汽车车牌识别系统-车牌定位子系统的设计与实现 毕业论文
基于深度学习的汽车车牌识别系统的设计与实现

基于深度学习的汽车车牌识别系统的设计与实现摘要:随着智能交通系统的快速发展,汽车车牌识别技术在交通管理、停车场管理等领域发挥着重要作用。
本文设计并实现了一种基于深度学习的汽车车牌识别系统,该系统能够准确、快速地识别汽车车牌号码,提高交通管理的效率和智能化水平。
本文详细介绍了系统的总体设计、关键技术、功能模块以及系统测试等方面的内容。
关键词:深度学习;汽车车牌识别;智能交通系统一、引言汽车车牌识别是智能交通系统中的一个重要组成部分,它可以实现对车辆的自动识别和管理,提高交通管理的效率和准确性。
传统的车牌识别方法主要基于图像处理和模式识别技术,存在识别准确率低、鲁棒性差等问题。
随着深度学习技术的发展,基于深度学习的车牌识别方法逐渐成为研究热点。
深度学习方法具有强大的特征提取能力和泛化能力,可以有效地提高车牌识别的准确率和鲁棒性。
二、系统总体设计(一)设计目标本系统的设计目标是实现一个高效、准确、稳定的汽车车牌识别系统,能够在不同的光照、角度和天气条件下准确识别汽车车牌号码。
具体目标包括:1.识别准确率高:系统的识别准确率应达到 95% 以上。
2.识别速度快:系统的识别速度应在 1 秒以内。
3.鲁棒性强:系统应能够在不同的光照、角度和天气条件下稳定工作。
4.易于部署和维护:系统应具有良好的可扩展性和可维护性,便于部署和维护。
(二)系统架构本系统采用客户端 / 服务器架构,主要由车牌图像采集模块、车牌识别模块和数据库管理模块组成。
车牌图像采集模块负责采集汽车车牌图像,并将图像传输到车牌识别模块进行识别。
车牌识别模块采用深度学习算法对车牌图像进行识别,识别结果存储到数据库管理模块中。
数据库管理模块负责管理车牌识别结果,并提供查询和统计功能。
(三)工作流程1.车牌图像采集:通过摄像头或其他图像采集设备采集汽车车牌图像。
2.图像预处理:对采集到的车牌图像进行预处理,包括图像增强、去噪、二值化等操作,以提高图像质量。
牌照识别系统的设计与实现

牌照识别系统的设计与实现随着社会的发展,更多的交通工具进入了人们的日常生活中,而交通问题也日益成为城市管理和公共安全的关注焦点。
在这种情况下,牌照识别系统应运而生,其作用在于识别和跟踪每一辆汽车。
牌照识别系统的设计与实现是一项繁琐的工作,需要合理的算法和高效的设备。
本文将详细介绍牌照识别系统的设计思路和实现方式。
一、牌照识别系统简介牌照识别系统是一种自动化的系统,它可以从摄像头或其它设备获取一帧图像,然后进行处理,提取出图像中的车辆牌照。
牌照识别系统大大提高了警察和交通管理人员的工作效率,同时,也可以对公共安全和交通流量产生积极的影响。
下面是牌照识别系统的工作流程:获取图像—预处理—特征提取—物体检测—牌照识别—结果输出二、车牌的识别方法在牌照识别系统中,车牌的识别是关键环节,它决定了整个系统的性能和准确率。
牌照识别方法主要有以下几种:1. 基于模板匹配的方法这种方法基于已知的模板图像,通过对比图像相似值来识别车牌。
该方法在识别过程中需要与大量的模板图像进行匹配,所以需要很强的计算能力。
同时,如果摄像头的角度和位置变化较大,模板匹配的效果会大打折扣,很难识别车牌。
2. 基于字符分割的方法这种方法将车牌的图像分成多个字符块,然后通过字符识别来判断每一个字符是什么,最后将字符拼接起来得到车牌号。
这种方法需要进行大量的图像处理和分割操作,而且对车牌的位置和角度较为敏感,准确率有待提高。
3. 基于深度学习的方法深度学习是现代计算机视觉领域的核心研究方向,其通过学习数据来发现数据之间的内在联系,进而实现对图像的自动分析和理解。
近年来,基于深度学习的牌照识别方法不断地被提出和改进,并在实际应用中得到了很好的效果。
目前,基于深度学习的车牌识别系统已经成为了业界的主流解决方案。
三、牌照识别系统的实现在实现牌照识别系统时,需要考虑以下几个方面:1. 硬件设备的选择牌照识别系统的硬件设备需要满足高清晰度的图像采集,同时具备较强的处理能力和大容量的存储空间。
汽车车牌识别系统-车牌定位子系统的设计与实现大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译文献、资料中文题目:汽车车牌识别系统-车牌定位子系统的设计与实现文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14汽车车牌识别系统---车牌定位子系统的设计与实现摘要汽车车牌识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。
在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来实现车牌定位,这是进行车牌字符识别的重要步骤,定位的准确与否直接影响车牌识别率。
本次毕业设计首先对车牌识别系统的现状和已有的技术进行了深入的研究,在此基础上设计并开发了一个基于MATLAB的车牌定位系统,通过编写MATLAB文件,对各种车辆图像处理方法进行分析、比较,最终确定了车牌预处理、车牌粗定位和精定位的方法。
本次设计采取的是基于微分的边缘检测,先从经过边缘提取后的车辆图像中提取车牌特征,进行分析处理,从而初步定出车牌的区域,再利用车牌的先验知识和分布特征对车牌区域二值化图像进行处理,从而得到车牌的精确区域,并且取得了较好的定位结果。
