数字特征与特征函数

合集下载

第三章泊松过程

第三章泊松过程

定理 设是{N (t), t≥0}一个强度为l的泊松过程,则对任 意固定的t, N(t)服从泊松分布,即
P(N (t) = k ) = (lt)k e-l t
k!
k = 0,1, 2,L
二、泊松过程的数字特征与特征函数
1. 泊松过程的均值函数
mN (t) = E[N(t)]= lt
2. 泊松过程的方差函数
DN (t) = D[N(t)]= lt
3. 泊松过程的均方值函数
y
2 N
(t)
=
E[N
2
(t)]
=
DN
(t)
+
mN2
(t)
=
lt
+
(lt)2
4. 泊松过程的自相关函数
E(N (t1)N (t2 ))
令t2 ³ t1E{[N (t1)- N (0)][N (t2 )- N (t1)+ N (t1)]} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]+ [N(t1)- N(0)]N(t1)} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]}+ E{[N(t1)- N (0)]N (t1)} 增量独立E{[N(t1)- N(0)][N(t2 )- N(t1)]}+ E{[N(t1)- N(0)]N(t1)} 增量独立E[N (t1)- N (0)]E[N (t2 )- N (t1)]+ E{[N (t1)- N (0)]N (t1)}
mN (t) = 4t = DN (t)
RN (t1,t2 ) = 4 min(t1,t2 ) + 16t1t2 , t1,t2 Î T
CN (t1,t2 ) = 4 min(t1,t2 )

概率论_特征函数

概率论_特征函数
itx

f ( t ) e dF ( x ) e itx dF ( x ) f ( t ).
- itx


9
【系1】 (唯一性定理) 两分布函数恒等的充要条 件是它们各自的特征函数恒等。
即:分布函数由其特征函数唯一确定
23
三、性质与定理的应用 例1 若X~B(n1 , p)、Y~B( n2 , p),且X与Y相互独立
性质3:设Y aX b, 这里a, b为常数,则fY (t ) ei bt f X (at ).
29
f ( t ) E (e ) e f ( x )dx
itX itx

这就是密度函数f(x)的傅里叶变换
5
常见分布的特征函数
【单点分布】
f ( t ) pk e
k 1

itxk
e
ita
【二项分布】
f (t ) C p q
k 0 k n k
n
nk
e
itk
C ( p e ) q
k 0 k n it k
n
n k
( pe q)
it
n
【泊松分布】
it k ( e ) itk eit (eit 1) f (t ) e e e e e k! k 0 k ! k 0
6
k
【均匀分布】X~U [a, b]
【注1】 e
itx
cos tx i sin tx (欧拉公式)

3
【注2】 f (t ) cos txdF ( x ) i sin txdF ( x )
【注3】
特征函数的计算中用到复变函数,为此注意:

特征函数

特征函数
特征函数有很多重要的应用. 比如, 用它来讨论分布函数 的可加性将非常方便.
回忆: 所谓可加性,是指若ξ与η相互独立,服从同一 类型分布,则其和ξ+η也服从该类分布,且其分布中 的参数是ξ与η的相应参数之和. 可加性也称再生性.
例8 设X和Y分别服从参数为1和2 的泊松分布, 且二者独立 试证X+Y服从参数为 1 2 的泊松分布.
f (t) 1 1 it
三、性质
性质1 f (t) f (0) 1 性质2 f (t) f (t) 性质3 设η= aξ+b, a,b是任意常数,则
f (t) eibt f (at)
性质4 若 1 , 2 ,, n 相互独立, 1 2 n , i
的特征函数为 fi (t) ,则 f (t) f1 (t) f 2 (t) f n (t)
f (t ) e(eit 1) 例4 均匀分布U [a, b] 的特征函数
f (t) eitb eita (b a)it
例5 正态分布 N (, 2 ) 的特征函数
i t 2t 2
f (t) e 2 特别地,标准正态分布的特征函数为
t2
f (t) e 2
例6 指数分布 Exp() 的特征函数
(e it
e it ) =
1 eit 2
1 eit 2
这是分布列为
11/ 2
1/
12
的随机变量的特征函数.
一般,若能把f (t)写成 aneixnt 的形式,其中 an 0,
an 1,
n1
则f (t)是特征函数,它的分布列为 P( xn ) an , n 1,2,
关于分布函数的可加性
证明: 由泊松分布的特征函数知
f X (t ) e1(eit 1) ,

