一元一次方程及其解法教案(精选多篇)[修改版]
《一元一次方程》的优秀教案(9篇)精选全文完整版

可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
《解一元一次方程》数学教案精选3篇

《解一元一次方程》数学教案精选3篇.3 解一元一次方程篇一教学目标1.使学生掌握含有以常数为分母的一元一次方程的解法;2.培养学生观察、分析、归纳及概括的能力,加强他们的运算能力。
教学重点:含有以常数为分母的一元一次方程的解法。
教学难点:正确地去分母。
(一)情境创设:与书同(二)探索活动由情景问题入手,引导学生审清题意,根据等量关系:学生总数的+学生总数的+学生总数的+3=学生总数列出方程。
即设毕达哥拉斯的学生有x名,想一想由题意得+++3=x.学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较。
思考: (1)怎样才能将它化成上节课中所学的方程的类型?(去分母)(2)如何去分母?(方程的每一项都乘以分母的最小公倍数)(三)自学例题1、解方程-=-1解:(本题应如何去分母?学生答)去分母,得4(2x-1)-(10x+1)=3(2x+1)-12,去括号,得移项,得合并同类项,得 -8x=-4,系数化1,得 x= (1)为了去分母,方程两边应乘以什么数? .(2)去分母应注意什么? .例2、解方程=+1 例 3、(2x-5)= (x-3)- 去分母时须注意:(1)(2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体。
建议进行专项训练,如,-乘以6,8……例4、-=3总结:解方程的一般步骤:1、去分母;2、去括号;3、移项;4、合并同类项;5、系数化为1(四)、教学小结:首先,应让学生思考以下问题,并回答:1.形式上比较复杂的一元一次方程是怎样求解的?2.它的解法的主要思路是什么?3.它的解法的主要步骤是什么?在计算或变形时,要养成良好的教学习惯,注意书写格式的规范性,避免在去分母,去括号、移项时易犯的错误。
.3 解一元一次方程篇二4.2 解一元一次方程的算法(三)教学目标1.在具体情景中建立方程模型。
2.能准确应用去括号法则解一元一次方程。
一元一次方程的解法教案

一元一次方程的解法教案篇一:7.3一元一次方程的解法教案(一)七年级数学〔上〕7.3一元一次方程的解法〔1〕设计人:佛山中学马冬梅〔〕审核人:张同华【教学目标】1、把握移项法则,会用移项法则对方程进展变形2、把握解一元一次方程的根本步骤:“移项”、“合并同类项”和“化未知数的系数为1”。
3、会解简洁的一元一次方程。
【重难点】重点:一元一次方程的解法步骤。
难点:移项法则【教学过程】一、检查课前预习。
〔指一列学生说出以下题目的答案〕1、等式的根本性质是什么?〔等式的根本性质是学习本节课的重要依据,学生答复后,全班同学齐读一遍〕2、利用等式的根本性质把以下一元一次方程化成“x=a”的形式.〔1〕x-5=7 〔2〕-5x=5课内探究:环节1:自主学习1、结合课前预习中的内容,自学课本,解方程x-2=5 ,2x=x+3〔1〕你觉察将方程的一项由等式一边移到另一边时,它的符号发生了什么变化?〔学生先自学,然后同桌争论沟通〕〔2〕把方程中某一项_______________,从方程的一边移到另一边,这种变形叫做____。
留意:〔1〕移项确定要转变符号〔2〕一般的,把含有未知数的项移到方程左边,不含未知数的项〔常数项〕移到右边。
二、稳固知:以下方程的变形正确吗?假设不正确,怎么改正?〔1〕由方程z+3=1,移项得z=1+3〔2〕由方程3x=4x-9,移项得3x-4x=-9(3) 由方程3x+4=-5x+6,移项得3x+5x=6-4(4)由方程5-2x=x-9,移项得-2x-x=9-5强调:〔移项确定要转变符号,不移项符号不变。
〕环节2、沟通提升:以小组为单位,学习沟通课本例1、2、3,共同争论解一元一次方程的步骤和留意事项,每组找代表汇报课本例1、2、3的解法,师用幻灯片显示解答过程。
集体沟通解题步骤。
1.移项,2.合并同类项,3.把未知数的系数化为1,4.检验。
依据学到的方法,解答以下方程。
试一试:〔1〕(2)〔3〕(3)〔指做得最快的4名同学在黑板上做出4道题然后集体沟通,找出薄弱环节,加强练习〕环节3、精讲点拨:问题:解方程要留意“移项”与“化未知数的系数为1”的区分。
一元一次方程教案(通用11篇)

一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。
3.1一元一次方程及其解法教学设计(第1课时)[修改版]
