖直方向,水平方向的分力产生的效果减慢汽车的速度,竖直方向上分力产生向上运动的作用效果,故B 正确,D 错误.【答案】 B9.人体生理——关节运动中所包含的力学问题如右图所示,人屈膝下蹲时,膝关节弯曲的角度为θ.设此时大小腿部的肌肉群对膝关节的作用力F 的方向水平向后,且大腿骨和小腿骨对膝关节的作用力大致相等,那么脚掌所受小腿骨沿竖直方向的力约为( )A.F2sin (θ2)B .F 2cos (θ2)C.F 2tan (θ2)D .F 2tan(θ2)【解析】 根据题意先将肌肉群对膝关节的作用力F 沿大腿骨和小腿骨方向分解,然后再分解小腿骨方向的分力,即可知D 正确.【答案】 D10.科技生活——缓冲门中的力学问题分析如图所示为缓慢关门时(图中箭头方向)门锁的示意图,锁舌尖角为37°,此时弹簧弹力为24 N ,锁舌表面较光滑,摩擦不计(sin 37°=0.6,cos 37°=0.8),下列说法正确的是( )A .此时锁壳碰锁舌的弹力为40 NB .此时锁壳碰锁舌的弹力为30 NC .关门时锁壳碰锁舌的弹力逐渐增大D .关门时锁壳碰锁舌的弹力保持不变【解析】 锁壳碰锁舌的弹力分解如图所示,其中F 1=F N sin 37°,且此时F 1大小等于弹簧的弹力为24 N ,解得锁壳碰锁舌的弹力为40 N ,选项A 正确,B 错误;关门时,弹簧的压缩量增大,弹簧的弹力增大,故锁壳碰锁舌的弹力逐渐增大,选项C 正确,D 错误.【答案】 AC[综合提升练]11.(2018·山东泰安高三上学期期中)质量为m 的物体置于倾角为θ=37°的固定斜面上,物体与斜面之间的动摩擦因数为μ=0.2.如图甲所示,先用平行于斜面的推力F 1作用于物体上,使其能沿斜面匀速上滑;若改用水平推力F 2作用于物体上,也能使物体沿斜面匀速上滑,如图乙所示.求两次推力大小之比F 1F 2.(sin 37°=0.6,cos 37°=0.8)【解析】 根据共点力平衡条件可得F 1=mg sin θ+μF N F N =mg cos θF 2cos θ=mg sin θ+μF ′N F ′N =mg cos θ+F 2sin θ 整理得F 1F 2=cos θ-μsin θ代入数值得F 1F 2=0.68. 【答案】 0.6812.电梯修理员或牵引专家常常需要监测金属绳中的张力,但不能到绳的自由端去直接测量.某公司制造出一种能测量绳中张力的仪器,工作原理如图所示,将相距为L 的两根固定支柱A 、B (图中的小圆圈表示支柱的横截面)垂直于金属绳水平放置,在A 、B 的中点用一可动支柱C 向上推动金属绳,使绳在垂直于A 、B 的方向竖直向上发生一个偏移量d (d ≪L ),这时仪器测得金属绳对支柱C 竖直向下的作用力为F .(1)试用L 、d 、F 表示这时金属绳中的张力F T ;(2)如果偏移量d =10 mm ,作用力F =400 N ,L =250 mm ,计算金属绳中张力的大小.【解析】 (1)设C ′点受两边金属绳的张力分别为F T1和F T2,BC 与BC ′的夹角为θ,如图所示.依对称性有:F T1=F T2=F T由力的合成有:F =2F T sin θ 根据几何关系有sin θ=d d 2+L 24联立上述二式解得F T =F2dd 2+L 24则d ≪L ,故F T =FL 4d. (2)将d =10 mm ,F =400 N ,L =250 mm 代入F T =FL 4d解得F T =2.5×103 N ,即金属绳中的张力为2.5×103 N. 【答案】 (1)FL4d (2)2.5×103 N。

高考物理建模型之活结和死结模型

高考物理建模型之活结和死结模型

高考物理建模型之活结和死结模型"活结"和"死结"模型是高考物理建模中经常考查的两种模型,易混淆,涉及高中物理方法较多,包括受力分析、合成法或正交分析法等知识。

考查方式灵活多样性,但共性基本利用的是共点力平衡知识进行处理,以达到解题目的。

下面就这种模型做详细区分及处理原则。

何为"活结"、"死结"1."活结"对象往往是绳子与光滑滑轮、绳子与光滑挂钩、绳子与光滑钉子组合一条绳子跨过(绕过)光滑的滑轮,看似两条绳子,实则是同一条绳子。

绳子可以沿滑轮移动,因"活结"而弯曲,因此这条绳子可以理解为两条绳子。

在受力上,这两条绳子的拉力必定大小相等,两条绳子拉力的合力必定在两条绳子所夹角的角平分线上。

如下图所示:解析:C处即为活结,对C点分析受力分别为:FAC、FCD和FC,其中FAC=FCD=Mg。

FC在∠ACD 的角平分线上,即FC是FAC与FCD的合力。

疑问:为什么FC的方向不沿BC杆方向呢?解析:这里还涉及轻杆模型(BC杆),这种杆的特点还在于末端(B端)是否与墙体固定有关系。

如果B端固定在墙内(如上图),则C端受到轻杆的弹力方向具有不确定性,不一定沿BC杆方向,具体的方向应该是与FAC与FCD的合力等值、反向、共线。

2."死结"对象往往是绳子打"结"后系在某点显然这是两条或多条绳子打"结"后系在一起,这不是同一条绳子,并且是"死结",不可以移动。

因此"死结"绳子的拉力大小不一定相等。

如下图所示:解析:在C点就是一个"死结",同样对C点受力分别为:FAC、FCD和FC,而FAC≠FCD,但FCD=Mg,而FC也不再是∠ACD的角平分线上,但是FC依然与FAC和FCD的合力等值、反向、共线(共点力平衡原理)。