概率与数理统计第四版(简明版)课后习题答案

概率与数理统计第四版(简明版)课后习题答案

随机变量的函数及其分布
总结词
描述通过函数变换得到的随机变量的概率分 布情况。
详细描述
对于一个或多个随机变量,通过函数变换可 以得到新的随机变量。这些新随机变量的概 率分布可以通过对原随机变量的概率分布进 行函数变换得到。例如,如果X是一个随机 变量,f(X)是关于X的函数,那么f(X)的概率 分布可以通过对X的概率分布进行函数变换 得到。常见的函数变换包括线性变换、幂函 数变换等。在得到新随机变量的概率分布后, 可以进一步分析其性质和特征。
多元线性回归分析的假设包括线性关系、误差项独立同分 布以及误差项的无偏性。
详细描述
在进行多元线性回归分析之前,需要检验各因变量与自变 量之间的线性关系,并确保误差项独立且服从相同的分布 ,同时误差项的均值为零,以保证估计的回归系数是无偏 和有效的。
总结词
多元线性回归分析的应用范围广泛,包括经济、金融、生 物、医学和社会科学等领域。
随机变量的定义与性质
随机变量是定义在样本 空间上的一个实值函数 ,其取值随试验结果的 变化而变化。
随机变量具有可加性、 独立性、有限可加性等 性质,这些性质在随机 变量的计算和推导中有 着重要的应用。
离散型随机变量是取有 限个或可数个值的随机 变量,其分布律是一个 离散的概率分布。常见 的离散型随机变量包括 二项分布、泊松分布等 。
边缘概率分布与条件概率分布
总结词
描述随机变量的边缘概率分布和条件概 率分布,即考虑某些变量的取值对其他 变量的概率分布的影响。
VS
详细描述
边缘概率分布是指考虑某些随机变量的取 值后,其他随机变量的概率分布情况。对 于两个随机变量X和Y,X的边缘概率分布 表示为P(X),表示在给定Y取某个值的条件 下,X的概率分布。条件概率分布则表示在 给定某个事件发生的条件下,其他随机变 量的概率分布情况。条件概率分布表示为 P(X|Y),表示在Y取某个值的条件下,X的 概率分布。

随机过程0-2数字特征、特征函数

随机过程0-2数字特征、特征函数

第0章 补充知识
第14页
三、特征函数的定义 引言 特征函数是处理概率论问题的有力工具,
其作用在于: ➢ 可将卷积运算化成乘法运算; ➢ 可将求各阶矩的积分运算化成微分运算; ➢ 可将求随机变量序列的极限分布化成一般的
函数极限问题; ➢ ……….
第0章 补充知识
第15页
1 .复随机变量 设X,Y 为二维(实)随机变量,则称
则对于 F(x) 的任意连续点 x1和x2 ( x1 x2 ),

F
(
x2
)
F
(
x1
)
lim
T
1
2
T eitx1 eitx2 (t )dt.
T
it
此定理的证明略去。
注 : 定理表明,当x1, x2为F ( x)的连续点时, F ( x2 ) F ( x1 )的值完全由特征函数决定.
第0章 补充知识
[a, b] 上存在且 g/(x) 在 [a, b] 上黎曼可积,则
b f ( x)dg( x)存在,且 a
b f ( x)dg( x)
b f ( x)g/ ( x)dx
a
a
定理1.3 若f(x)在[a, b]上连续,设
a c0 c1 c2 cn b
若g( x)在[ck , ck1 )取常数值,则
(t)
e itk
k0
pk
e itk
k0
k
k!
e
e (eit )k e e eit
k0 k !
e . (eit 1)
第0章 补充知识
第19页
(4)设随机变量 X 服从U(a, b), 求其特征函数。
1

f

第4章数字特征与特征函数

第4章数字特征与特征函数

( ) a0 ( ) a0 1 ( ) ( )
例: 有5个相互独立的电子装置串联组成整机,它们每一个 的寿命 X kபைடு நூலகம்(k 1, 2,3, 4,5) 服从同一指数分布,其概率密度为
e x , x 0 f ( x) 0, x 0
y0 y0
于是Y的数学期望为
fY ( y )

0,
y0

E (Y ) y fY ( y )dy y5 e y dy
0
1 5
例: 随机变量X服从柯西分布,其分布密度为
1 f ( x) , x 2 (1 x )
求E(X)。 解:





xf ( x, y )dxdy





yf ( x, y )dxdy
xf X ( x) dx
yfY ( y ) dy
推广: E (c1 X1 c2 X 2 cn X n ) c1E ( X1 ) c2 E ( X 2 ) ④设X与Y相互独立,则 E ( XY ) E ( X ) E (Y )



所以X的数学期望不存在。
1 1 x dx 2 x dx 2 2 0 (1 x ) (1 x ) 1 ln(1 x 2 ) 0
三、随机变量函数的数学期望 定理: 设Y是随机变量X的函数,Y=g(X)(g是单值连续函数), 当X是离散型随机变量时,若 g ( x ) p 绝对收敛,则
推广: n个相互独立的随机变量 E ( X1 X 2
X n ) E ( X1 ) E ( X 2 )