![3.1一元一次方程及其解法教学设计(第1课时)[修改版]](https://img.taocdn.com/s3/m/0acdec7b84868762cbaed5ad.png)
第一篇:3.1一元一次方程及其解法教学设计(第1课时)课题:3.1一元一次方程及其解法(第1课时)合肥市第四十八中学滨湖校区孙志峰教学目标:1.通过问题情境的分析,使学生掌握分析实际问题的一般方法,感受方程作为刻画现实世界有效模型的意义;2.通过观察、分析、归纳一元一次方程的概念,了解方程的解(根)及解方程等概念;3.理解等式的基本性质,并会利用等式的基本性质初步能解决简单一元一次方程并规范学生的解题格式;4.积极鼓励学生进行观察思考,利用已掌握的知识辨析相关问题,培养合作交流的意识和能力。
教学重点:1.一元一次方程的概念;2.等式的基本性质及利用等式的基本性质解一元一次方程。
教学难点:1.实际问题中数量关系的寻找;2.等式的基本性质由“数”推广到“式”。
教学方法:启发式教学。
教学过程:一、情境导入:“鸡兔同笼”问题今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何。
设计意图:从学生熟悉的问题引入,激发学生求知欲,渗透中国传统文化;问题1:在参加2016年里约奥运会的中国代表队中,游泳运动员46人,比女排运动员的4倍少2人,参加奥运会的女排运动员有多少人?思考:(1)题目中有哪些量?(2)这些量之间有怎样的关系呢?(3)如何表示这个等式呢?解:设参加奥运会的女排运动员有x人,由题意得:464x 2设计意图:通过奥运会运动员的问题情境,唤起学生的兴趣,激发学习热情,通过三个问题,教会学生分析实际问题的一般方法;问题2:某同学今年13岁,老师今年37岁,问:再过几年后,老师的年龄是该同学年龄的2倍?思考:(1)题目中有哪些量?(2)这些量之间有怎样的关系呢?(3)如何表示这个等式呢?设计意图:通过最贴近学生身边的问题,让学生能够用数学知识解决遇到的实际问题,体现数学的应用价值,也能体现方程相比小学算法的优越性;解:设再过x年后,由题意得:37x213x二:探究新知: 思考:观察这两个式子,它们有什么共同点呢?464x 2 ;36x212x;1.小组讨论:这几个方程有什么特征?(从未知数的个数与未知数的次数两方面去考虑)2.总结得出一元一次方程定义:只含有一个未知数,未知数的次数都是1,等式两边都是整式的方程叫做一元一次方程。
一元一次方程和它的解法教案

一元一次方程和它的解法教案【3篇】教学目标:学问与技能:1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简洁的方程。
3、把握检验某个数值是不是方程解的方法。
过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用学问解决实际问题的力气。
情感态度和价值观:让学生体会到从算式到方程是数学的进步,表达数学和日常生活亲切相关,生疏到很多实际问题可以用数学方法解决,激发学生学习数学的热忱。
教学重点:建立一元一次方程的概念,查找相等关系,列出方程。
教学过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用学问解决实际问题的力气。
情感态度和价值观:让学生体会到从算式到方程是数学的进步,表达数学和日常生活亲切相关,生疏到很多实际问题可以用数学方法解决,激发学生学习数学的热忱。
教学重点:建立一元一次方程的概念,查找相等关系,列出方程。
教学难点:依据具体问题中的相等关系,列出方程。
教学预备:多媒体教室,配套课件。
教学过程:设计理念:数学教学要从学生的阅历和已有的学问动身,创设有助于学生自主学习的问题情景,在数学教学活动中要制造性地使用数学教材。
课程标准的建议要求教师不再是“教教材”而是“用教材”。
本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热忱等方面做了有益的探究,现就几个教学片断进展探讨。
一、玩耍导入,设置悬念师:同学们,教师学会了一个魔术,情你们协作表演。
请看大屏幕,这是2023年10月的日历,请你用正方形任意框出四个日期,并告知教师这四个数字的和,教师马上就告知你这四个数字。
生1:24,师:2,3,9,10生2:84师:17,18,24,25师:同学们想学会这个魔术吗?生:想!师:通过这节课的学习,同学们确定能学会!【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用玩耍导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。
