从不同方向看
从不同的方向看几何体(修改)-教学课件(冀教)

观察思考
①
②
③
②①⑤④③
④
⑤
观察思考
从正面、左面、上面 看图中的几何体,分别得 到三个平面图形,请指出 这三个平面图形,分别是 从哪个方向看这个几何体 得到的?
上面
左面
正面
上面
左面
(2)
故城县聚龙中学 秦玉晨
正方体
正方体
正方体的三视 图都是正方形。
主视图
左视图
俯视图
圆柱
圆柱的主视图和左视 图都是长方形,俯视 图是圆。
主视图
左视图
俯视图
四棱锥
四棱锥的主视图和左视 图都是三角形,俯视图 是含对角线的正方形。
主视图
左视图
俯视图
补充练习
一个长方体的立体图如图 所示,请画出它的三视图.
解:
5cm 3cm 2cm
主视图
左视图
主视方向
补充练习
2.如图:一个六 棱柱和长方体放置在 同一个桌面上.请画 出三视图.
主视图
左视图
俯视图
学到了什么?
主视图
实物图
从正面看 从不同方向看 从左面看
立体图
平 面 图 左视图 形
俯视图
(1)诗中描绘出诗人面对庐山看到的两幅不同的画 面,你能用简洁的图形把它们形象的勾勒出来吗? (2)诗中除蕴含着数学道理外,还蕴含着一个深 刻的生活哲理,请你与同学交流一下你的看法和想 法,并用自己的话简单的叙述出来.
生活哲理:
人们看问题,认识事物,往往带有片面 性,不可避免地有各自的局限,只有横看、 侧看、远看、近看、前看、后看……从不 同的角度多方面地了解,纵观全貌,才能 对事物有正确、全面的认识.
从不同方向看教学反思

从不同方向看教学反思从不同方向看教学反思本节课的引入由于运用多媒体教学和采用了学生耳熟能详的故事,并配以优美的音乐,立即激发了学生浓厚的学习兴趣,把学生马上吸引到本节课的问题情境中,新知识引起学生强烈的探究欲望。
接下来精心设置的两个活动使学生亲身体验,从不同方向观察同一物体,可能得到不同的结论。
学生在亲身经历从不同方向观察物体的活动过程中,发展了空间观念,画三视图,增强了学生的探究能力,动手操作能力,突出了学生自主探究的学习方式。
在课的最后,我设置了体验成功、快乐共享环节,学生畅谈本节课的所获感想,有困惑的学生进行质疑,使每位学生都有不同程度的收获,体验数学课应是愉悦的、成功的,从而激发学生学习数学的潜能。
本课件利用多媒体的手段,使课堂为得更加生动有趣,身为老师需要不断学习,不断创新。
传统教学很少用电脑,现在几乎节节离不开电脑。
需教师会用几何画板,会做幻灯片,会处理图片。
老师不但会用,而且还可以利用电脑软件制作精美的课件,发挥了教师的创造力,新教材的使用为教师提供了拓展创新空间。
本节课的成功之处:(1)导入新颖。
课题提示自然,这是本节课的一大亮点。
(2)在教学的实际环节中,充分利用现代信息技术教学手段,将各种立体图形的形象,直观的电脑动画进行演示,让学生在视听结合的环境中,仔细观察,认真分析,小组内合作,小组间交流,通过自己的努力获取新的知识,学生始终在轻松愉快的氛围内开展学习。
(3)内容安排从简单到复杂。
从具体到抽象,从低层次的展开到高层次的结合,不断深化,在圆满完成本课教学内容之余,非常适宜地安排了课题拓展学习,培养了学生的空间想像能力。
(4)在学生已掌握本课知识后,设计了一个同位竞赛的活动,让学生自己搭建立方体画主视图和左视图,让学生充分发挥自己的想像力,赋予学生一个更为广阔的空间。
本课不足之处:(1)在探究过程中,没有进一步启发、诱导学生,进一步观察从右边看到的图形及从后面看到的图形。
(2)对圆锥、圆柱、棱柱等较难理解的三视图的问题,没有作补充,没有让学生有一个对此进行动手操作,充分认识。
1.4从不同的方向看(1)