第08章特征函数

第08章特征函数

第八章特征函数第一节特征函数一、复随机变量1、定义:设与均为上的一维随机变量,称为上的复随机变量.2、的数学期望: ,若、均存在.3、相互独立:设()独立,称()独立.4、性质:(1),其中为复常数.证明:.(2).证明:.精彩文档精彩文档(3).证明:仅证离散型.设,则||||)(,,Z E p iy x p iy xlk kl l k lk kl l k∑∑=+≤+=.(4)|||1|x e ix≤-, R ∈∀x .证明:|||||1|0x dt edt e e xitx it ix=≤=-⎰⎰.(5)若k k k iY X Z +=独立,则. 证明:仅证明时成立即可.因独立,则与独立, 从而与,与,与,与,均独立.那么.(6),必存在.证明:仅证连续型. 因 ,,故与存在,从而存在.精彩文档二、特征函数 1、定义:设为上的一维随机变量,,规定,称为的特征函数.显然:①.② 若为离散型,则.③ 若为连续型,则.2、性质: (1);证明:.(2);证明:.(3)在上一致连续;证明:R ∈∀t ,R ∈∀h ,|])1[(||||)()(|)(itX ihX itX X h t i X X e e E Ee Ee t h t -=-=-++ψψ⎰⎰+∞∞-+∞∞--≤-=dx x edx x e e ihxitxihx)(|1|)()1(ϕϕ⎰∞∞-=dx x hx)(2sin2ϕ 其中:2sin222|1|222hx ie eeex h i x h i x h i ihx=-=--;精彩文档由于 0>∀ε, 0>∃K ..t s ⎰>Kx dx x ||)(ϕε<, (因为1)(=⎰+∞∞-dx x ϕ收敛)取0>=Kεδ , 当δ<||h 时,⎰⎰->+≤-+KKK x X X dx x hxdx x hx t h t )(2sin 2)(2sin 2|)()(|||ϕϕψψ⎰⎰⎰-->+<+≤KKKKKx dx x K h dx x hx dx x )(||22)(||2)(2||ϕεϕϕεϕεε4)(22≤++<⎰-KKdx x .(4),为常数;证明:.(5)设()独立, 则.证明:仅证明时成立即可..(6),若存在.证明:因 .所以 .三、常见分布的特征函数1、离散型(1)退化分布:.证明:.(2):,其中.证明:.(3):.证明:,服从参数为的(0-1)分布,且独立, , 所以.(3):.证明:.2、连续型(1):.特别:①:;②:.精彩文档精彩文档证明:(2):.(3):.证明:.(4) :.证明:222122221 221t t i it itz t t i edz eeσμσσσμπ--+∞-∞---==⎰.其中:.2222)(2σσσμσμσσμit it x x it x z +--⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛--=精彩文档22222σμσμt it xit x -+-⎪⎭⎫ ⎝⎛-= 222221212t t i itx x z σμσμ+-+⎪⎭⎫ ⎝⎛--=- 下面计算 πσσ22222==⎰⎰-+∞-∞---it itz Lz dz edz e:,.,,在上, ,π2022=+→+=⎰⎰⎰⎰+∞∞---dx ex l xxL xx.第二节 唯一性定理一、逆转公式 1、预备知识 (1)设有函数,使得,,收敛,则在上一致收敛. 于是有;又若在上连续,则.华东师大《数学分析(下)》(2)狄里克莱积分: 华东师大《数学分析(下)》,.(3)设,,则2、逆转公式:设的分布函数为,特征函数为,又是的连续点,则证明: 不妨设,且,令,因为精彩文档.又收敛,则又因为存在,故. 所以.二、唯一性定理1、唯一性定理: 的分布函数由其特征函数为唯一确定.证明:在的每一个连续点上,取也为的连续点,于是有.因由其上连续点唯一确定,故由唯一确定.精彩文档精彩文档2、设,且,则⎰∞∞--='=dt t ex F x X itxX )(21)()(ψπϕ.证明: 因,故连续.,,有, 又 ,且 ,于是⎰⎰∞∞--+∞∞-∆+--→∆=∆-=dt t e dt t x it e e X itxX x x it itx x )(21)(lim 21)(0ψπψπ.注意为解析函数,.三、分布函数的再生性 1、,独立,则: . 证明:因,.由唯一性定理知, .2、,独立,则: .证明:因,.由唯一性定理知, .3、,独立,则: .证明:,,由唯一性定理知, .4、,独立,则: .证明:,, 由唯一性定理知, .第三节维随机变量的特征函数一、特征函数1、定义:设为上的维随机变量,,规定,称为精彩文档精彩文档的特征函数. 显然:① 若为离散型,则.② 若为连续型,则.注:∑==⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='nk k k n n X t X X X t t t X t 12121) (M Λ2、性质: (1);证明:.