关键词:图像采集,图像预处理,边缘检测,二值化,车牌定位ENGLISH SUBJECTABSTRACTThe subject of the automatic recognition of license plate is one of the most significant subjects that are improved from the connection of computer vision and pattern recognition. In LPSR, the first step is for locating the license plate in the captured image which is very important for character recognition. The recognition correction rate of license plate is governed by accurate degree of license plate location.Firstly, the paper gives a deep research on the status and technique of the plate license recognition system. On the basis of research, a solution of plate license recognition system is proposed through the software MATLAB,by the M-files several of methods in image manipulation are compared and analyzed. The methods based on edge map and das differential analysis is used in the process of the localization of the license plate, extracting the characteristics of the license plate in the car images after being checked up for the edge, and then analyzing and processing until the probably area of license plate is extracted,then come out the resolutions for localization of the car plate.KEY WORDS:imageacquisition,image preprocessing,edge detection,binarization,licence,license plate location前言 (1)第1章绪论 (2)§1.1 课题研究的背景 (2)§1.2 车牌的特征 (2)§1.3 国内外车辆牌照识别技术现状 (3)§1.4车牌识别技术的应用情况 (4)§1.5 车牌识别技术的发展趋势 (5)§1.6车牌定位的意义 (6)第2章 MATLAB简介 (7)§2.1 MATLAB发展历史 (7)§2.2 MATLAB的语言特点 (7)第3章图像预处理 (10)§3.1 灰度变换 (10)§3.2 图像增强 (11)§3. 3 图像边缘提取及二值化 (13)§3. 4 形态学滤波 (18)第4章车牌定位 (21)§4.1车牌定位的主要方法 (21)§4.1.1基于直线检测的方法 (22)§4.1.2 基于阈值化的方法 (22)§4.1.3 基于灰度边缘检测方法 (22)§4.1.4 基于彩色图像的车牌定位方法 (25)§4.2 车牌提取 (26)结论 (30)参考文献 (31)致谢 (33)随着交通问题的日益严重,智能交通系统应运而生。
车牌定位-本科毕业设计论文

交通图象检测与处理方法研究对于交通安全、交通管理与控制具有非常重要的理论意义和实用价值。
通过视频图象的检测与识别,可以实时检测交通违章现象、识别违章车辆的车牌号码,为公安交通管理部门提供强有力的执法证据。
因此,研究交通图象检测与处理方法对智能交通运输系统的发展具有重要的推动作用。
本系统着力对车牌的识别过程进行研究和实现。
主要能够对带有车牌的图片灰度化,二值化,中值滤波等处理,并能够截取车牌图片。
车牌定位是指将车牌区域从车辆图像中分割出来,是实现整个系统的关键环节。
而车牌定位主要包含两个关键技术问题:图像的预处理和车牌定位的算法。
本论文主要应用VC语言编程,对其车牌图像进行预处理,有效的解决一些导致识别、定位错误的问题。
关键词:车牌定位,二值化,预处理Traffic image processing method for testing and research, traffic safety management and control has important theoretical significance and practical value. Through video images of detection and recognition can real-time detection and identification of violate the traffic violations phenomenon plate number for public security traffic management department, provide strong evidence of law enforcement.The focus on the license plate identification system research and implementation process. Mainly