解一元一次方程教案(精选多篇)

解一元一次方程教案(精选多篇)第一篇:解一元一次方程教案解一元一次方程教案教学过程解一元一次方程来探究方程中含有括号的一元一次方程的解法.解方程2(x-2)-3(4x-1)=9(1-x).分析方程中有括号,设法先去括号.解2x-4-12x + 3 = 9-9x,????去括号-10x-1 =9-9x,?????? 方程两边分别合并同类项-10x + 9x = 1 + 9,?????? 移项-x =10, ????????合并同类项x = -10. ????????系数化为1注意(1)括号前边是“-”号,去括号时,括号内各项都要变号;(2)用分配律去括号时,不要漏乘括号内的项;(3) -x =10,不是方程的解,必须把系数化为1,得x = -10,才是结果.从上面的解方程可知,解含有括号的一元一次方程的步骤是:(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.三、实践应用例1 解方程:3(x-2)+1 = x-(2x-1).分析方程中有括号,先去括号,转化成上节课所讲方程的特点,然后再解方程.解去括号3x-6 + 1 = x-2x + 1,合并同类项3x-5 =-x + 1,移项3x + x = 1 + 5,合并同类项4x = 6,系数化为1x = 1.5.第二篇:解一元一次方程教案解一元一次方程(2)------------去分母教学内容:课本第99至第101页。
知识与技能目标:使学生掌握去分母解方程的方法,总结解方程的步骤。
过程与方法目标:经历去分母解方程的过程,体会把复杂转化为简单,把新转化为旧的转化思想。
情感目标:关注学生解方程中的表现,发展学生积极思考的学习态度,进一步认识生活与数学的关系。
教学重点:掌握去分母解方程的方法。
教学难点:求各分母的最小公倍数,以及去分母时,有时要添括号。
教学关键:正确利用等式性质,把方程去分母。
教学方法:自学--------辅学----------导学教学过程:一看一看,说一说看课本图知:33,.试问这个数是多少?二自学三辅学解:设这个数为x .由题意,得2x?1 x ?1x?x ?3332742(2x?1x?1x?x)?33?42去分母,得28x+21x+6x+42x=1386合并,得97x=1386.x? 138697答:这个数是x?138697四导学(做一做,说一说)3x?13x?22x?2?2?10?35小结? 作业:课本:?p102习题3.3第3、14题教学反思:第三篇:解一元一次方程教案3.2解一元一次方程(一)----合并同类项与移项(第1课时)教学目标:1、知识与技能目标:①经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇:一元一次方程及其解法教案课题:沪科版数学七年级(上册)§3.1 一元一次方程及其解法(第一课时)合肥市五十五中学蔡新莲一.教材分析:学生在小学已经学过列方程解简单应用题,但所学方程形式较简单,仅限于ax b c,ax bx c 的形式,(a,b,c,x都是非负数)。
本节教科书在描述一元一次方程的概念后,利用等式性质来解一元一次方程(比小学更为广泛),一元一次方程的解法是应用一元一次方程解决实际问题,解二元一次方程组及一元二次方程等内容的基础,是代数中的重要内容。
二.教学目标:1.通过对多个实际问题的分析,感受方程是刻画现实世界的有效模型体会学习方程的意义在于解决实际问题。
2.通过观察,归纳一元一次方程的概念。
3.理解等式的基本性质,会根据等式的基本性质解方程。
三.教学重难点:重点:一元一次方程的概念,运用等式的性质解方程难点:运用等式的性质解方程。
四.教学流程:1. 通过一些具体问题,引出一元一次方程概念。
2. 复习等式的基本性质。
3. 利用等式的基本性质,解一元一次方程。
五.教具准备:教师:多媒体课件,投影仪学生:练习本六.教学过程:(一)。
创设情境,引出概念问题1:在2008年北京奥运会中,中国共获得了51枚金牌,比澳大利亚的3倍还多9枚,问澳大利亚共获得了多少枚金牌?设澳大利亚共获得了x枚金牌,引导学生列出等量关系式:3x951问题2:王玲今年12岁,她爸爸今年36岁, 问再过几年,他爸爸的年龄是她年龄的2倍?设再过x年,他爸爸的年龄是她的2倍,引导学生列出等量关系式:36x2(12x)观察思考:上面的两个式子有什么共同点?【设计意图】用学生感兴趣的身边的例子引入,唤起同学的注意力,同时也为下面得到一元一次方程的概念埋下伏笔。