(2);证明:.(3)在上一致连续; 证明:,,.其中:2121|||)()(|||X X t t X t '∆'∆≤'∆,注:∑=∆='∆nk k kX tX t 1,∑=∆∆=∆'∆nk k k t t t t 1,∑=='nk k k X X X X 1此式利用了许瓦兹不等式:精彩文档.因,由判别式可得.为方便起见,以下引入记号: ①,,.②,,特别记: ,.例: )4(}4,2{N I ⊂=,)1,0,1,0(1=I ,)0,1,0,0(11}3{3==.③ ,其中,.特别记,为单位矩阵.例: )4(}4,2{N I ⊂=,精彩文档⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000000100000I E , ⎪⎪⎪⎪⎪⎭⎫⎝⎛==0000010000000000}3{3E E .④ t E t I I =, 为t 的取有行的向量,I I I AE E A =, 为的取有行和列的矩阵,例: ),,,(4321t t t t t =,)4(}4,2{N I ⊂=,⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==43214242100000000010000000),0,,0(t t t t t t t t t I ,⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000010000100000000010000000000000000000444342413433323124232221141312114422a a a a a a a a a a a a a a a a a a A I ④ ,,但均为非负整数. (4),为常量,为常矩阵. 证明:.精彩文档注:A B AB ''=')((5) 边缘分布:,, 特别,证明:.其中:X t E X E t X E E t X E t E X t I I I I I I I I )()()('='='='='(6),若存在,.说明:n kn kkkt t t t ∂∂∂=∂Λ2121二、逆转公式 1、逆转公式:设的分布函数为,特征函数为,在体面上概率为0,则⎰∏∈=---=-n kk k k x nk k b it a it X n dt it e e t a F b F R 1)()2(1)()(ψπ.2、唯一性定理:的分布函数由其特征函数唯一确定.⎰∏∈=---∞→-=n k k k k x nk k x it y it X n y dt it e e t x F R1)()2(1lim )(ψπ.三、独立性 1、设()独立, 则.证明:仅证明时成立即可.精彩文档.2、设为维随机变量,则 ,独立 ⇔ ∏==nk k X X t t k1)()(ψψ.证明:“”因为,独立,从而, 所以. “”因为,所以⎰∏∈=---∞→-=n kk k k x nk k x it y it X n y dt it e e t x F R1)()2(1lim )(ψπ⎰∏∈=---∞→-=n k kk k k x nk k X k x it y it n y dt t it e e R 1)()2(1lim ψπ ∏∏⎰==∈---∞→=-=nk k X nk t k k X k x it y it y x F dt t it e e k k k kk k k 11)()(21lim Rψπ.故,独立.第四节 n 维正态分布矩阵回顾:(1) 正定,记为; 非负定,记为.(2) ,.(3) 所有主子式存在,,使得存在,,使得.(4) 所有主子式存在,使得.(5) . 这时即的主子式.(6) ,则.(7) 对称合同于对角矩阵,即存在,,使得为对角矩阵.一、n维正态分布1、定义:设,,为阶正定矩阵,且,称服从维正态分布,记作.2、验算:验算确实是维随机变量的密度函数.(1)显然:,;(2)因,故存在,,使得,且.令,于是,这样,而,有,那么精彩文档,从而.于是.3、特别,当时, .二、特征函数1、的特征函数:.证明:,令,.由于,而,令,, 有,所以.精彩文档精彩文档2、I X 的特征函数: ,因此也是正态分布),(~I I I C N X μ. 其中,,为二次型的矩阵,也是正定矩阵.特别: ,.证明:.三、数字特征 1、设,则μ=EX .证明:因,从而,,所以.2、设,则. 因此有.预备工作: (1)设,为含自变量的可微函数,定义:.(2).证明:⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∑∑==)()(11n j jl kj nj jl kj B A t B A t t AB .(3)设,与无关,则精彩文档,.下面证明.