with the license plate on the picture to gray level transformation, binarization, median filtering and other processing, and can intercept license plate image.License plate location is license plate recognition technology a vital part . License plate location refers to the license plate out from the vehicle image segmentation is the key to the entire system. The license plate location primarily consists of two key technologies: image preprocessing and license plate location algorithm. Main application VC language program, to the license plate identification, orientation, image analysis, processing. And some of the mistakes in recognition, positioning problem.Keywords:Plate Positioning,Binarization ,Pretreatment目录1 前言 (1)2 车牌定位系统概述 (2)2.1 车牌定位系统基础 (2)2.1.1 我国车辆与车牌现状 (2)2.1.2 车牌定位的研究意义 (2)2.1.3 国内外学者研究现状 (3)2.2 图像处理技术基础 (4)2.2.1 数字图像基本知识 (4)2.2.2 数字图像预处理 (4)2.2.3 数字图像问题剖析 (6)2.2.4 开发相关知识 (6)3 车牌定位于提取技术 (7)3.1 车牌定位与提取流程 (7)3.2 预处理过程 (8)3.2.1 图像的灰度化处理 (8)3.2.2 直方图均衡化 (9)3.2.3 图像的二值化 (11)3.2.4 中值滤波 (14)3.3 车牌区域定位与分割 (17)3.3.1 车牌特征 (17)3.3.2 车牌分割 (18)3.3.3 彩色分割 (20)3.3.4 基于投影的精确定位 (23)4 总结 (29)4.1 论文总结 (29)4.2 问题改进与展望 (30)4.3 心得体会 (31)致谢 (32)参考文献 (33)1 前言随着国民经济的飞速发展,交通状况日益恶化,这几乎成为所有大中城市的通病。
车牌照识别系统设计与实现毕业设计论文

车牌照识别系统设计与实现Design and Implementation of Car License Plate Recognition System毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分内容。
保密的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它摘要汽车牌照自动识别系统是智能交通系统的重要组成部分,是高科技的公路交通监控管理系统的主要功能模块之一,汽车牌照识别技术的研究有重要的现实应用意义。
车牌识别毕业设计论文

车牌识别毕业设计论文车牌识别是一项实用的技术,已广泛应用于交通管理、安全监控和智能导航等领域。
本毕业设计旨在研究和实现一种高效准确的车牌识别系统,通过图像处理和模式识别的方法,实现车牌的自动检测、字符分割和识别。
在车牌识别系统中,图像处理是最关键的环节之一、首先,需要对图像进行预处理,包括二值化、滤波和去噪等操作,以提高后续处理的准确性。
然后,通过边缘检测和形态学操作,可以实现车牌的自动检测。
通过比较不同车牌的特征,可以找到最佳的车牌位置。
在车牌的字符分割过程中,一般采用基于垂直和水平投影的方法。
首先,通过垂直投影,可以得到每个字符的位置和宽度。
然后,通过水平投影,可以得到字符的高度和行间距。
通过这些信息,可以将车牌字符逐个分割出来,为后续的字符识别提供准备。
字符识别是车牌识别系统的最后一步,也是最复杂的一步。
常用的方法包括基于模板匹配和基于机器学习的方法。
在模板匹配中,需要提前准备一组字符模板,并将待识别的字符与模板进行比较,找出最佳匹配的字符。
在机器学习方法中,常用的算法包括支持向量机(SVM)和深度学习等,通过训练大量的样本数据,建立一个分类模型,实现字符的自动识别。
在实际应用中,车牌识别系统还需要考虑到诸多因素,如车牌大小的变化、光线条件的差异和图像角度的旋转等。
为了提高系统的鲁棒性,可以采用自适应阈值处理、学习算法和特征提取等技术手段。
通过本毕业设计,可以深入了解车牌识别的原理和实现方法,并通过实验验证其准确性和效率。
此外,还可以进一步优化和改进车牌识别系统,以提高其性能和适应性。
《2024年针对雾霾天气的车牌识别系统的设计与实现》范文

《针对雾霾天气的车牌识别系统的设计与实现》篇一一、引言在如今城市环境污染日益严重的情况下,雾霾天气频繁出现给城市交通管理和车辆监管带来了巨大的挑战。
因此,开发一套针对雾霾天气的车牌识别系统,成为了迫切的需求。
该系统不仅可以有效提升交通管理的智能化水平,还可以加强车辆的安全监管,减少交通事故的发生。
本文将详细介绍针对雾霾天气的车牌识别系统的设计与实现过程。
二、系统设计1. 系统架构设计本系统采用模块化设计思想,主要包括图像预处理模块、车牌定位模块、车牌字符识别模块和系统管理模块。
