中科院-6-有机金属配合物
配位化学-中科院总结(4-6章)

(3) [Ni(en)3]2+ 和 [Fe(en)3]2+ 二者中心离子的d电子数不同,其CFSE不同。 [Ni(en)3]2+ : 3d8,电子排布为t2g6eg2,CFSE = -12Dq; [Fe(en)3]2+ : 3d6,电子排布为t2g6,CFSE = -24Dq。 所以, [Fe(en)3]2+ 更稳定。 (4) [Ni(H2O)6]2+ 和 [Ni(en)3]2+ en为螯合配体,其配合物具有螯合效应, 所以, [Ni(en)3]2+ 更稳定。
+ H2O
若为SN2机理: [Co(NH3)5 X]2+
v = k[Co(NH3)5X2+] + H2O 慢 [Co(NH3)5 X H2O]2+
[Co(NH3)5 X H2O]2+ 快 [Co(NH3)5 H2O]3+ + Xv = k[Co(NH3)5X][H2O]≈ k[Co(NH3)5X2+]
6.如何用晶体场理论判断配合物的活性和惰性。 比较活化配合物与反应物的CFSE确定。
7. [Co(NH3)5X]的水解反应机理和速率方程,如何验 证反应机理?
例如: [Co(NH3)5X]的酸式水解 若为SN1机理:[Co(NH3)5
[Co(NH3)5 ]2+ 慢 快
X]2+
[Co(NH3)5]3+ + X[Co(NH3)5H2O]3+
A5 A3 A2 A6 M B1 X4
A5
A5
-X
A2
A3
M B1 A6
4
+Y
A2
A3
M B1 A6
配合材料简介

配合材料简介1 配合材料的发展概述配合材料,是含N、O、S等元素的有机配体L与金属离子M间通过配位键形成的具有高度规整、长程有序的无限网络结构的配合物。
其因在磁性、催化、分离、发光、储氢及生物医药方面等功能材料领域具有良好的应用价值,成为目前最活跃的前沿研究课题之一[1-6,8]。
最近十年来,金属有机配位聚合物无论从数量上还是研究领域的拓宽都有着飞速的发展[9]。
许多研究小组在配合材料的设计、合成与功能特性研究方面取得了令人瞩目的研究成果。
一些具有新颖结构,优异功能特性的配合材料不断被报道,这些都预示着对于配合材料的研究在未来几年依然是配位化学家和材料科学家们关注的焦点之一。
目前化学家们在一定程度上利用晶体工程学理论和自组装原理定向设计与合成配合材料的同时,利用其结构具有可调控的特性,把一些具有特殊功能特性的金属离子(例如具有荧光特性的稀土金属离子,具有磁特性的过渡金属离子等)或有机构件(例如具有发光特性的大环构件等)引入到金属-有机杂化网络中,合成出具有特殊功能特性的配合材料,或者把两种或两种以上具有功能特性的基团引入到无机-有机杂化网络中合成出具有多种功能特性的配合材料等[6]。
在配合材料组装中, 芳香羧酸类有机配体作为配合材料的有效构筑单元之一,在合成配合材料方面一直是人们研究的热点。
目前对含芳香羧酸类有机组件的配合材料的研究已经比较深入,但是芳香羧酸类有机组件因其丰富多样的键合特点,使配合材料的结构呈现多样性,因而在配合材料的研究领域仍然占有十分重要的地位。
目前,国外开展配合材料研究的具有代表性的研究机构主要有美国密歇根大学的Yaghi研究小组、法国拉瓦锡研究所的Ferey研究小组和日本的Kitagawa研究小组。
早在1995年,美国化学家O.M. Yaghi在Nature杂志中报道了一个由刚性的有机配体均苯三甲酸与过渡金属Co合成的具有二维结构的配合物材料,这例材料可以吸附客体分子,在脱出客体分子后骨架仍然保持稳定[10]。
有机过渡金属反应机理和催化资料

图1 烯烃(左)和CO (右)与金属离子成键作用图
(3)离子均给予金属。例 如下列配合物中从左至右配体分别提供2,3,4,5, 6个电子。
图2 面配位络合物
图3 面配位体与多齿配体关系示意图
1.1.2 氧化态
标记金属配合物中金属的氧化态主要为研究催 化机理提供方便,并不是真正地指明金属的电荷 数。因此金属的氧化态具有较大的人为规定因素, 这些规定如下所示。
有机过渡金属反应机理和催化
Eric V.Anslyn [美] 著
计国桢 佟振合 [中科院] 译 王文峰 [福州大学] 制作
1.有机金属配合物基础知识
1.1 电子数和氧化态
1.1.1 电子计数方法