师生互动:得到一元一次方程的概念,同时教师明确方程的解的概念,指出一元方程的解也叫做根。
考考你:1.判断下列式子是不是一元一次方程:(1)2x45x 3(4)x 32.判断对错:(1)x=2是方程x-10=4x的解. (2)x y1(5)3x1(3)3a211(6)x1x(2)x=3和x=-3都是方程x290的解.【设计意图】加深对一元一次方程及根的理解。
(二)互动探究等式的性质多媒体演示:在一架已调为平衡的天平的两边,同时加入相同数量的小球,再同时减去相同数量的小球,学生观察结果。
思考:(1)如果将天平看成等式,从上面的两个演示中可以得到什么结论?(2)如果天平两边的小球个数同时扩大相同的倍数,或缩小为原来的几分之几,那么天平还平衡吗?能得到等式的什么性质呢?(3)如果小明和小文身高一样,那么小文和小明身高一样吗?你能得到等式还具有什么性质吗?(4)如果小明和小文身高一样,同时小文又和晓婷身高一样,那么小明和晓婷的身高有什么关系?你又能得到等式的什么性质呢?【设计意图】使同学们认识到生活中处处有数学,逐渐熟悉用数学语言来描述一些数学概念。
(三)巩固提高1.将等式的四条性质整体回顾一下,变零散为整合,体现知识的系统性2.想一想:说明下列变形是根据等式哪一条基本性质得到的:(1).如果5x+3=7,那么5x=4;(2).如果5x=4,那么x=0.8;(3).如果-8x=4,那么x=-0.5;(4).如果3x=2x+1,那么x=1;(5).如果-0.25=x,那么x=-0.25;(6).如果111111x,那么x. 236263【设计意图】熟悉等式基本性质的应用,1,2其实就是解方程的过程。
承上启下的作用。
例1 解方程3x951变式: 513x9露一手: 解方程(四)自主评价(1)5x78111(2)x2361.今天这节课我们学到了哪些知识?(1)一元一次方程的概念;(2)如何运用等式的性质解一元一次方程;2.把你的收获与不足与同伴分享.(五)分层作业:必做:课本92页第1,2两题选做:见大屏幕。
[设计意图]:使学生在掌握基础知识的同时,根据实际自身情况,得到不同的发展.(六)板书设计(略)(七)教学后记:第二篇:一元一次方程及其解法教案一元一次方程及其解法教学目标:1、经历对实际问题中数量关系的分析,建立一元一次方程的过程,体会学习方程的意义在于解决实际问题。
2、通过观察,归纳一元一次方程的概念。
3、理解等式的基本性质,并利用等式的基本性质解一元一次方程。
教学重点、难点教学重点:对一元一次方程概念的理解,会运用等式的基本性质解简单的一元一次方程。
教学难点:对等式基本性质的理解与运用。
教学过程:一:情境导入今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何二:导入课题§3.1一元一次方程及其解法三:问题情境导入问题1:在参加2004年雅典奥运会的中国代表队中,羽毛球运动员有18人,比跳水运动员的2倍少4人,参加奥运会的跳水运动员有多少人?如果设参加奥运会的跳水运动员有x人,则根据题意可列出方程2x-4=18 问题2 王玲今年12岁,她爸爸36岁,问再过几年,她爸爸的年龄是她年龄的2倍?如果设再过x年,则x年后王玲的年龄是岁则x年后爸爸的年龄是岁由题意可得:(让让学生做,然后交流。
)四:想一想看看式子:2x-4=18 36+x=2(12+x)1、它们属于我们小学里学过的什么内容?方程:含有未知数的等式叫方程。
2、上面的两个方程的左右两边的式子属于我们学过的代数式中的哪一类式子?它们都是整式3、如果方程的两边都是整式,我们就把这样的方程叫整式方程。
五:合作探究观察方程:2x-4=18 36+x=2 (12+x) 这两个方程有什么特征?(从未知数的个数与未知数的次数两方面去考虑)[ 一元一次方程:象上面的两个方程,只含有一个未知数,并且未知数的次数都是1,这样的整式方程叫一元一次方程。
六:相信你会判断判断下列各式是不是一元一次方程,是的打“√”,不是的打“x”。
(1) x+3y=4 ( ) (2) x2-2x=6 ( ) (3) -6x=0 ( ) (4) 2m +n =0 ( ) (5) 2x-y=8 ( ) (6) 2y+8=5y ( )七、回顾交流1:请同学们自己写出几个一元一次方程的例子。
2:请同学们回顾一下什么叫方程的解?方程的解:使方程左右两边相等的未知数的值叫方程的解。
3:解方程:求方程解的过程叫做解方程。
做一估:判断括号里的数是不是方程的解1. 2x-4=18 (x=11) 2. 36+x=2 (12+x) ( x=12)3、3x+1=7 ( x=3 )八、知识导航我们在小学里已经学过等式的基本性质,谁能告诉老师等式基本性质的内容吗?等式的基本性质1、等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