其中,图像预处理模块负责对输入的图像进行去噪、增强等处理,以便后续的识别工作;车牌定位模块通过图像处理技术,自动定位并提取出车牌区域;车牌字符识别模块负责对提取出的车牌进行字符分割和识别;系统管理模块则负责整个系统的运行管理和数据维护。
2. 图像预处理图像预处理是车牌识别系统的重要环节,主要目的是提高图像的质量,以便后续的识别工作。
预处理过程包括去噪、对比度增强、二值化等操作。
其中,去噪是去除图像中的无用信息,如雾霾、光线干扰等;对比度增强则是通过调整图像的亮度、对比度等参数,使车牌区域更加清晰;二值化则是将图像转换为黑白二值图像,以便后续的图像处理工作。
3. 车牌定位车牌定位是车牌识别系统的关键环节,主要通过图像处理技术自动定位并提取出车牌区域。
常用的车牌定位方法包括颜色特征法、边缘检测法、模板匹配法等。
在实际应用中,本系统采用了多种方法的组合应用,以提高车牌定位的准确性和稳定性。
4. 车牌字符识别车牌字符识别是车牌识别系统的核心环节,主要负责对提取出的车牌进行字符分割和识别。
该过程主要包括字符分割和字符识别两个步骤。
字符分割是通过图像处理技术将车牌上的每个字符分割出来;字符识别则是通过机器学习、深度学习等技术对分割出的字符进行识别。
为了提高识别的准确性和效率,本系统采用了多种算法的组合应用。
三、系统实现在系统实现过程中,我们采用了多种技术和工具。
车牌识别系统的设计与实现

车牌识别系统的设计与实现摘要智能交通系统是21世纪道路交通管理的发展趋势。
高速公路的不断发展和车辆管理体制的不断完善,为智能交通管理系统进入实际应用领域提供了契机。
牌照自动识别监控系统正是在这种应用下研制出来的,它能够自动、实时地检测车辆、识别汽车牌照,从而监控车辆的收费、闯关、欠费以及各种舞弊现象。
作为智能交通系统的重要组成部分,汽车牌照识别技术(License Plate Recognition, LPR,简称“车牌通”)是一个以特定目标为对象的专用计算机视觉系统,该系统能从一幅图像中自动提取出车牌图像,自动分割字符,进而对字符进行识别,它运用模式识别、人工智能技术,对采集到的汽车图像,能够实时准确地自动识别出车牌的数字、字母及汉字字符,并以计算机可直接运行的数据形式给出识别结果,使得车辆的电脑化监控和管理成为现实。
关键词:牌照识别,智能交通管理系统,车牌定位,字符分割License Plate Location and Recognition SystemAbstractIntelligent Transportation System is a developing trendence of Transportation Management in the 21st century. The expressway is developing constantly, and vehicle management system is perfecting. It has offered the opportunity for the fact that the Management System of the intelligent transportation entering the application actually. The License Plate Recognition system just developed out under this application, it can measure vehicle , discern automobile license plate automaticly in real-time, thus control charge of vehicle, make a breakthrough, owe fee and various kinds of not to practice fraud the phenomenon. Important component as the intellectual traffic system, LPR is a computer visual system for special purpose of object, this system can draw License Plate image and separate character automaticly from a image , and then distinguishes for characters, it utilizes template recognition and the technology of artificial intelligence, that automobile image carries out that arrives for collection can distinguish character, character and the figure of License Plate accurately, may give identification result with data directly, make the monitoring of vehicle become realistic.Key words:LPR( License Plate Recognition); ITS (Intelligent Transportation System) ;template operation目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 引言 (1)1.2 