【精品】高三物理2 绳上的“死结”和“活结”模型

【精品】高三物理2  绳上的“死结”和“活结”模型
“活结”是把绳子分为 两部分,实际上还是一 段绳子,同一段绳子上
的弹力处处相等。
• [典例] 如图2-2-9甲所示,轻绳AD跨过固定的水平横梁 BC右端的定滑轮挂住一个质量为M1的物体,∠ACB=30°; 图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过 细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细 绳GF拉住一个质量为M2的物体,求:
“同类问题模型化” 系列之
• (1)“死结”可理解为把绳子分成两段,且不 可以沿绳子移动的结点。“死结”两侧的 绳因结而变成了两根独立的绳,因此由 “死结”分开的两段绳子上的弹力不一定 相等。
“死结”为两段绳子, 两段绳子上的弹力
不一定相等。
• (2)“活结”可理解为把绳子分成两段,且可 以沿绳子移动的结点。“活结”一般是由 绳跨过滑轮或者绳上挂一光滑挂钩而形成 的。绳子虽然因“活结”而弯曲,但实际 上是同一根绳,所以由“活结”分开的两 段绳子上弹力的大小一定相等,两段绳子 合力的方向一定沿这两段绳子夹角的平分 线。
• (1)轻绳AC段的张力FTAC与 • 细绳EG的张力FTEG之比; • (2)轻杆BC对C端的支持力; • (3)轻杆HG对G端的支持力。
图2-2-9
• [解析] 题图2-2-9 甲和乙中的两个物体 M1、M2都处于平衡状态,根据平衡的条件, 首先判断与物体相连的细绳,其拉力大小
等于物体的重力;分别取C点和G点为研究 对象,进行受力分析如图2-2-10甲和乙 所示,根据平衡规律可求解。
轻杆的一端固定,则杆产生的弹 力有可能沿杆,也有可能不沿杆, 杆的弹力方向,可根据共点力的
平衡求得。
对轻质杆,若与墙壁通过转轴相连,
则杆产生的弹力方向一 定沿杆

2020复习方案高考物理人教版一轮复习讲义:第二章 核心素养提升——科学思维系列(一) 含答案

2020复习方案高考物理人教版一轮复习讲义:第二章 核心素养提升——科学思维系列(一) 含答案

核心素养提升——科学思维系列(一)绳、杆模型中的“死结”与“活结”模型1“死结”模型“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点.“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等.如图甲所示,绳与杆均不计重力,承受力的最大值一定.杆的A端用铰链固定,滑轮O在A点正上方(滑轮大小及摩擦均可忽略),B端挂一重物P,现施加拉力T将B缓慢上拉(绳和杆均未断),在杆达到竖直前()A.绳子越来越容易断B.绳子越来越不容易断C.杆越来越容易断D.杆越来越不容易断【解析】以B点为研究对象,B受三个力:绳沿BO方向的大小为T的拉力F1,绳沿竖直向下方向的大小为G P的拉力F2,AB杆沿AB方向的支持力N,这三个力构成封闭的矢量三角形,如图乙所示,该三角形与几何三角形OAB相似,得到OB F1=OAF2=ABN,由此可知,N不变,F1随OB的减小而减小.【答案】 B模型2“活结”模型“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同一根.(多选)如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M、N上的a、b两点,悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状态.如果只人为改变一个条件,当衣架静止时,下列说法正确的是()A.绳的右端上移到b′,绳子拉力不变B.将杆N向右移一些,绳子拉力变大C.绳的两端高度差越小,绳子拉力越小D.若换挂质量更大的衣服,则衣架悬挂点右移【分析】绳的“活结”模型——两端受力相等如果只改变a、b的高度差,不改变a、b间的水平距离,绳与竖直杆的夹角不变,在b点移动过程中,“活结”对应的位置如图所示.【解析】本题考查物体受力分析、物体的平衡.衣架挂钩为“活结”模型,oa、ob为一根绳,两端拉力相等,设绳aob长为L,M、N的水平距离为d,bo延长线交M于a′,由几何知识知a′o=ao,sinθ=dL,由平衡条件有2F cosθ=mg,则F=mg2cosθ,当b上移到b′时,d、L不变,θ不变,故F不变,选项A正确,C错误.将杆N 向右移一些,L不变,d变大,θ变大,则F变大,选项B正确.只改变m,其他条件不变,则sinθ不变,θ不变,衣架悬挂点不变,选项D错误.【答案】AB1.(2019·山西五校联考)如图所示,轻绳OA一端固定在天花板上,另一端系一光滑的圆环,一根系着物体的轻绳穿过圆环后,另一端固定在墙上B点,且OB处于水平.现将A点缓慢沿天花板水平向右移动,且OB段的轻绳始终保持水平,则OA、OB段轻绳所受的拉力的大小T A、T B的变化情况是(B)A.T A增大,T B不变B.T A、T B均不变C.T A不变,T B增大D.T A、T B均减小解析:因为圆环光滑,则OC、OB段轻绳所受的拉力的大小T C、T B始终相等,且等于物体的重力.又OB段轻绳始终保持水平,OC段轻绳始终保持竖直,则A点缓慢右移,圆环也随之右移,角θ不变,由平衡条件可知OA段轻绳所受的拉力不变.故B项正确.2.如图甲所示,轻杆OB可绕B点自由转动,另一端O点用细绳OA拉住,固定在左侧墙壁上,质量为m的重物用细绳OC悬挂在轻杆的O点,OA与轻杆的夹角∠BOA=30°.如图乙中水平轻杆OB一端固定在竖直墙壁上,另一端O装有小滑轮,用一根绳跨过滑轮后悬挂一质量为m的重物,图中∠BOA=30°,下列判断正确的是(C)A.甲图中细绳OA的拉力为mgB.乙图中细绳OA的拉力为2mgC.甲图中轻杆受到的弹力是3mg,方向沿杆向右D.乙图中轻杆受到的弹力是mg,方向沿杆向左解析:由于图甲中的杆可绕B转动,故其受力方向沿杆方向,O点的受力情况如图甲所示,在直角三角形中可得,F T1=mgsin30°=2mg;图乙中是用一细绳跨过滑轮悬挂物体的,AOC是同一段绳子,而同一段绳上的力处处相等,故乙图中绳子拉力为F′T1=F′T2=mg,A、B项错误.由甲图的受力的平行四边形可知,甲图中O点受的弹力为F N1=mgtan30°=3mg.故C项正确.对乙图中的滑轮受力分析,由于杆OB不可转动,所以杆所受弹力的方向不一定沿OB方向.即杆对滑轮的作用力一定与两段绳的合力大小相等,方向相反,由图乙可得,F2=2mg cos60°=mg,则所求力F′N2=F2=mg.。