金属配合物电子计数方法主要取决于配体提 供电子数的计算。计数规则如下: (1)与金属每形成一根共价键,视为配体提供给 金属一个电子。例如: M-H; M-R; M-X; M-OR; M-NR2 . (提供一个电子)
转金属化是协同反应,形成过渡态的那一步就是 决速步骤。
(2)构效关系
对于金属大致有如下规律:(1)18电子结构 的金属配体交换慢,17电子结构快;(2)同族金 属中第四周期的(如Mo和Pd)往往快于第三周期 (Cr和Ni)和第五周期(W和Pt)。原因待证明。
对于配体,好的给电子配体(如胺和膦)能加 速解离取代反应,可能是旧配体解离时,新配体 已经部分成键了;与给电子配体处于顺式的CO容 易解离;对于锥形配合物,锥角越大越不稳定, 解离速率越快;越好的给电子配体解离速率越慢, 如烷基膦比芳基膦难解离。
中科院分析化学考研真题

分析化学一选择题 (每题2 分,共40 分)1 使用分析天平进行称量过程中,加、减砝码或取、放物体时,应把天平梁托起,这是为了A 称量快速B 减少玛瑙刀口的磨损C 防止天平盘的摆动D 防止指针的跳动2 若试样的分析结果精密度很好,但准确度不好,可能原因是A 试样不均匀B 使用试剂含有影响测定的杂质C 有过失操作D 使用的容量仪器经过了校正3 有一组平行测定所得的分析数据,要判断其中是否有异常值,应该用A F 检验法加t 检验法B F 检验法C t 检验法D Q 检验法4 共轭酸碱对的K a 和K b 的关系是A K a=K bB K a K b=1C K a K b= K WD K a/K b= K W5 若测定污水中痕量三价铬与六价铬应选用下列哪种方法A 原子发射光谱法B 原子吸收光谱法C 荧光光度法D 化学发光法6 金属离子M 与L 生成逐级配位化合物ML、ML2···MLn,下列关系式中正确的是A [MLn]=[M][L]nB [MLn]=Kn[M][L]C [MLn]=βn[M]n[L]D [MLn]=βn[M] [L] n7 指出下列叙述中错误的结论A 酸效应使配合物的稳定性降低B 水解效应使配合物的稳定性降低C 配位效应使配合物的稳定性降低D 各种副反应均使配合物的稳定性降低8 下列四种萃取剂中对金属离子萃取效率最好的是ANOH B CH3CH2OH C CH3CH2OCH2CH3 D CH3(CH2)3OH9 循环伏安法主要用于A 微量无机分析B 定量分析C 定性和定量分析D 电极过程研究10 在制备纳米粒子时,通常要加入表面活性剂进行保护,这主要是为了防止A 颗粒聚集长大B 均相成核作用C 表面吸附杂质D 生成晶体形态11 在EDTA 配位滴定中,下列有关掩蔽剂的叙述错误的是A 配位掩蔽剂必须可溶且无色B 沉淀掩蔽剂生成的沉淀,其溶解度要很小C 氧化还原掩蔽剂必须能改变干扰离子的氧化态D 掩蔽剂的用量越多越好12 气液色谱中,保留值实际上反映的是下列哪两者间的相互作用A 组分和载气B 载气和载体C 组分和固定液D 组分和载体13 下列化合物中,不能发生麦氏重排的是A BC D14 下列化合物中,所有质子是磁等价,在NMR 光谱中只有一个吸收峰的结构是A CH3CH2CH2BrBC CH2=CHClD CH3OH15 下列化合物中,同时有n→π*,π→π*,σ→σ*跃迁的化合物是A 一氯甲烷B 丙酮C 1,3-丁二烯D 甲醇16 下列化合物中,νC=O 最大的是A COR ClB COR R'C COR OR'D COR科目名称:分析化学第 3 页共 5 页17 关于荧光效率,下面错误的叙述是A 具有长共轭的π→π*跃迁的物质具有较大的荧光效率B 分子的刚性和共平面性越大,荧光效率越大C 顺式异构体的荧光效率大于反式异构体D 共轭体系上的取代基不同,对荧光效率的影响也不同18 原子吸收光谱由下列哪种粒子产生的?A 固态物质中原子的外层电子B 气态物质中基态原子的外层电子C 气态物质中激发态原子的外层电子D 气态物质中基态原子的内层电子19 使用重铬酸钾法测铁时,滴定前先要在铁盐溶液中滴加适量的Sn2+溶液,其目的是A 防止Fe2+被氧化B 作为指示剂C 还原Fe3+D 作为催化剂20 预测某水泥熟料中的SO3 含量,由4 人分别进行测定。
金属有机配位聚合物的制备及其性能的测试