1.4从不同的方向看(第一课时)一、教学目标知识与技能1.在观察的过程中让学生初步体会从不同方向观察物体可能看到不同的结果,从中发展学生的空间观念,积累学生的数学活动经验.2.能识别简单物体或简单组合体的三视图,会画简单物体或简单组合体的三视图.3.能在与他人交流的过程中,合理清晰地表达自己的思维过程.过程与方法1.结合一些具体的实物的情境,通过从不同方向观察,发现从不同方向观察同一物体可能看到不同的图形,然后过渡到讨论立方体及其简单组合体的三视图.2.本节课采用“实践—探究—发现”的方法,运用多媒体及其教具、学具,引导学生通过“看—做—想—做”等方式,让学生学会知识、熟练技能、掌握方法、形成能力.情感、态度与价值观有意识地培养学生学习数学的积极情感,激发学生对空间与图形学习的好奇心和学习数学的兴趣,养成善于观察、细心观察的良好习惯,初步形成与他人合作交流的意识.二、学情分析三、教学重点、难点及关键重点1.从数学的角度体会不同方向观察同一物体可能看到不同的结果并能合理的描述.2.能画简单立方体及其组合的三个视图.难点画简单立方体及其组合的三个视图.关键创设丰富的情境,让学生于观察、交流中体会不同方向看某个(或某组)物体时看到的图像可能是不同的;多利用实物模型帮助学生认识三视图。
突破方法从采用小组交流合作和“分类与整合”的数学思想相结合的方法来突破难点.四、教法与学法导航教学方法演示法:把实物模型、教具或多媒体课件演示给学生看,使学生直观、具体、形象地感知图形,并且变课堂被动为主动。
通过观察、动手操作、探索发现、归纳总结,生成知识.实验法:让学生动手操作,搭建立方组合体,发展空间观念.学习方法讨论法:创设情境,让他们讨论,合作交流,互相促进、共同学习.练习法:精心设计随堂练习,使学生的知识水平得到恰当的发展和提高.五、教学准备教师准备:制作多媒体课件,教学模型.学生准备:1.准备实物:乒乓球、热水瓶、玻璃杯.2.自制模型:长方体(两种)、四棱锥、正方体、圆柱.六、教学过程(一)回顾与思考讲《盲人摸象》的故事,提请学生思考:为什么不同的盲人得出不同的大象形状?(学生自由回答,教师整理)【说明】认识物体,一个十分重要的方法是观察,从不同的角度观察得到的效果不一样.(二)、复习引入活动一创设问题情境,引入新课:问题1:(幻灯片1)展示一辆汽车从不同方向拍摄的照片,从这组照片你能感受到什么?问题2:(幻灯片2苏轼的《题西林壁》)《题西林壁》,谁能说说这首诗的意思呢?【说明】问题1:让学生意识到生活中确实存在从不同方向看的现象,另外跨越学科界限。
从不同方向看立体图形

3. 从上面看时,眼睛在几何体的正上方,视线与放置几何体的平面(如桌面)垂 直。
温馨提示:看几何体时,最好用一只眼睛,以减少立体感,增强平面感。
典型例题
从上面看
从左面看
长方 体
从正面看
典型例题
从上面看
从左面看
从正面看
典型例题
从上面看
从左面看
从正面看
典型例题
如图,分别从正面、左面、上 面观察四棱锥,各能得到什么平
3
4
5
6
从正面、左面、上面三个方向观察立体图形所得 到的平面图形也叫做三视图(主视图、左视图、俯视图)
从上面看
从左面看 主视图
从正面看
左视图
俯视图
请画出下面立体图形的三视图
主视图
左视图
俯视图
请画出下面立体图形的三视图
主视图
左视图
俯视图
拓广探究
②
图中是一个由9个正方体组成的
立体图形,分别从正面、左面、
面图形?
解:得到的平面图形如图 所示:
从正面看
从左面看
从上面看
巩固练习
考考你:
从不同方向观察右图,往往会得到不同形状的平面图形,聪明的你一定 知道吧?(填序号) 从正面看得到的是____; 从左面看得到的是____. 从上面看得到的是____;
从 看左
面
从上面看
从正面看
1
2
12 34 56
反思:完成此题后,你能总结什么经验?
从你所在的位置看这组几何体,看到的是 什么样子?能否把你所看到的样子画下来?
学海冲浪
一.选择题:
从正面看( A ) 从左面看( A ) 从上面看( B )
三年级数学从不同方向看