高中物理精品课件:模型02死结与活结

高中物理精品课件:模型02死结与活结
1234 567
【变式训练8】如图甲所示,两个轻环a和b套在位于竖直面内的一段固定
圆弧上;一细线穿过两轻环,其两端各系一质量为m的小球。在a和b之间
的细线上悬挂一小物块。平衡时,a、b间的距离恰好等于圆弧的半径。不
计所有摩擦。小物块的质量为( )。

A.
√ B. m C.m D.2m
【解析】如图乙所示,圆弧的圆心为O,悬挂小物块的点为c,由于ab=R,则
√B.物块b所受的支持力也在一定范围内变化
C.连接a和b的绳的张力也在一定范围内变化
√D.物块b与桌面间的摩擦力也在一定范围内变化
【解析】由于物块a、b均保持静止,各绳角度保持不变,对a受力分析得, 绳的拉力T=mag,所以物块a受到绳的拉力保持不变;由滑轮性质知,滑轮两 侧绳的拉力相等,所以b受到绳的拉力大小、方向均保持不变,C项错误。a、 b受到绳的拉力大小、方向均不变,所以OO'的张力不变,A项错误。对b进 行受力分析,如图乙所示,由平衡条件得 Tcosβ+f=Fcosα,Fsinα+FN+Tsinβ=mbg, 其中T和mbg始终不变,当F大小在一定范围内变化时,支持力在一定范围 内变化,B项正确。由上述分析知,摩擦力也在一定范围内发生变化,D项正 确。
【变式训练6】如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆 M、N上的a、b两点,悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状 态。如果只人为改变一个条件,当衣架静止时,下列说法正确的是( )。
√A.绳的右端上移到b',绳子拉力不变 √B.将杆N向右移一些,绳子拉力变大
C.绳的两端高度差越小,绳子拉力越小 D.若换挂质量更大的衣服,则衣架悬挂点右移 【解析】绳的右端上下移动及改变绳子两端高度差都不会改变两部分绳 间的夹角,A项正确,C项错误;两绳间的夹角与衣服的质量大小无关,D项错 误;将杆N向右移一些,两部分绳间的夹角变大,绳子拉力变大,B项正确。

物理建模系列(三)绳上的“死结”和“活结”模型

物理建模系列(三)绳上的“死结”和“活结”模型

物理建模系列(三)绳上的“死结”和“活结”模型[模型I ^述]“死结”模型“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点.“死 结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子 上的弹力不一定相等.“活结”模型“活结”可理解为把绳子分成两段, 且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上『光滑挂钩而形成的.绳子虽然因“活结” 而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大 小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线^例 如图甲所示,细绳 AD 跨过固定的水平轻杆 BC 右端的定滑轮挂彳一个质量为 M i 的物体,/ACB = 30°;图乙中轻杆 HG 一端用钱链固定在竖直墙上, 另一端G 通过细绳EG 拉住,EG 与水平方向也成30°,在轻杆的G 点用细绳G F 拉住一个质量为 M2的物体,求:(1)细绳AC 段的弓^力F TAC 与细绳EG 的张力 (2)轻杆BC 对C 端的支持力; (3)轻杆HG 对G 端的支持力.【思路点拨】 图甲中细绳跨过定滑轮与物体 和CD 张力大小相等,细绳对定滑轮的合力方向沿/ 和细绳GF 为连接于G 点的两段独立的绳,属于 不相等,轻杆对 G 点的弹力沿轻杆方向.【解析】 题图甲和乙中白两个物体 M i 、 判断与物体相连的细绳,其拉力大小等于物体的重力; 行受力分析如图甲和乙所示,根据平衡规律可求解.(1)图甲中细绳AD 跨过定滑轮拉住质量为M i 的物体,物体处于平衡状态,细绳 AC 段的拉力 F TAC = F TCD = M i g图乙中由 F TEG Sin 30 = M 2g,得 F TEG = 2M 2g. 所以上皿=出F TEG 之比;M i 相连,属于“活结”模型,细绳 AC ACD 的角平分线方向;图乙中细绳EG“死结”模型,细绳EG 和细绳GF 的张力M 2都处于平衡状态,根据平衡的条件,首先 分别取 C 点和G 点为研究对象,进甲乙FTEG 2M2.(2)图甲中,三个力之间的夹角都为120 °,根据平衡规律有F Nc=F TAc=M i g,方向与水平方向成30°,指向右上方.(3)图乙中,根据平衡规律有F TEG Sin 30 = M2g,F TEG cos 30 = F NG,所以F NG=M2gcot 30 = y{3M2g,方向水平向右.【答案】(1)2Ml;(2)M i g,方向与水平方向成30。