证明:因)()()(202l k l k t l k X X X E X X E i t t t -==∂∂∂=ψ,又,而,,kl k l l k lk C C C t t Z -='-'-=∂∂∂111121212, lk Z k l Z k Z l l k X t t Z e t Z t Z e t Z e t t t t ∂∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂22)(ψ, 于是kl k l t l k X C i i t t t -=∂∂∂=))(()(02μμψ,从而,所以.四、独立性设,则独立,,证明:“”显然. “”因,,)(ex p()ex p()(221121kk k nk k k X C t it Ct t t i t -='-'=∑=μμψ∏∏===-=nk k X n k kkk k k t C t it k 11221)()ex p(ψμ. 所以 独立.精彩文档五、线性变换 1、,,,,则.证明:因})()( ex p{21t A AC t A t i ''-'=μ, 下面证明.因,,,故存在,,使得,且, 于是.可见.2、,,服从一维正态分布.证明:“”取,由1知.“”①先证明,当,,时., ,令,,,有,,已知,精彩文档那么.故 .显然,可见, 有,又X X k k 1'=服从一维正态分布,有0),cov(>==k k k kk DX X X C ,可知, 所以. ②再证明一般地也有.由于为实对称矩阵,故存在,,使得为对角矩阵.令,由条件知,,,,也服从一维正态分布, 而由知道,,,由①知,又,由1知.3、独立,),0(~E N X .证明:“”因,那么,故独立,.“”因,故,,服从一维正态分布.因此,又因独立,,所以.精彩文档作业:1、设nk X P X 1}{~==,.,,2,1n k Λ= 求)(t X ψ2、设X 服从几何分布,求)(t X ψ、EX 及DX .3、设||21)(~x e x X -=ϕ, 求)(t X ψ.4、已知itt X -=11)(ψ,求)(),(x x F ϕ.5、已知)1,0(~N X ,32+=X Y ,求)(t Y ψ.6、设X0 1 3P21 83 81 Y 01P 31 32 已知X 与Y 独立,求Y X Z +=的概率分布.7、已知),1,1,0,0(~ρN X ,求)(21X X E . 8、证明:若)(t k ψ,.,,2,1n k Λ=均为特征函数,则∏=nk kt 1)(ψ也是特征函数.9、已知)21,1,1,0,0(~N X ,⎩⎨⎧--=++=11211211X X Y X X Y ,求),(21y y Y ϕ.精彩文档作业:1、设nk X P X 1}{~==,.,,2,1n k Λ= 求)(t X ψ解: )1()1()(1)( 1111it t in it nk k it itn k ikt nk k itx itXX e n e e ene e n p eEet k--=====∑∑∑=-==ψ )1(1 --=-it tin e n e .2、设X 服从几何分布,求)(t X ψ、EX 及DX . 解:(1) qe p qe pe qepep qe Eet it it it k k it itk k ikt itXX -=-====-∞=-∞=-∑∑1)()(1111ψ. (2)由于kk k EX i X =)0()(ψ,而22)()()()(q e ipe i e q e p t it it itit X -=---='----ψ,精彩文档22)()()(2))(()(q e i e q e ipe q e i ipe t it it it it it it X ---⋅---=''------ψ32)(q e pe pqe it ti it ---=---. 于是 pq p i i EX X1)1()0(22=--='-=ψ. 又 2321)1()0(p q q p pq EX X +=----=''-=ψ, 从而 2222211)(p q p p q EX EX DX =-+=-=.3、设||21)(~x e x X -=ϕ, 求)(t X ψ.解: ⎰⎰⎰+∞∞-+∞∞-+∞∞-+===txdx x i txdx x dx x e Eet itxitXX sin )(cos )()()(ϕϕϕψ220||111)cos sin (cos cos 21t t tx tx t e txdx e txdx e x xx +=+-===+∞-+∞-+∞∞--⎰⎰.4、已知itt X -=11)(ψ,求)(),(x x F ϕ.解: 由于1111)(-⎪⎭⎫⎝⎛-=-=λψit it t X , 可见 )1(~Exp X .