南京航空航天大学硕士学位论文摘要金属-有机配位聚合物是由金属中心离子与有机配体自组装而形成的。
金属-有机配位聚合物新颖的多样结构导致其许多特殊的性能。
由于含硫芳基多齿配体本身结构的多样性,在与金属离子配位时,可以组装出结构新颖和功能独特的配合物。
它们表现出不同寻常的光、电、磁等性质,在非线性光学,磁性和催化材料等方面具有潜在的应用前景。
本课题为含硫金属-有机配位聚合物的合成和性能表征。
文中对到目前为止的金属-有机配位聚合物的研究成果进行了系统的总结。
本论文分别以对苯二胺和对苯二酚为有机小分子,与二硫化碳在碱性条件下反应,在反复实验的基础上,找到了合适的反应条件,冷凝回流合成出了以硫为配位原子的有机配体。
用均相法和溶剂热合成法,将生成的配体与过渡金属在含有表面活性剂的条件下混合发生配位反应,制备了相应的含硫过渡金属配位聚合物,考察各反应因素对配位聚合物形貌的影响。
最后,通过FTIR,EDS,SEM,TEM,紫外-可见等分析手段对配体和配合物进行表征,发现所合成的镉(Ⅱ)配位聚合物具有半导体的性质。
关键词:金属-有机配位聚合物,溶剂热合成,二硫化碳,配体,表征iABSTRACTMetal-organic coordination polymers are a type of self-assembly formed by organic ligands and metal ions. Diversified structures of the coordination polymers result in unusual properties of the novel materials. Duo to the structure multiformity of multidentate organic ligand with the sulfur and aryl, they can assemble out complexes of novel structures and unique fuctions if coordinated with metal ions. They have shown distinctive optical, electrical, and magnetic properties, thus they have a potential applied prospect in nonlinear optics, magnetic and catalytic materials.The subject is to synthesize and analyze the property of sulfur metal-organic coordination polymers. In this dissertation, we do the summary of the development and achievements of metal-organic coordination polymers. In this paper, we use p-phenylenediamine or p-dihydroxybenzene as small organic molecules to react with carbon bisulfide in alkaline condition. We find out the appropriate reaction condition on the basis of repeated experiments, and synthesize organic ligand with the sulfur as coordination atom in the condition of refluxing. Then we use the acquired ligands to react with transition metal ions under surfactant by solvothermal and homogeneous techniques and get the corresponding transition metal complexes