研究背景及意义 (1)1.3 论文主要研究内容 (3)第二章车牌识别系统简介 (4)2.1 车牌识别系统概述 (4)2.2 图像的灰度化 (5)2.3 图像的二值化和阈值处理 (6)2.4 图像的锐化 (7)2.5 图像的去噪 (7)2.6 灰度拉伸 (7)2.7 图像的倾斜矫正 (7)2.8 车牌字符分割 (8)2.9 字符识别 (8)第三章 LPR系统的设计与分析 (9)3.1 引言 (9)3.2 LPR中的关键技术及其算法实现 (9)3.2.1 车牌区域提取 (9)3.2.2 牌照图像二值化 (22)3.2.3 模板运算 (28)第四章系统实现 (31)4.1 主要数据结构 (31)4.2 硬件支持 (31)4.3 软件的安装及系统的实现 (32)第五章总结 (34)参考文献 (35)致谢 (36)第一章绪论1.1引言伴随着世界各国汽车数量的增加,城市交通状况日益受到人们的重视。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车车牌识别系统---车牌定位子系统的设计与实现摘要汽车车牌识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。
在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来实现车牌定位,这是进行车牌字符识别的重要步骤,定位的准确与否直接影响车牌识别率。
本次毕业设计首先对车牌识别系统的现状和已有的技术进行了深入的研究,在此基础上设计并开发了一个基于MATLAB的车牌定位系统,通过编写MATLAB文件,对各种车辆图像处理方法进行分析、比较,最终确定了车牌预处理、车牌粗定位和精定位的方法。
本次设计采取的是基于微分的边缘检测,先从经过边缘提取后的车辆图像中提取车牌特征,进行分析处理,从而初步定出车牌的区域,再利用车牌的先验知识和分布特征对车牌区域二值化图像进行处理,从而得到车牌的精确区域,并且取得了较好的定位结果。
关键词:图像采集,图像预处理,边缘检测,二值化,车牌定位ENGLISH SUBJECTABSTRACTThe subject of the auto matic recognition of license plate is one of the most significant subjects that are improved fro m the connection o f computer vision and pattern recognition. In LPSR, the first step is for locating the license plate in the captured image which is very important for character recognition. The recognition correctio n rate of license plate is governed by accurate degree of license plate location.Firstly, the paper gives a deep research on the status and techniq ue of the plate license recognition system. On the basis of research, a solution of plate license recognition system is proposed through the software MATLAB,by the M-files several of methods in image manip ulatio n are co mpared and analyzed. The methods based on edge map and das differential analysis is used in the process of the localization of the license plate,extracting the characteristics of the license plate in the car images after being checked up for the edge, and then analyzing and processing until the probably area of license p late is extracted,then come out the resolutions for localization of the car plate.KEY WORDS:imageacquisition,image preprocessing,edge detection,binarizatio n,licence,license plate locatio n目录前言 (4)第1章绪论 (5)§1.1 课题研究的背景 (5)§1.2 车牌的特征 (5)§1.3 国内外车辆牌照识别技术现状 (6)§1.4车牌识别技术的应用情况 (8)§1.5 车牌识别技术的发展趋势 (8)§1.6车牌定位的意义 (9)第2章 MATLAB简介 (10)§2.1 MATLAB发展历史 (10)§2.2 MATLAB的语言特点 (10)第3章图像预处理 (13)§3.1 灰度变换 (13)§3.2 图像增强 (14)§3. 3 图像边缘提取及二值化 (16)§3. 4 形态学滤波 (21)第4章车牌定位 (24)§4.1 车牌定位的主要方法 (24)§4.1.1基于直线检测的方法 (25)§4.1.2 基于阈值化的方法 (25)§4.1.3 基于灰度边缘检测方法 (25)§4.1.4 基于彩色图像的车牌定位方法 (28)§4.2 车牌提取 (29)结论 (33)参考文献 (34)致谢 (36)前言随着交通问题的日益严重,智能交通系统应运而生。