所以 ⎩⎨⎧≤>=- .0 ,0,0 ,)(x x e x x X ϕ⎩⎨⎧≤>-=- .0 ,0,0 ,1)(x x e x F x X精彩文档另解: ⎰⎰⎰∞∞--∞∞--∞∞--++=-==dt t e it dt it e dt t e x itxitx X itxX 21)1(21121)(21)(ππψπϕ ⎰⎰∞∞---∞∞--⎩⎨⎧≤>=+=+++= .0 ,0 ,0 ,121212122x x e iI I dt t te idt t e x itxitx ππ其中: ⎪⎩⎪⎨⎧≤>=- .0 ,21 ,0 ,211x e x e I xx⎪⎩⎪⎨⎧≤->=- .0 ,21 ,0 ,212x e x e iI x x 于是 ⎩⎨⎧≤>-=- .0 ,0 ,0 ,1)(x x e x F x X5、已知)1,0(~N X ,32+=X Y ,求)(t Y ψ. 解: 由于 2212221 )(t t t i X ee t --==σμψ,而)()(at e t X ibtb aX ψψ=+, 那么222212212323)2(3332)2()()(t t i t t i t t i X t i X Y e eee t e t t ---+=====ψψψ.可见 3=EY ,422==DY ,由唯一性定理知: )4,3(~N Y .6、设X0 1 3P21 83 81 Y 01P 31 32 已知X 与Y 独立,求Y X Z +=的概率分布. 解: 310818321)(⋅⋅⋅++==it it it itXX e e e Eet ψ, 103231)(⋅⋅+==it it itY Y e e Ee t ψ,因 X 与Y 独立, 于是精彩文档4321012124141241161)()()(⋅⋅⋅⋅⋅++++==it it it it it itX Y X Z e e e e e Ee t t t ψψψ, 所以,由唯一性定理知Z1234P612411 41 241 1217、已知),1,1,0,0(~ρN X ,求)(21X X E . 解: 由于) ex p()(21Ct t t i t X '-'=μψ,而 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=0021μμμ, ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1122212121ρρσσρσσρσσC , ()⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛='211221212111)(t t t t t t t t t t Ct t ρρρρ222121212221212t t t t t t t t t t ++=+++=ρρρ, 于是 u t t t t X e eCt t t =='-=++-)2(2121222121)ex p()(ρψ因 ,而uu X e t t t t e t t )(222)(21211ρρψ+-=⎪⎭⎫ ⎝⎛+-=∂∂, )()()(1221212t t e t t e t t t u u X ρρρψ+++-=∂∂∂,所以 ρψ=∂∂∂-==021221)()(t X t t t X X E .精彩文档8、证明:若)(t k ψ,.,,2,1n k Λ=均为特征函数,则∏=nk kt 1)(ψ也是特征函数.证明: 设k X 的特征函数为)(t k ψ,.,,2,1n k Λ=且独立,则∑==n k k X X 1的特征函数为=∏=n k X t k 1)(ψ∏=nk k t 1)(ψ.因此∏=nk kt 1)(ψ也是特征函数.9、已知)21,1,1,0,0(~N X ,⎩⎨⎧--=++=11211211X X Y X X Y ,求),(21y y Y ϕ.解: 由于b AX Y +=,因 })()( ex p{)()()(21t A AC t A t i e t A e t t bt i X b t i b AX Y ''-'='==''+μψψψ,})()( ex p{21t A AC t b A t i ''-+'=μ, 由唯一性定理知 ),(~A AC b A N Y '+μ.而 ⎪⎪⎭⎫ ⎝⎛-=1111A ,⎪⎪⎭⎫ ⎝⎛-=11b ,⎪⎪⎭⎫⎝⎛=11ρρC , 有 b b A =+μ,⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-='ρρρρ2200221111111111A AC , 从而 1,121-==y y μμ,0,)1(2,)1(22121=-=+=y y y y ρρσρσ,于是 ⎥⎥⎦⎤⎢⎢⎣⎡-+++---=ρρρπϕ1)1(1)1(412212221141),(y y ey y2)1(6)1(2221321+---=y y eπ.参考:精彩文档,⎥⎥⎦⎤⎢⎢⎣⎡-+-------=2222212121212)())((2)()1(21221121),(σμσσμμρσμρρσπσϕy y x x ey x .。