with the sulfur atom. We have explored the influences of all kinds of synthesis factors for their morphologies. Finally, through analytical methods such as FTIR, EDS, SEM, TEM, UV-vis, we characterize the ligands and complexes, and suggest that the Cd(Ⅱ) complex is a semi-conductor.Keywords: metal-organic coordination polymers, solvothermal synthesis, carbon bisulfide, ligand, characterizeii图表清单图清单图1.1 金属-有机配位聚合物的金属中心 (5)图1.2 组装金属-有机配位聚合物使用的多齿配体 (6)图3.1 配体合成实验装置图 (19)图4.1 实验Pt-02-04配体L的红外谱图 (34)图4.2 实验Pt′-03-04配体L′的红外谱图 (35)图4.3 实验Pt-02-04配体L的能谱分析图 (35)图4.4 实验Pt′-03-04配体L′的能谱分析图 (36)图4.5 均相法合成的Cd(Ⅱ)配位聚合物TEM图(PEG-400, 5%) (37)图4.6 均相法合成的Cd(Ⅱ)配位聚合物TEM图(PEG-400, 2%) (38)图4.7 特殊形貌的Ni(Ⅱ)配位聚合物的SEM图 (39)图4.8 特殊形貌的Co(Ⅱ)配位聚合物的SEM图 (40)图4.9 特殊形貌的Cd(Ⅱ)配位聚合物的SEM图 (40)图4.10 特殊形貌的Cu(Ⅰ)配位聚合物的SEM图 (41)图 4.11 不同温度下所得Cd(Ⅱ)配位聚合物的SEM图 (a)120℃ (b) 150℃ (43)图 4.12不同降温速率下所得Cu(Ⅰ)配位聚合物的SEM图 (a)5℃/h (b)2℃/h (44)图4.13 添加不同的表面活性剂所得产物的SEM图 (45)图4.14添加不同量的表面活性剂所得产物的SEM图 (46)图4.15 Cd(Ⅱ)配位聚合物液态紫外可见图 (47)图4.16 Cd(Ⅱ)配位聚合物的能谱分析图 (48)Ⅱ配位聚合物(A)固态紫外-可见图;(B)吸收系数与光子能图4.17 Cd()量的关系图 (49)表清单表1.1 几个对应金属-有机配位聚合物的基本概念 (4)vi南京航空航天大学硕士学位论文表3.1 实验所用药品 (17)表3.2 合成配体主要药品物性 (18)表3.3 仪器及设备 (19)表3.4 以对苯二胺为有机小分子R合成配体 (20)表3.5 以对苯二酚为有机小分子R′合成配体 (21)表3.6 均相法合成配位聚合物的实验结果 (23)表3.7 溶剂热合成配位聚合物的实验结果 (24)vii承诺书本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。
中科院--配位化学基础知识

特点?
Ir4(CO)12的结构
5. 螯合物 由中心离子与多齿配体形成具有环状 结构的配合物 。五元、六元环最稳定。
NH2 H2C H2C NH2 Cu H2N H2N CH2 CH2
2+
[Cu(en)2]2+的结构
(2)能提供 电子的分子.
如: H
C H C H H
3. 配体的类型 (1)单齿配位体: 只有 1 个配位原子的配体. 例 : NH3 H2O F-
(2)多齿配位体: 有 2个配位原子的配体.
例 : en H2N .. CH2 CH2 NH .. 2
双齿配体
(3)桥联配体 ( bridge ligand ) : 联结 2个中心原子的配体.
配位数增大 [AlF6]3– 配位数减小
如:[HgCl4]2- 和 [CdCl6]4– 101ppm 97ppm
中心离子相同 配体电荷越大
配位数减小
如:[Co(CN)6]4- 和 [Co(SO4)2]2– 中心离子相同 配体半径越小
配位数增大
如:[AlCl4]– 和 [AlF6]3–
5. 配离子的电荷
NCH2CH2.. N ..