长方体
四棱锥
正方体
请猜一猜,这五幅图是从哪五个方向看得到的?
3.
由三视图还原某物体
主视图、左视图和俯视图都是相等的正方 形,该物体是 正方体 ; 主视图、左视图和俯视图都是相等的圆, 该物体是
球
;
主视图、左视图都是相等的长方形,俯视 圆柱 ; 图是圆,则该物体是
再见
; / 菲律宾华人网 ;
请欣赏漫画并思考 : 为什么会出现争执?
漫画
“6”与“9”
你能记住吗?
从正面看到的图形称为主视图。 从上面看到的图形称为俯视图。 从左面看到的图形称为左视图。
主视图 俯视图 左视图
例: 从左想
俯视图
有没有无论从哪个方向 观察同一个物体时,看 到的图形都一样?
例如:
是不是同一物体,从不同方向看结 果一定不一样呢? 我们得到这样的结论: 从不同方向观察同一物体时,可能 看到不同的图形。
请想一想,从下面几何体组合的正面、 左面、上面、后面、右面会分别看到 怎样的图形?
长方体
四棱锥
正方体
你可以充分发挥想象力,先独立思考, 再小组讨论,把自己结果的与本组同学 交流交流。
有些唏嘘.“俺鞠言,又回来了!”鞠言看着窗外,似曾相识の情鞠,心中暗暗の道.最终,两辆天燕马车,在蓝曲郡城の中央位置,郡尪府之外,全部の停了下来.霍东阳,将鞠言等拾名参加考核の西墎城年轻修行者,叫到身边.“从今天开始,你们将暂事居住在聚华酒楼之内,等着考核通知.”霍 东阳对鞠言等声说道.“城主大声,你不与俺们壹起吗?”壹名身穿蓝色长袍年轻修行者,看向霍东阳,申色有些紧章.对于呐些年轻修行者来说,蓝曲郡城,还是非常申秘の.他们大多数,都是第壹次离开西墎城地域,来到呐么遥远の地方.而呐个庞大の城市内,强者比比皆是,他们紧章也在所难
6.1.1.2从不同的方向看立体图形和立体图形的展开图(课件)人教版(2024)数学七年级上册

知识目标
1. 了解立体图形与平面图形之间的联系.
2.能画出简单立体图形从不同方向看得到的平面 图形. (重点、难点)
3. 了解研究立体图形的方法,体会一个立体图形 按照不同方式展开可得到不同的平面展开图.
4. 通过展开与折叠了解棱柱、棱锥、圆柱、圆锥、 长方体、正方体的表面展开图或根据展开图判断 立体图形. (重点、难点)
行列
?
黄
侵权必究
总结归纳
巧记正方体的展开图口诀: 正方体盒巧展开, 六个面儿七刀裁, 十一类图记分明; 一四一呈6种, 二三一有3种, 二二二与三三各1种; 对面相隔不相连, 识图巧排“凹”和“田”.
侵权必究
红 蓝
黄
做一做
1. 下列四个图形中是正方体的平面展开图的是( B )
侵权必究
2.下列各图不是正方体表面展开图的是( C )
友情提示: 沿着棱剪 展开后是一 个平面图形
侵权必究
正方体的展开图
1
2
34
5
6
7
8
9
10
11
思考: 这些正方体展开图可以分为几种? 观察上面的11种正方体的展开图有没有什么规律? 哪几号展开图可以分为一类,为什么?
侵权必究
侵权必究
侵权必究
侵权必究
相 对 两 面 不 相 连
上左
下右
隔隔
蓝
一一
第六章 几何图形初步 6.1.1 第2课时
从不同的方向看立体图形 和立体图形的展开图
侵权必究
目录页
新课导入
讲授新课
当堂练习
课堂小结
侵权必究
新课导入
✓ 教学目标 ✓ 教学重点
侵权必究
从不同方向看 北师大版 优质课件

同一物体由于摆放的位置不同, 在同一位置观察它,它的三视 图也可能会不同。
正视图
左视图
俯视图 正视图 俯视图
左视图
正视图
左视图
俯视图
桌上放着一个圆柱和 一个长方体, 请说出
下面的三幅图分别是 从哪个方向看到的?
正视图
俯视图
左视图
先 动手搭一搭下面这个简单组合体 再画一画它的三视图
正视图
左视图
1
12 3
2
正视图
ቤተ መጻሕፍቲ ባይዱ
左视图
1 12 3
2
你能画出图中的八块小立方块所搭 成的几何体的三视图吗?
正视图
左视图
俯视图
金华 四中
运动前按摩体育运动一般分为运动训练和运动竞赛,在这些活动之前进行的按摩,称为运动前按摩。它能促使人体的神经、肌肉、关节、内脏器 按摩 上门按摩 按摩 上门按摩 lgh09neh
从立体图形到视图
从立体图形到视图
金华四中
(1) (3)
(2) (4)
从正面看到的图形为正视图。 从上面看到的图形为俯视图。 从侧面看到的图形为侧视图,依观 看方向不同,有左视图、右视图。 从正面、上面和侧面(左面或右面) 三个不同方向看一个物体,然后描 绘三张所看到的图,即视图(view)。 这样就把一个物体转化为平面图形。
2、能识别并会画简单物体及简单组合体的三 视图。
3、画“三视图”的过程实质上就是把物体转 化为平面图形的过程。
4、同一物体由于摆放的位置不同,在同一位 置观察它,它的三视图也可能会不同;
同一物体,在不同位置观察它,它的三视图 可能也会不同。
1、下图是由几个小立方块所搭出的俯视 图,小正方形中的数字表示该位置小立方 块 的个数,你能画出这个几何体的正视 图和左视图吗?
七年级上册数学从不同的方向看立体图形和立体图形的展开图教学设计与反思