绳上的死结和活结模型ppt课件


A
B
m
9
二、“活结”
“活结”可理解为把绳子分成两段, 且可以沿绳子移动的结点。“活结”一般 是由绳子跨过滑轮或者绳上挂一光滑挂钩 而形成的。
10
例2.一长为5m轻绳的两端分别固定在水平方向 距离为4m的A、B两点,在一个质量可忽略的动 滑轮的下方悬挂一个质量为m=1kg的重物,现将 动滑轮和重物一起挂到细绳上,在达到新的平 衡时,求绳AO、BO中的拉力大小。
绳上的“死结”和“活结”模型
1
复习回顾
解决平衡问题的基本方法
2
例1.一轻绳的两端分别固定在水平方向的A、B 两点,现用另一轻绳将一物体系于O点,绳AO与 水平方向夹角α=370,绳BO与水平方向夹角 β=530,绳OC悬挂质量为m=1kg的物体。求绳 AO,BO中拉力的大小。(sin370=0.6,cos370=0.8)

βB O C
3

FA
FB
βB O C
FC
合成法
FC mg 10N
FA mg sin 6N FB mg cos 8N
4
效果分解法

βB O C
FC
5
正交分解法
y
FB

βB
FA
O
X
C
FC
6
一、“死结”
“死结”可理解为把绳子分成两段, 且不可沿绳子移动的结点。“死结”一般 是由绳子打结而形成的,“死结”两侧的 绳子因打结而变成两根独立的绳子。
根独立的绳,因此由 是同一根绳,所以由“活结”分开
“死结”分开的两段 的两段绳子上弹力的大小一定相等,
绳子上的弹力不一定 两段绳子合力的方向一定沿这两段

高一物理上册专题—“活结”和“死结”及“动杆”和“定杆”模型

“活结”和“死结”、“动杆”和“定杆”模型重难讲练1.“活结”和“死结”问题(1)活结:当绳绕过光滑的滑轮或挂钩时,由于滑轮或挂钩对绳无约束,因此绳上的力是相等的,即滑轮只改变力的方向不改变力的大小,例如图乙中,两段绳中的拉力大小都等于重物的重力.(2)死结:若结点不是滑轮,是固定点时,称为“死结”结点,则两侧绳上的弹力不一定相等.“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。

死结的特点:a.绳子的结点不可随绳移动b.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等2.“动杆”和“定杆”问题(1)动杆:若轻杆用光滑的转轴或铰链连接,当杆处于平衡时杆所受到的弹力方向一定沿着杆,否则会引起杆的转动.如图甲所示,若C为转轴,则轻杆在缓慢转动中,弹力方向始终沿杆的方向.(2)定杆:若轻杆被固定不发生转动,则杆所受到的弹力方向不一定沿杆的方向.如图乙所示.【例1】(2016·全国卷Ⅲ·17)如图所示,两个轻环a和b套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m的小球.在a和b之间的细线上悬挂一小物块.平衡时,a、b间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m2B.√32mC.mD.2m【答案】C【解析】如图所示,圆弧的圆心为0,悬挂小物块的点为c,由于ab=R,则△aOb为等边三角形,同一条细线上的拉力相等, F T=mg,,合力沿Oc方向,则Oc为角平分线,由几何关系知,∠acb=120°,故线的拉力的合力与物块的重力大小相等,即每条线上的拉力F T= G=mg,,所以小物块质量为m,故C对.【例2】如图甲所示,轻绳AD跨过固定的水平横梁BC右端的定滑轮挂住一个质量M₁的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG 拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量M₂的物体,求:(1)轻绳AC段的张力F TAC与细绳EG的张力F TEG;之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.【答案】(1)M12M2(2)M1g方向和水平方向成30°指向右上方(3)√3M2g方向水平向右【解析】题图甲和乙中的两个物体M₁、M₂都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C点和G点为研究对象,进行受力分析如图甲和乙所示,根据平衡规律一一求解.(1)图甲中轻绳AD跨过定滑轮拉住质量为M₁的物体,物体处于平衡状态,轻绳AC段的拉力F24c=F TCD=M1g图乙中由.F TEG sin30∘=M2g,得F TEG=2M2g.所以F14CF126=M12M2(2)图甲中,三个力之间的夹角都为120°,根据平衡规律有F AC=F DAC=Mg,方向和水平方向成30°,指向右上方.(3)图乙中,根据平衡方程有F TEG sin30∘=Mg,F TBG cos30∘=F XG,所以F NG=M2gcot30∘=√3M2g,方向水平向右.专项训练1.如图所示,当重物静止时,节点O受三段绳的拉力,其中AO沿水平方向,关于三段绳中承受拉力的情况,下列说法中正确的是A.AO承受的拉力最大B.BO承受的拉力最大C.CO承受的拉力最大D.三段绳承受的拉力一样大【答案】B【解析】以结点O为研究对象,分析受力情况,受力分析如图:由平衡条件得:T₁=Gtanθ,T2=Gcosθ,故T1小于T2,G小于T2;所以BO承受的拉力最大;故B正确。