概率论答案 - 李贤平版 - 第四章

概率论答案 - 李贤平版 - 第四章

第四章 数字特征与特征函数1、设μ是事件A 在n 次独立试验中的出现次数,在每次试验中p A P =)(,再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD 。

2、袋中有k 号的球k 只,n k,,2,1 =,从中摸出一球,求所得号码的数学期望。

3、随机变量μ取非负整数值0≥n 的概率为!/n AB p n n =,已知a E =μ,试决定A 与B 。

4、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。

5、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞=≥=1}{k k P E ξξ。

6、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ0>λ。

试求ξE ,ξD 。

7、若21,ξξ相互独立,均服从),(2σa N ,试证πσξξ+=a E ),max(21。

8、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放入乙袋中,求从乙袋中再摸一球而为白球的概率。

9、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求n S 。

10、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体质重量,试说明这样做的道理。

11、若ξ的密度函数是偶函数,且2E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。

12、若,ξη的密度函数为22221,1(,)0,1x y p x y x y π⎧+≤⎪=⎨⎪+>⎩,试证:ξ与η不相关,但它们不独立。

13、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 数字特征与特征函数1、设μ是事件A 在n 次独立试验中的出现次数,在每次试验中p A P =)(,再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD 。

2、袋中有k 号的球k 只,n k ,,2,1Λ=,从中摸出一球,求所得号码的数学期望。

3、随机变量μ取非负整数值0≥n 的概率为!/n AB p nn =,已知a E =μ,试决定A 与B 。

4、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。

5、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞=≥=1}{k k P E ξξ。

6、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ0>λ。

试求ξE ,ξD 。

7、若21,ξξ相互独立,均服从),(2σa N ,试证πσξξ+=a E ),max (21。

8、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放入乙袋中,求从乙袋中再摸一球而为白球的概率。

9、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求n S 。

10、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体质重量,试说明这样做的道理。

11、若ξ的密度函数是偶函数,且2E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。

12、若,ξη的密度函数为22221,1(,)0,1x y p x y x y π⎧+≤⎪=⎨⎪+>⎩,试证:ξ与η不相关,但它们不独立。

13、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。

14、若,U aX b V cY d =+=+,试证,U V 的相关系数等于,X Y 的相关系数。

15、若123,,ξξξ是三个随机变量,试讨论(1)123,,ξξξ两两不相关;(2)123123()D D D D ξξξξξξ++=++;(3)123123E E E E ξξξξξξ=⋅⋅之间的关系。

16、若,ξη服从二元正态分布,,1,,1E a D E b D ξξηη====。

证明:ξ与η的相关系数cos r q π=,其中{()()0}q P a b ξη=--<。

17、设(,)ξη服从二元正态分布,0,1,E E D D r r ξηξηξη=====,试证:max(,)E ξη=18、设ξ与η独立,具有相同分布2(,)N a σ,试求p q ξη+与u v ξη+的相关系数。

19、若ξ服从2(,)N a σ,试求||k E a ξ-。

20、若α及β分别记二进制信道的输入及输出,已知{1},{0}1,P p P p αα====-{11}P q βα===,}{01}1,{10},P q P r βαβα===-==={00}1P r βα===-,试求输出中含有输入的信息量。

21、在12只金属球中混有一只假球,并且不知道它比真球轻还是重,用没有砝码的天平来称这些球,试问至少需要称多少次才能查出这个假球,并确定它比真球轻或重。

22、试用母函数法求巴斯卡分布的数学期望及方差。

23、在贝努里试验中,若试验次数v 是随机变量,试证成功的次数与失败的次数这两个变量独立的充要条件,是v 服从普阿松分布。

24、设{}k ξ是一串独立的整值随机变量序列,具有相同概率分布,考虑和12v ηξξξ=++L ,其中v 是随机变量,它与{}k ξ相互独立,试用(1)母函数法,(2)直接计算证明2,()k k k E Ev E D Ev D Dv E ηξηξξ=⋅=⋅+⋅。

25、若分布函数()1(0)F x F x =--+成立,则称它是对称的。

试证分布函数对称的充要条件,是它的特征函数是实的偶函数。

26、试求[0,1]均匀分布的特征函数。

27、一般柯西分布的密度函数为221(),0()p x x λλπλμ=⋅>+-。

证它的特征函数为exp{||}i t t μπ-,利用这个结果证明柯西分布的再生性。

28、若随机变量ξ服从柯西分布,0,1μλ==,而ηξ=,试证关于特征函数成立着()()()f t f t f t ξηξη+=⋅,但是ξ与η并不独立。

29、试求指数分布与Γ-分布的特征函数,并证明对于具有相同λ值的Γ-分布,关于参数r 有再生性。

30、求证:对于任何实值特征函数()f t ,以下两个不等式成立:21(2)4(1()),1(2)2(())f t f t f t f t -≤-+≥。

31、求证:如果()f t 是相应于分布函数()F x 的特征函数,则对于任何x 值恒成立:1lim()(0)(0)2T itx TT f x e dt F x F x T --→∞=+--⎰。

32、随机变量的特征函数为()f t ,且它的n 阶矩存在,令01log (),k k kk t d X f t k n idt =⎡⎤=≤⎢⎥⎣⎦,称k X 为随机变量的k 阶半不变量,试证b ηξ=+(b 是常数)的(1)k k >阶半不变量等于k X 。

33、试求出半不变量与原点矩之间的关系式。

34、设12,,,n ξξξL 相互独立,具有相同分布2(,)N a σ试求1n ξξξ⎛⎫ ⎪= ⎪ ⎪⎝⎭M 的分布,并写出它的数学期望及协方差阵,再求11ni i n ξξ==∑的分布密度。

35、若ξ服从二元正态分布(0,)N ∑,其中4221⎛⎫∑=⎪⎝⎭,试找出矩阵A ,使A ξη=,且要求η服从非退化的正态分布,并求η的密度函数。

36、证明:在正交变换下,多元正态分布的独立、同方差性不变。

37、若(,)ξη的分布为1212121212212!(,)(1)!!()!k k n k k i n p k k p p p p k k n k k ξη--===---- 01i p <<0≤≤k n i k k n 12+≤ 1,2i =,(1)求随机变量ξ的边际分布;(2)求E (|)ηξ。