2、等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
九、做一做说明下列变形是根据等式的哪一条基本性质得到的?1、如果5x+3=7,那么5x=42、如果-8x=16,那么x=-23、如果-5a=-5b, 那么a=b4、如果3x=2x+1,那么x=1十、课堂小结1.通过这节课的学习,你有哪些收获?你还有哪些疑问?作业:1、课堂作业p91页习题3.1第2题2、课后预习下一节。
预习要点1、什么叫移项?2、会用移项的方法解一元一次方程。
第三篇:一元一次方程及其解法公开课教教案城关片公开课教案天长市桥湾中学李春凤20012年3月一元一次方程及其解法第一课时一元一次方程及其解法桥湾中学李春凤教学内容课本第82-83页课型:新授课教学目标知识与技能1.使学生了解一元一次方程的概念。
2.使学生掌握等式的基本性质3.使学生牢固地掌握最简单一元一次方程的解法过程与方法1.根据具体问题的数量关系,形成方程的模型,初步形成学生利用方程的观点认识现实世界的意识和能力。
2.经历具体实例的抽象概括过程进一步培养学生观察、分析、概括和转化的能力以及准确而迅速的运算能力。
3.通过分组合作学生活动,学会在活动中与人合作,并能与他人交流思维的过程与结果。
情感、态度与价值观:通过由具体实例的抽象概括的独立思考与合作学习的过程,培养学生实事求是的态度以及善于质疑和独立思考的良好的学习习惯。
教学重点1.等式的基本性质2.一元一次方程的概念和方程ax=b(a≠0)的解法。
教学难点正确地解方程ax=b(a≠0) 教具准备天平、幻灯机教学过程一、温过知新方程,方程的解创设问题情境:1.什么是等式?2.什么叫方程?方程的解?解方程?探究解决问题:含有未知数的等式叫做方程,使方程两边相等的未知数的值叫做方程的解。
一元一次方程的解也叫做根。
二、新课教学1.一元一次方程创设问题情境:在参加2004年雅典奥运会的中国代表队中,羽毛球运动员有18人,比跳水运动员的2倍少4人,问:参加奥运会的跳水运动员有多少人?探究解决问题:通过学生讨论:设参加奥运会的跳水运动员有x人,根据题意得:2x-4=18 创设问题情境:王玲今年12岁,她爸爸36岁,问再过几年,她爸爸年龄是她年龄的2倍数?探究解决问题:设再过x年,王玲的年年是(12+x)岁,她爸爸的年龄为(36+x)岁,是她的年龄的2倍数,得36+x=2(12+x) 创设问题情境:请找出上面两个方程具有的特点?(①只含有一个未知数②未知数的次数都是一次)探究解决问题在学生回答完上述问题的基本上,引出课题。
我们将具备上述特点的方程叫做一元一次方程。
请学生回答:什么叫一元一次方程?根据学生的回答,教师板书一元一次方程的概念。
这时,教师还需指出“元”是指未知数的个数,“次”是指方程中含有未知数项的最高次数。
课堂练习:下列是一元一次方程的是()(1)2x+y=10 (2)x2-x-6=0(3)x-1=1/2x (4)1/x=2 本节课我们将学习最简单的一元一次方程的解法。
2.等式的基本性质创设问题情境:等式应具备什么性质?教师可以通过天平的实验展示;在平衡的天平的两边同时增加或减少相同质量的砝码,天平仍然保持平衡;在平衡的天平两边同时增加或减少相同倍数质量的砝码,天平仍然保持平衡。
探究解决问题:等式的基本性质如下:(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果是等式,即:如果a=b,那么a+c=b+c a-c=b-c. (2)等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果是等式。
即:如果a=b,那么ac=bc,a/c=b/c(c≠0). 课堂练习:课本第83页练习第1题在小学,我们已经学过解最简单的一元一次方程ax=b(a≠0),今天学习利用等式的基本性质把某些简单的一元一次方程化为最简的一元一次方程,从而求得其解。
3.解方程探究解决问题:例1,解方程2x-4=18 在分析本题时,教师应向学生提出如下问题:(1)怎样才能将此方程化为ax=b的形式?(2)上述变形的根据是什么?(以上过程,如学生回答有困难,教师应作适当引导)解2x-4=18 方程两边都加上4,得2x-4+4=18+4 即2x=18+4(等式性质1)2x=22方程两边都除以2得x=11(等式性质2)检验:把x=11分别代入原方程的两边,得左边=2ⅹ11-4=18右边=18左边=右边所以x=11是原方程的解。