物理建模系列(三) 绳上的“死结”和“活结”模型

物理建模系列(三)绳上的“死结”和“活结”模型[模型概述]1的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG 拉住,EG与水平方向也成30°,在轻杆的G点用细绳GF拉住一个质量为M2的物体,求:(1)细绳AC段的张力F T AC与细绳EG的张力F T EG之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.【思路点拨】图甲中细绳跨过定滑轮与物体M1相连,属于“活结”模型,细绳AC 和CD张力大小相等,细绳对定滑轮的合力方向沿∠ACD的角平分线方向;图乙中细绳EG 和细绳GF为连接于G点的两段独立的绳,属于“死结”模型,细绳EG和细绳GF的张力不相等,轻杆对G点的弹力沿轻杆方向.【解析】题图甲和乙中的两个物体M1、M2都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C点和G点为研究对象,进行受力分析如图甲和乙所示,根据平衡规律可求解.(1)图甲中细绳AD跨过定滑轮拉住质量为M1的物体,物体处于平衡状态,细绳AC段的拉力F TAC=F T CD=M1g图乙中由F T EG sin 30°=M2g,得F T EG=2M2g.所以F T ACF T EG=M12M2.(2)图甲中,三个力之间的夹角都为120°,根据平衡规律有F N C=F T AC=M1g,方向与水平方向成30°,指向右上方.(3)图乙中,根据平衡规律有F T EG sin 30°=M2g,F T EG cos 30°=F N G,所以F N G=M2g cot 30°=3M2g,方向水平向右.【答案】(1)M12M2(2)M1g,方向与水平方向成30°指向右上方(3)3M2g,方向水平向右[高考真题]1.(2013·重庆卷,1)如图所示,某人静躺在椅子上,椅子的靠背与水平面之间有固定倾斜角θ.若此人所受重力为G,则椅子各部分对他的作用力的合力大小为()A.G B.G sin θC.G cos θD.G tan θ【解析】运用力的平衡条件,可求得椅子对人的作用力.选人为研究对象,人受到重力和椅子各部分对他的作用力的合力,根据力的平衡条件可知,椅子对他的作用力的合力与重力等大、反向,故选项A正确.【答案】 A2.(2013·课标卷Ⅱ,15)如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上.若要物块在斜面上保持静止,F的取值应有一定范围,已知其最大值和最小值分别为F1和F2(F2>0).由此可求出()A.物块的质量B.斜面的倾角C.物块与斜面间的最大静摩擦力D.物块对斜面的正压力【解析】物块受与斜面平行的外力F作用,而在斜面上静止,此时摩擦力的大小和方向将随F的变化而变化.设斜面倾角为θ,由平衡条件F1-mg sin θ-F fmax=0,F2-mg sinθ+F fmax=0,解得F fmax=F1-F22,故选项C正确.【答案】 C3.(2016·课标卷Ⅲ,17)如图,两个轻环a 和b 套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m 的小球.在a 和b 之间的细线上悬挂一小物块.平衡时,a 、b 间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m 2 B .32m C.mD .2m【解析】 根据题意设悬挂小物块的点为O ′,圆弧的圆心为O ,由于ab =R ,所以三角形Oab 为等边三角形,根据几何知识可得∠aO ′b =120°,而一条绳子上的张力大小相等,故T =mg ,小物块受到两条绳子的拉力作用大小相等,夹角为120°,故受到的拉力的合力等于mg ,因为小物块受到绳子的拉力和自身重力作用,处于平衡状态,故拉力的合力等于小物块的重力为mg ,所以小物块的质量为m ,C 正确.【答案】 C[名校模拟]4.(2018·安徽合肥段考)将两个质量均为m 的小球a 、b 用细线相连后,再用细线悬挂于O 点,如图所示,用力F 拉小球b ,使两个小球都处于静止状态,且细线Oa 与竖直方向的夹角保持θ=30°,则F 达到最小时Oa 绳上的拉力为( )A.3mg B .mg C.32mg D .12mg【解析】 以两个小球组成的整体为研究对象,分析受力,作出F 在不同方向时整体的受力图,根据平衡条件可知,F 与T 的合力与重力2mg 总是大小相等、方向相反,由力的合成图可知,当F 与绳子Oa 垂直时,F 有最小值,即图中2位置,F 的最小值为F min =2mg sin 30°=mg ,T =2mg cos 30°=3mg ,A 正确.【答案】 A5.(2018·广东仲元中学月考)如图所示,跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为G 1(不包括伞面),圆顶形降落伞伞面的重力为G 2,有8条相同的拉线,一端与飞行员相连(拉线重力不计),另一端均匀分布在伞面边缘上(图中没有把拉线都画出来),每根拉线和竖直方向都成30°角.那么每根拉线上的张力大小为( )A.G 14 B .3G 112 C.G 1+G 28D .3G 1+G 212【解析】 对运动员进行受力分析可知,8条拉线拉力的合力与运动员的重力等大反向,即8条拉线在水平方向的分力的合力为零,竖直方向分力的合力与运动员的重力等大反向,根据对称性可知,8条拉线的张力大小都相等,每条拉线的张力在竖直方向的分力F y =F cos 30°,且8F y =G 1,可得F =G 18cos 30°=G 143=3G 112,故B 正确,A 、C 、D 错误.【答案】 B 6.(2018·山东泰安高三上学期期中)在日常生活中,力的分解有着广泛的应用.如图为用斧子把树桩劈开的图示,斧子对木桩施加一个向下的力F 时,产生了大小相等的两个侧向分力F 1、F 2,下列关系正确的是( )A .F =2F 1sin(θ2)B .F =2F 1sin θC .F =2F 1cos(θ2)D .F =2F 1cos θ【解析】 F 1、F 2与水平方向的夹角为θ2,则F =2F 1sin θ2,A 对.【答案】 A课时作业(五)[基础小题练]1.(2018·广州调研)如图,三个大小相等的力F,作用于同一点O,则合力最小的是()【解析】根据矢量合成的平行四边形定则可知,C选项的合力为零,即合力最小,C 正确.【答案】 C2.(2018·淮安模拟)我国海军在南海某空域举行实兵对抗演练,某一直升机在匀速水平飞行过程中遇到突发情况,立即改为沿虚线方向斜向下减速飞行,则空气对其作用力可能是()A.F1B.F2C.F3D.F4【解析】因为直升机沿虚线方向斜向下减速飞行,故合力沿虚线向上,直升机受到竖直向下的重力以及空气作用力两个力,要想合力沿虚线向上,则根据矢量三角形可得空气对其作用力可能为F1,如图所示.【答案】 A3.(2018·石家庄模拟)如图所示,一个“Y”形弹弓顶部跨度为L,两根相同的橡皮条自由长度均为L,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片.