从20世纪90年代起,我国也逐渐展开了智能交通系统的研究和开发,探讨在现有的交通运输网的基础上,提高运输效率,保障运输安全。
我国加强智能交通系统(ITS)的研究与开发势在必行,特别是考虑到我国的国情和我国经济的快速发展,社会信息化程度日益提高,交通管理智能化成为发展的趋势。
汽车牌照自动识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。
车牌识别的目的是对摄像头获取的汽车图像进行预处理,确定车牌位置,提取车牌上的字符串,并对这些字符进行识别处理,用文本的形式显示出来。
车牌自动识别技术在智能交通系统中具有重要的应用价值。
在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来,这是进行车牌字符识别的重要步骤,定位准确与否直接影响车牌识别率。
本次设计主要对车牌的定位做了比较详细的研究。
汽车牌照自动识别系统作为一种交通信息的获取技术在交通车辆管理、园区车辆管理、停车场管理有着特别重要的应用价值,受到业内人士的普遍关注。
车牌自动识别的处理有三部分组成,其中车牌定位作为最关键的技术,成为重点研究的对象。
车牌定位的成功与否以及定位的准确程度将会直接决定后期能否进行车牌识别以及识别的准确度。
由于在现实中,汽车的车牌图像受到光照、背景、车型等外界干扰因素以及拍摄角度、远近等人为因素的影响,造成图像受光不均匀,车牌区域不明显,给车牌区域的提取带来了较大的困难。
车牌定位的方法有很多种,目前比较经典的定位方法大都在基于灰度图像的基础上。
本次毕业设计就针对灰度图像的定位进行了研究。
针对不同背景和光照条件下的车辆图像,提出了一种基于灰度图像灰度变化特征进行车牌定位的方法。
依据车牌中不同区域的灰度分布,车牌定位时可以首先将彩色车牌进行灰度化然后再进行车牌定位。
第1章绪论§1.1 课题研究的背景随着21世纪经济全球化的到来,高速度、高效率的生活节奏,使车辆普及成为必然的趋势,交通管理自动化越来越成为亟待解决的问题。
现代智能交通系统 (Intelligent Transportation System,ITS)中,车辆牌照识别(License Plate Recognition,LPR)技术是计算机视觉与模式识别技术在交通领域应用的重要研究课题之一,是实现交通管理能够智能化的重要环节,其任务是分析、处理汽车图像,自动识别汽车牌号。
LPR系统可以广泛应用于电子收费、出入控制、公路流量监控、失窃车辆查询和停车场车辆管理等需要车牌认证的场合;尤其在高速公路收费系统中,实现不停车收费提高公路系统的运行效率,LPR系统更具有不可替代的作用。
因而从事LPR技术的研究具有极其重要的现实意义和巨大的经济价值。
LPR系统中的两个关键子系统是车牌定位系统和车牌字符识别系统。
关于车牌定位系统的研究,国内外学者已经做了大量的工作,但实际效果并不是很理想,比如车牌图像的倾斜、车牌表面的污秽和磨损、光线的干扰等都是影响定位准确度的潜在因素。
为此,近年来不少学者针对车牌本身的特点、车辆拍摄的不良现象及背景复杂状况,先后提出了许多有针对性的定位方法,使车牌定位在技术和方法上都有了很大的改善。
然而现代化交通系统不断提高的快节奏,将对车牌定位的准确率和实时性提出更高的要求,因而进一步加深车牌定位的研究是非常有必要的。
§1.2 车牌的特征车牌的本身具有许多固有特征,这些特征对不同的国家是不同的,我国现在使用的车牌主要根据中华人民共和国机动车牌号GA36-92标准,具有以下特征:(1)形状特征:标准的车牌外轮廓尺寸440*140,字符高90,宽45,字符间距12,间隔符宽10。
整个字符的高宽比例近似为3:1,车牌的边缘是线段围成的有规则的矩形。
主要用在车牌的定位分割。
(2)颜色特征:现有的字符颜色与车牌底色搭配有四种类型,蓝底白字,黄底黑字,白底黑字,黑底白字。
这部分特征主要用在对彩色图像进行车牌的定位。
(3)字符的特征:标准的车牌上有7个字符,呈水平排列,待识别的字符模板可以分为一下三类,汉字,英文字母,阿拉伯数字,主要用于对字符匹配识别方面。
(4)其他国家的汽车牌照格式(如汽车牌照的尺寸大小,牌照上的字符排列等)通常只有一种,而我国则根据不同车辆、车型、用途,规定了多种牌照格式(例如分为军车、警车、普通车等)。
(5)我国汽车牌照的规范悬挂位置不唯一。
(6)由于环境、道路或人为因素造成汽车牌照污染严重,这种情况下,国外发达国家不允许上路,而在我国仍可上路行驶。
车牌与汽车的其它区域相比,还有以下主要特征:(1)车牌区域中的垂直边缘比水平边缘密集,而车身其它部分的水平边缘明显,垂直边缘较少。
(2)灰度变化特征:车牌的底色、边缘颜色,车辆外部的颜色都是不同的,表现在图像中就是灰度级互不相同,这就在车牌边缘形成了灰度突变边界。
实际上,车牌的边缘在灰度上的表现是一种屋脊状边缘。
在车牌区域内部,字符和车牌底的灰度较均匀的呈现波峰波谷。
(3)有相对集中和规则的纹理特征。
由于我国汽车车牌识别的特殊性,这就导致了采用任何单一识别技术都是难以奏效的。
§1.3 国内外车辆牌照识别技术现状目前,国内外有大量关于车牌识别方面的研究报道。
国外在这方面的研究工作开展较早。
在上世纪70 年代,英国就在实验室中完成了“实时车牌检测系统”的广域检测和开发。
同时代,诞生了面向被盗车辆的第一个实时自动车牌监测系统。