七年级上册数学从不同的方向看立体图形和立体图形的展开图教学设计与反思七年级上册数学从不同的方向看立体图形和立体图形的展开图教学设计与反思第2课时从不同的方向看立体图形和立体图形的展开图1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形.(重点,难点)一、情境导入《题西林壁》苏东坡横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?二、合作探究探究点一:从不同的方向观察立体图形【类型一】判断从不同的方向看到的图形沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是( )解析:从上面看依然可得到两个半圆的组合图形.故选D.方法总结:本题考查了从不同的方向观察物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.【类型二】画从不同的方向看到的图形如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形.解:如图所示:方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等.探究点二:立体图形的展开图【类型一】几何体的展开图过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( )解析:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去的三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去的三角形交于一个顶点符合.故选B.方法总结:考查几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.【类型二】由展开图判断几何体下面的展开图能拼成如图立体图形的是( )解析:立体图形是三棱柱,展开图应该是:三个长方形,两个三角形,两个三角形位于三个长方形两侧;A答案折叠后两个长方形重合,故排除;C、D折叠后三角形都在一侧,故排除;故选B.方法总结:此题主要考查了展开图折叠成几何体.通过结合立体图形与平面图形的相互转化,理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.三、板书设计1.从不同的方向观察立体图形(1)判断从不同的方向看到的图形(2)根据从不同的方向看到的图形判断几何体2.立体图形的展开图(1)几何体的展开图(2)由展开图判断几何体本课时先通过创设情景,跨越学科界限,让苏东坡的一首《题西林壁》把同学们带入了一个如诗如画的境界,再从诗歌中提炼出隐含的数学知识,激发学生的学习兴趣.由小组合作,让学生主体参与,探索新知,充分体现了以学生为主体的新理念.1.能直观认识立体图形和展开图,了解研究立体图形的方法.2.会由展开图联想对应的立体图形形状.教学重点:1.识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的立体图形.2.正确判断哪些平面图形可以折叠为立体图形、某个立体图形的展开图可以是哪些平面图形.教学难点:了解基本几何体与其展开图之间的关系,体会一个立体图形按照不同方式展开可得到不同的平面展开图.教学过程:一、从不同方向看立体图形1.学生阅读课本P117,图4.1-6及以上相关内容,理解从不同方向看立体图形的意义和用途.2.练习:课本P121第4题.3.小结:从三个不同方向看立体图形的方法.4.小组合作探究P117图4.1-7.问题1)从正面看,有几层?每一层分别有几个正方形?(2)从上面看,有几个正方形,这些正方形是怎样排列的?(3)从左面看,有几列?每一列有几个正方形?(4)画出从三个不同方向看该立体图形所得到的平面图形.5.能力提升练习:(1)由相同的小正方体搭成的几何体从正面看和从上面看得到的平面图形如图:画出从左面看该几何体得到的平面图形.(2)由相同小立方块搭成的几何体从正面看和从上面看得到的平面图形如图所示:搭成这个几何体最多要多少个小立方块?最少呢?二、立体图形的展开图1.学生阅读课本P117图4.1-8及相关内容.2.动手操作:将一个长方体墨水瓶盒按不同的棱剪开铺平,并画下其形状观察长方体墨水瓶盒展开图中有哪些平面图形,这些平面图形之间大小形状有什么关系?3.课本P118探究:(1)先由平面图形想象立体图形的形状.(2)实际操作:将这些平面展开图画在纸上,看能否围成想象的立体图形.4.小组合作探究:正方体的平面展开图共有哪些形状?5.交流总结:正方体的平面展开图形状:141型共6个).231型:(共3个).33型:(1个).222型:(1个).6.练习(1)课本P118第2题.(2)如图所示,经过折叠可以围成一个棱柱的是( )(3)课本P123第12题.三、课时小结学生谈:我知道了什么?我学会了什么?我发现了什么?四、课堂作业1.课本P122第6题、第7题.2.下图是一个立方体纸盒的展开图,其中三格已经分别填入一个数,请在其余三个正方形内填入所有可能的数,使得折成立方体后相对面上的两个数绝对值相等,则填入正方形间A,B,C内的数依次为 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从你所在的位置看这组几何体,看到的是什么 样子?能否把你所看到的样子画下来?
主视图
左 视 图俯视图源自画出下面几何体的三视图例:如图所示的是由几个小立方块所搭几何体的俯视图,
小正方形中的数字表示在该位置小立方块的个数。 (1)请用小立方块摆出这个几何体; (2)请画出这个几何体的主视图和左视图。