若橡皮条的弹力与形变量的关系满足胡克定律,且劲度系数为k,发射弹丸时每根橡皮条的最大长度为2L(弹性限度内),则发射过程中裹片对弹丸的最大作用力为()A .kLB .2kL C.32kL D .152kL 【解析】 设发射弹丸瞬间两橡皮条间的夹角为2θ,则sin θ=L 22L =14,cos θ=1-sin 2θ=154.发射过程中裹片对弹丸的最大作用力为F 合=2F cos θ,F =kx =kL ,故F 合=2kL ·154=152kL ,D 正确. 【答案】 D4.手握轻杆,杆的另一端安装有一个小滑轮C ,支持着悬挂重物的绳子,如图所示,现保持滑轮C 的位置不变,使杆柄向上转动一个角度,则杆对滑轮C 的作用力将()A .变大B .不变C .变小D .无法确定【解析】 杆对滑轮C 的作用力大小等于两绳上拉力的合力,由于两绳上拉力的合力不变,故杆对滑轮C 的作用力不变.【答案】 B5.如图所示,作用于O 点的三个力F 1、F 2、F 3合力为零,F 1沿-y 方向,大小已知.F 2与+x 方向夹角为θ(θ<90°),大小未知.下列说法正确的是()A .F 3可能指向第二象限B .F 3一定指向第三象限C .F 3与F 2的夹角越小,则F 3与F 2的合力越小D .F 3的最小可能值为F 1cos θ【解析】 因F 1、F 2、F 3的合力为零,故F 3应与F 2、F 1的合力等大反向,故F 3可能指向第二象限,也可能指向第三象限,选项A 正确,B 错误;F 3、F 2的合力与F 1等大反向,而F 1大小、方向均已知,故F 3与F 2的合力与其夹角大小无关,选项C 错误;当F 3与F 2垂直时,F3最小,其最小值为F1cos θ,选项D正确.【答案】AD6.(2018·六安一中二模)如图所示,两个质量为m1的小球套在竖直放置的光滑支架上,支架的夹角为120°,用轻绳将两球与质量为m2的小球连接,绳与杆构成一个菱形,则m1∶m2为()A.1∶1 B.1∶2C.1∶ 3 D.3∶2【解析】将小球m2的重力按效果根据平行四边形定则进行分解如图,由几何知识得T=m2g,对m1受力分析,由平衡条件,在沿杆的方向有:m1g sin 30°=T sin 30°,得:T=m1g,可见m1∶m2=1∶1,故选A.【答案】 A[创新导向练]7.生活实际——千斤顶中的力学原理(2018·贵阳监测)如图所示是轿车常用的千斤顶,当摇动把手时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起.当车轮刚被顶起时汽车对千斤顶的压力为1.0×105 N,此时千斤顶两臂间的夹角为120°.下列判断正确的是()A.此时千斤顶每臂受到的压力大小均为5.0×104 NB.此时千斤顶对汽车的支持力为1.0×104 NC.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将增大D.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将减小【解析】车轮刚被顶起时,千斤顶两臂支持力的合力为千斤顶对汽车的支持力,等于汽车对千斤顶的压力,大小为1.0×105 N,B项错误;两臂夹角为120°,由力的合成可知千斤顶每臂受到的压力为1.0×105 N,A项错误;继续摇动把手,将汽车顶起,千斤顶两臂夹角减小,每臂受到的压力减小,D项正确,C项错误.【答案】 D8.生活实际——以“减速带”为背景考查力的合成问题减速带是交叉路口常见的一种交通设施,车辆驶过减速带时要减速,以保障行人的安全.当汽车前轮刚爬上减速带时,减速带对车轮的弹力为F ,下图中弹力F 画法正确且分解合理的是( )【解析】 减速带对车轮的弹力方向垂直车轮和减速带的接触面,指向受力物体,故A 、C 错误;按照力的作用效果分解,将F 可以分解为水平方向和竖直方向,水平方向的分力产生的效果减慢汽车的速度,竖直方向上分力产生向上运动的作用效果,故B 正确,D 错误.【答案】 B9.人体生理——关节运动中所包含的力学问题如右图所示,人屈膝下蹲时,膝关节弯曲的角度为θ.设此时大小腿部的肌肉群对膝关节的作用力F 的方向水平向后,且大腿骨和小腿骨对膝关节的作用力大致相等,那么脚掌所受小腿骨沿竖直方向的力约为( )A.F 2sin (θ2)B .F 2cos (θ2)C.F 2tan (θ2)D .F 2tan(θ2)【解析】 根据题意先将肌肉群对膝关节的作用力F 沿大腿骨和小腿骨方向分解,然后再分解小腿骨方向的分力,即可知D 正确.【答案】 D10.科技生活——缓冲门中的力学问题分析如图所示为缓慢关门时(图中箭头方向)门锁的示意图,锁舌尖角为37°,此时弹簧弹力为24 N ,锁舌表面较光滑,摩擦不计(sin 37°=0.6,cos 37°=0.8),下列说法正确的是( )A .此时锁壳碰锁舌的弹力为40 NB .此时锁壳碰锁舌的弹力为30 NC .关门时锁壳碰锁舌的弹力逐渐增大D .关门时锁壳碰锁舌的弹力保持不变【解析】 锁壳碰锁舌的弹力分解如图所示,其中F 1=F N sin 37°,且此时F 1大小等于弹簧的弹力为24 N ,解得锁壳碰锁舌的弹力为40 N ,选项A 正确,B 错误;关门时,弹簧的压缩量增大,弹簧的弹力增大,故锁壳碰锁舌的弹力逐渐增大,选项C 正确,D 错误.【答案】 AC[综合提升练]11.(2018·山东泰安高三上学期期中)质量为m 的物体置于倾角为θ=37°的固定斜面上,物体与斜面之间的动摩擦因数为μ=0.2.如图甲所示,先用平行于斜面的推力F 1作用于物体上,使其能沿斜面匀速上滑;若改用水平推力F 2作用于物体上,也能使物体沿斜面匀速上滑,如图乙所示.求两次推力大小之比F 1F 2.(sin 37°=0.6,cos 37°=0.8)【解析】 根据共点力平衡条件可得F 1=mg sin θ+μF N F N =mg cos θ F 2cos θ=mg sin θ+μF ′N F ′N =mg cos θ+F 2sin θ 整理得F 1F 2=cos θ-μsin θ代入数值得F 1F 2=0.68.【答案】 0.6812.电梯修理员或牵引专家常常需要监测金属绳中的张力,但不能到绳的自由端去直接测量.某公司制造出一种能测量绳中张力的仪器,工作原理如图所示,将相距为L 的两根固定支柱A 、B (图中的小圆圈表示支柱的横截面)垂直于金属绳水平放置,在A 、B 的中点用一可动支柱C 向上推动金属绳,使绳在垂直于A 、B 的方向竖直向上发生一个偏移量d (d ≪L ),这时仪器测得金属绳对支柱C 竖直向下的作用力为F .(1)试用L 、d 、F 表示这时金属绳中的张力F T ;(2)如果偏移量d =10 mm ,作用力F =400 N ,L =250 mm ,计算金属绳中张力的大小.【解析】 (1)设C ′点受两边金属绳的张力分别为F T1和F T2,BC 与BC ′的夹角为θ,如图所示.依对称性有:F T1=F T2=F T由力的合成有:F =2F T sin θ 根据几何关系有sin θ=d d 2+L 24联立上述二式解得F T =F2dd 2+L 24则d ≪L ,故F T =FL4d.(2)将d =10 mm ,F =400 N ,L =250 mm 代入F T =FL4d解得F T =2.5×103 N ,即金属绳中的张力为2.5×103 N. 【答案】 (1)FL4d (2)2.5×103 N。