38、若,,r v ξ的取值是非负数,且()!nAB p n n ξ==,又8E ξ=,求?,?A B ==39、设~(2,1),~(1,4)N N ξη且二者独立,求U =-ξη2 ,2V ξη=-的相关系数ρuv 40、某汽车站在时间t 内发车的概率为P(t)=1-et-8,求某人等候发车的平均匀时间。

41、某厂生产的园盘的直径服从(,)a b 内的均匀分布,求园盘面积的数学期望。

42、搜索沉船, 在时间t 内发现沉船的概率为P t et()()=->-10λλ, 求为了发现沉船所需要的平均搜索时间。

43、从数字1,2,3,4中按有放回方式取数,设随机变量ξ表示第一次选取的数字,随机变量η表示第二次选取的不小于ξ的数字. (1)写出(,)ξη的联合分布列; (2)求E η.44、如果,,ξηζ互不相关,且方差分别为1,3,6,求,u v ξηηζ=+=+的相关系数ρuv .45、将三个球随机地放入三个盒子中去,设随机变量,ξη分别表示放入第一个、第二个盒子中的球的个数。

1)求二维随机变量(,)ξη的联合分布列; 2)求E ξ46、设, RV ξη相互独立,且2, 1, 1, 4E D E D ξξηη====,求-2 , 2- U V ξξη==的相关系数uv p 。

47、民航机场一送客汽车载有20个旅客从机场开出,旅客可从10个站下车,如果到站没人下车就不停车,假定乘客在每个车站下车是等可能的,求平均停车次数。

48、据统计,一个40岁的健康者在5年内死亡的概率为1-p ,保险公司开办五年人寿保险,条件是参加者需要交保险费a 元,若五年内死亡,公司赔偿b 元()b a >,问b 应如何确定才能使公司可望受益?若有m 个人参加保险,公司可望收益多少?49、对敌人防御地段进行100次轰炸,每次命中目标的炸弹数是一个随机变量,其期望值是2,方差是1.69,求100次轰炸中有180~220颗命中目标的概率。

50、若有n 把看上去样子相同的钥匙,其中只有1把打开门上的锁。

用它们去试开门上的锁,设取得每把钥匙是等可能的。

若每把钥匙试开后除去,求试开次数X 的期望。

51、对球的直径作近似测量,其值均匀分布在区间[,]a b 上。

求球的体积的期望。

52、设X 服从几何分布,它的概率分布列为:1{},1,2,i P X i q p n -===L ,其中1q p =-,求()E X ,()D X 。

53、设离散随机变量X 的分布列为1{},1,2,2P X i i +==L ,求sin 2Y X π⎛⎫= ⎪⎝⎭的期望。

54、有3只球,4只盒子,盒子的编号为1,2,3,4。

将球随机地放入4只盒子中去。

记X 为其中至少有1只球的盒子的最小号码。

求()E X 。

55、随机地掷6个骰子,利用切比雪夫不等式估计6个骰子出现点数之和在15点到27点之间的概率。

56、已知正常成人血液中,每亳升白细胞数平均是7300,标准差是700。

利用切比雪夫不等式估计每亳升男性成人血液中含白细胞数在5200至9400之间的概率p 。

57、一部件包括10部分,每部分的长度是一个随机变量,相互独立且服从同一分布、其期望是2mm ,标准差是0.05mm 。

规定总长度为(200.1)mm ±时产品合格,求产品合格的概率。

58、根据以往的经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1920小时的概率。

59、证明Cuchy---Swchz 不等式,若E E ξη22⋅ 存在 ,则E E E ξηξη222≤⋅ 60、设r>0,则当 E ||ξr存在时, ∀>ε0,有P E rr(||)||ξεξε≥≤。

61、若-1() 1,2, 1(0)k P k pqk p q p ξ===+=>L 则1E pξ=。

62、设ξ与η都只取两个数值,且ξ与η不相关,则ξ与η独立。

63、叙述并证明契比雪夫大数定律。

64、若ξ是取非负整数的随机变量,,E D ξξ均存在,则E P i i ξξ=≥=∞∑1()。

65、设()ξη,的联合密度函数是[]f x y ReRx Rxy y (,)()=----+12121212222π,求证:[]E Rmax(,)ξηπ=-166、证明:对取值于区间[,]a b 中的随机变量ξ恒成立,2,()2b a a E b D ξξ-⎛⎫≤≤≤ ⎪⎝⎭。

相关文档
最新文档