CH2COO :
乙二胺四乙酸根(edta)
冠醚类:
O O O O O
O O O O O O
S S S S S S
15-冠-5
O O O O O O
18-冠-6
O O O O
18-硫冠-6
O O
二苯并-18-冠-6
二环己基-18-冠-6
分子配体:
例如: 分子氢(H2)配体 分子氧(O2)配体 二氧化碳(CO2)分子配体
2015中科院分析化学考研(化学研究所)参考书、历年真题、报录比、研究生招生专业目录、复试分数线
09 大气环境化学;大气光氧化;气 溶胶化学;质谱学;光谱学
10 分子聚集及组装体系的光化学
11 团簇化学,催化机理 ,激光光谱
12 理论与计算化学
13 理论与计算化学
14 生命过程中的电子传递与活性自 由基及其超分子化学模拟
15 分子纳米结构与器件
16 纳米材料和纳米电子器件的研 制;新型富勒烯和金属富勒烯材料; 基于富勒烯的磁共振造影剂的研究
06 选择性合成方法学
同上
07 有机合成
同上
08 金属有机化学,合成方法学
同上
专注中国名校保(考)研考博辅导权威
09 仿生不对称催化,天然产物全合 成,超分子化学 10 高选择性不对称有机合成 11 物理有机,有机合成和超分子化 学 12 化学生物学 13 有机固体的设计合成,物性与结 构研究 14 功能分子的合成与组装 15 生物活性导电高分子与生物传 感、生命化学研究 16 有机功能分子的分子工程、超分 子自组装及分子器件
①101 思想政治理论②201 英语一③302 数学二④825 物理化学(乙)
02 无机/有机杂化聚集态结构与性 质
同上
03 半导体光电子器件
①101 思想政治理论②201 英语一③302 数学二④804 半导体物理或 809 固体物 理
有机过渡金属反应机理和催化
2.5.2 插入反应的机理
哪一种机理才是正确的?
实 验 结 果 理 论 分 析 结论:烷基迁移(机理C)的理论分析与实验结果吻合(比例都是2:1)。
烷基迁移插入的其它证据
2.5.3 插入反应的立体化学
插入反应的立体化学特点是构型保持,这是很好理解的。因为烷基迁 移时是携带一对电子(因为C电负性大于金属)进行迁移的,即属于亲 核迁移。如同有机化学中碳正离子的迁移一样,迁移基团构型保持。
(1)与金属成键(无论σ键还是π键)的配体都被 认为完全从金属得到了一个电子,因此每根键都 使金属带一个正电荷。例如烷基配体(R-)、亚烷 基配体(R1R2C=)和烷基配体( )分别使金属带1、 2和3个正电荷。
(2)与金属形成配位键和反馈键的配体视为 不改变金属的氧化态。所以中性的CO、胺、 膦以及烯和炔等分子与金属配位时都视为 不改变金属的氧化态。
2.2.4 sp2中心的氧化加成
2.3 还原消除
• 定义:从金属上脱除配体且使金属降低氧化 态的过程。
• 特点:与有机化学中的消除不一样,金属有 机配合物的消除往往是放热的,速度较快。 这是因为M-C键(约130kJ/mol)和M-H(约 260kJ/mol)的键能很小。
• 还原消除与配体解离的异同:都是从金属上 解离,但是配体解离不导致金属氧化态变化。 配体解离通常是中性分子的解离,而还原消 除通常是有机基团的解离。
转金属化是协同反应,形成过渡态的那一步就是 决速步骤。
(2)构效关系
对于金属大致有如下规律:(1)18电子结构 的金属配体交换慢,17电子结构快;(2)同族金 属中第四周期的(如Mo和Pd)往往快于第三周期 (Cr和Ni)和第五周期(W和Pt)。原因待证明。
对于配体,好的给电子配体(如胺和膦)能加 速解离取代反应,可能是旧配体解离时,新配体 已经部分成键了;与给电子配体处于顺式的CO容 易解离;对于锥形配合物,锥角越大越不稳定, 解离速率越快;越好的给电子配体解离速率越慢, 如烷基膦比芳基膦难解离。