受力平衡问题中“死结”和“活结”模型

受力平衡问题中 死结 和 活结 模型ʏ孟德飞受力平衡问题中的绳模型是近年高考题中常考的模型㊂靠跨过滑轮或者绕过光滑杆㊁光滑钩等把绳子分成两段,且可以沿着绳子移动的结点称为 活结 ;而把绳子系在某位置且该结点不会沿绳子移动,这样把绳子分成两段的结点称为 死结 ㊂这类模型中的 死结 和 活结 问题考查的知识点丰富,题型变式多样,对同学们的思维能力要求高,是同学们学习的难点,同学们碰到这类问题时普遍有畏难情绪㊂但同学们如果掌握了该类问题的共性,也就是掌握其规律,再解答这类问题时就会容易得多㊂ 图1题型示例:如图1甲所示,右端固定有定滑轮的水平轻杆B C ,细绳左端固定在A 点,一质量为M 1的物体通过细绳挂在定滑轮上,其中øA C B =30ʎ;在图乙中,轻杆H G 一端用铰链(可让杆旋转)固定在竖直墙上,用固定在E 点的细绳拉住杆右端的G 点,也让E G 与水平方向成30ʎ,在G 点挂一质量为M 2的物体㊂求:(1)A C 绳与E G 段绳上的拉力之比;(2)绳在C 端对轻杆B C 的压力;(3)轻杆H G 所受到的压力㊂ 图2过程分析:(1)图甲中,物体M 1处于平衡状态,细绳A D 跨过定滑轮分成A C 段和C D 段,C 点是同一根上可移动的活结㊂由活结特点可知,绳子两端拉力相等且等于物体M 1的重力,即A C 段的拉力F T A C =F T C D =M 1g ㊂图乙中由F T EG s i n 30ʎ=M 2g ,得F T E G =2M 2g ㊂所以F T A C F T E G =M 12M 2㊂(2)要求绳在C 端对轻杆B C 的压力,需对结点C 进行受力分析㊂根据图2甲中的几何关系可知,三个力之间互成120ʎ的夹角㊂再根据平衡关系,可得F T A C =F N C =M 1g ,力的作用是相互的,压力方向与水平方向成30ʎ角指向左下方㊂(3)图乙中,对结点G 进行受力分析,根据共点力的受力平衡关系和几何关系,有F T E G s i n 30ʎ=M 2g ,F T E G c o s 30ʎ=F N G ,所以F N G =M 2g c o t 30ʎ=3M 2g ,压力方向水平向左㊂规律总结:在图2甲中,结点可以沿着绳子移动,这样的 活结 一般是由绳跨过滑轮或者绕过光滑杆㊁光滑钩等把绳子分成两段而形成的㊂因为两段绳实际上是同一根绳,在 活结 处由于弯曲而分开的两段绳上张力的大小相等㊂两分力和合力根据平行四边形定则构成菱形,菱形的对角线是两边夹角的角平分线㊂因此,两段绳子合力的方向就沿着两段绳子夹角的平分线㊂如图2乙所示,把绳子系在某位置且该结点不会沿绳子移动,这样把绳子分成两段的结点称为 死结㊂ 死结 两边的轻绳因结点不可移动而变成了两根受力相互独立的绳,要求解两段绳子上的弹力,要先根据力平行四边形定则进行力的合成与分解,再找几何关系来处理㊂因此,与 活结 不同的是,两段绳上张力不一定相等㊂综上所述,在受力平衡问题中, 死结活结 模型分析过程一般为:先明确研究对象,识别是符合 死结 还是 活结 模型;再根据 死结 活结 模型的解答规律来求解㊂在 活结 中,由结点分开的两段绳上张力的大小一定相等,且两段绳合力方向沿着其夹角的平分线㊂ 死结 分开的两段绳子要根据力平行四边形定则进行力的合成与分解,找出几何关系后分别求出两个力的大小和方向㊂作者单位:云南民族大学附属中学57基础物理 障碍分析 自主招生 2020年7 8月。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绳上的“死结”和“活结”模型
济源高级中学物理组李卫华
·物理模型概述
物理模型是一种理想化的物理形态,所谓“建模”就是将较复杂的研究对象或物理过程,通过用理想化、简单化、抽象化、类比化等手段,突出事物的本质特征和规律形成样板式的概念、实物体系或情境过程,即物理建模.
实际问题模型化是高中阶段处理物理问题的基本思路和方法,当我们遇到实际的运动问题时,要建立我们高中阶段学习过的熟知的物理模型,下面介绍的是绳上的“死结”和“活结”模型.
1.“死结”模型
(1)“死结”可理解为把绳子分成两段.
(2)“死结”是不可以沿绳子移动的结.
(3)“死结”两侧的绳因结住而变成了两根独立的绳.
(4)“死结”分开的两段绳子上的弹力不一定相等.(如典例1)
2.“活结”模型
(1)“活结”可理解为把绳子分成两段.
(2)“活结”是可以沿绳子移动的结点.
(3)“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同一根绳.
(4)“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.(如典例2)
典例1 如图2-2-9所示,一根细线两端分别固定在A、B点,质量为m的物体上面带一个小夹子,开始时用夹子将物体固定在图示位置,OA段细线水平,OB段细线与水平方向的夹角为θ=45°,现将夹子向左移动一小段距离,移动后物体仍处于静止状态,关于OA、OB 两段细线中的拉力大小,下列说法正确的是().
图2-2-9
A.移动前,OA段细线中的拉力等于物体所受的重力大小
B.移动前,OA段细线中的拉力小于物体所受的重力大小
C.移动后,OB段细线中拉力的竖直分量不变
D.移动后,OB段细线中拉力的竖直分量变小
解析取O点为研究对象,受力如图所示,由图知:T OA=T OB cos θ,T OB sin θ=mg,当θ=45°时,T OA=mg,A对;向左移动一小段距离后,O点位置下移,OB段细线中拉力的竖直分量与OA段细线中拉力的竖直分量之和等于重力大小,即OB段细线中拉力的竖直分量变小,D对.
答案AD
典例2 如图2-2-10所示,杆BC的B端用铰链接在竖直墙上,另一端C为一滑轮.重物G 上系一绳经过滑轮固定于墙上A点处,杆恰好平衡.若将绳的A端沿墙缓慢向下移(BC杆、滑轮、绳的质量及摩擦均不计),则().
图2-2-10
A.绳的拉力增大,BC杆受绳的压力增大
B.绳的拉力不变,BC杆受绳的压力增大
C.绳的拉力不变,BC杆受绳的压力减小
D.绳的拉力不变,BC杆受绳的压力不变
解析
选取绳子与滑轮的接触点为研究对象,对其受力分析,如图所示,绳中的弹力大小相等,即T1=T2=G,C点处于三力平衡状态,将三个力的示意图平移可以组成闭合三角形,如图虚线所示,设AC段绳子与竖直墙壁间的夹角为θ,则根据几何知识可知F=2G sin θ
,当绳的
2
A端沿墙缓慢向下移时,θ增大,F也增大,根据牛顿第三定律知,BC杆受绳的压力增大,
B正确.
答案 B
练习1.如图2-2-11所示,两个质量均为m的物体分别挂在支架上的B点(如图甲所示)和跨过滑轮的轻绳BC上(如图乙所示),图甲中轻杆AB可绕A点转动,图乙中水平轻杆一端A 插在墙壁内,已知θ=30°,则图甲中轻杆AB受到绳子的作用力F1和图乙中滑轮受到绳子的作用力F2分别为().
图2-2-11
A.F1=mg、F2=3mg B.F1=3mg、F2=3mg
C.F1=
3
3mg、F2=mg D.F1=3mg、F2=mg
答案 D
2.如图2-2-19所示,一轻绳的两端分别固定在不等高的A、B两点,现用另一轻绳将一物体系于O点,设轻绳AO、BO相互垂直,α>β,且两绳中的拉力分别为F A、F B,物体受到的重力为G,下列表述正确的是().
图2-2-19
A.F A一定大于G
B.F A一定大于F B
C.F A一定小于F B
D.F A与F B大小之和一定等于G
解析
物体受力分析如图所示,由三力平衡的知识可知,F A、F B的合力大小等于G,方向竖直向上,F A=G sin α,F B=G sin β.故F A一定小于G,A选项错误;因为α>β,故F A一定大于F B,
B选项正确、C选项错误;F A与F B大小之和大于G,D选项错误.
答案 B
3.如图2-2-20所示,A、B两物体的质量分别为m A、m B,且m A>m B,整个系统处于静止状态.滑轮的质量和一切摩擦均不计,如果绳一端由Q点缓慢地向左移到P点,整个系统重新平衡后,物体A的高度和两滑轮间绳与水平方向的夹角θ变化情况是().
图2-2-20
A.物体A的高度升高,θ角变大
B.物体A的高度降低,θ角变小
C.物体A的高度升高,θ角不变
D.物体A的高度不变,θ角变小
解析最终平衡时,绳的拉力F大小仍为m A g,由二力平衡可得2F sin θ=m B g,故θ角不变,但因悬点由Q到P,左侧部分绳子变长,故A应升高,所以C正确.
答案 C
练习4:(2013年福建理综)。

相关文档
最新文档