UiO-66-NH2合成及其应用研究
密级:硕士学位论文UiO-66-NH2合成及其应用研究作者姓名:万林林指导教师:黄爱生研究员中国科学院宁波材料技术与工程研究所学位类别:理学硕士学科专业:有机化学研究所:中国科学院宁波材料技术与工程研究所二零一七年五月Study on the Synthesis and application of UiO-66-NH2ByLinlin WanA Dissertation Submitted toUniversity of Chinese Academy of SciencesIn partial fulfillment of the requirementFor the degree ofMaster of Natural ScienceNingbo Institute of Materials Technology&Engineering, Chinese Academy of SciencesMay,2017摘要摘要金属有机框架材料(Metal Organic Frameworks,MOFs)是近几十年来迅猛发展的一类材料,它是由金属团簇和有机配体通过配位键自组装而成的一类三维多孔晶体化合物。
MOFs材料具有固定孔隙、高结晶度、高比表面积、优良的可调节性和功能化性能,使得其在气体吸附,催化,药物传输和传感器方面有巨大的应用潜力。
但由于现存的大多数MOFs材料稳定性不高,使得其在工业上的应用受到限制。
因此,要实现MOFs在工业中的应用,一方面要提高材料的稳定性。
另一方面,要开展更合适的合成方法来制备低能耗的MOFs材料。
UiO-66材料的水热稳定性,化学稳定性及耐湿性好,因此其在液体分离或是气体分离应用方面引起了研究人员的极大兴趣。
本论文以UiO-66-NH2为研究对象,系统性的考察了UiO-66-NH2微波合成,考察了微波合成UiO-66-NH2晶体分别在273K和293K条件下对CO2的吸附容量。
中科院研究生课件《催化原理》第五章配合物催化剂及其作用机理
催化原理
第三章:催化作用的化学基础 化学反应的电子概念;基元化学 反应机理;晶体场和配位场理论;均相、多相和酶催
化反应机理的同一性;催化剂结构对其催化性能的影
响 第四章:酸、碱催化及其作用机理 酸、碱的定义;一般酸、碱
催化反应;特殊酸碱催化反应;一般酸、碱和特殊
酸、碱催化反应的区别;酸函数和酸强度; Bronsted 规 规则; Lewis酸催化 第五章 配合物催化剂及其作用机理 配合物催化剂分类;配合 物催化剂的作用特点;配位催化中的有效原子规则及 其基元反应分类;配位催化中的多催化剂体系;各种
热烈欢迎
来自五湖四海的朋友们
进入中科院研究生院深造
催化原理
无机化学 有机化学 物理化学 分析化学 无机化工 化学工程 化学工艺 应用化学 生物化工 工业催化
催化科学与 化工机械 应用化学
化学工程
与技术
我国1971年开始
催化原理
无机:合成氨、硝酸和硫酸 ,自然涉及Fe, Pt, V2O5催化剂, 有机:生产甲醇、乙酸(甲醇+CO)和苯乙烯(乙苯脱氢)就 会涉及Cu-Zn-Al,Rh络合物,Fe3O4-K2O-Cr2O3; 分析:化学传感器;
加热方法
光化学方法 电化学方法 辐射化学方法
缺乏足够的化学选择性,消耗能量
消耗额外的能量
催化方法 既能提高反应速度,又能对反应方向进行控制, 且催化剂原则上是不消耗的。 应用催化剂是提高反应速度和控制反应方向较为有效的方法。 故催化作用和催化剂的研究应用,成为现代化学工业的重要 课题之一。
催化原理
第一章 绪论 1.1 催化科学和技术的发展历史 1.1 1.催化剂的发展历程 1.1 2.催化理论的发展过程 1.1 3.催化原理的有关资料 1.1 4.催化研究进展对工艺的影响 1.2 催化作用的化学本质 1.3 催化研究中的方法论